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GROUPS WITH A CAYLEY GRAPH
ISOMORPHIC TO A HYPERCUBE

JOHN D. DIXON

A process is described for enumerating the Cayley graphs isomorphic to a binary
d-cube for small values of d. There are 4 Cayley graphs isomorphic to the 3-cube,
14 isomorphic to the 4-cube, 45 isomorphic to the 5-cube and 238 isomorphic to
the 6-cube. A similar method may be used for any graph with a prime power
number of vertices.

1. INTRODUCTION

Let G be a group and T be a set of generators of G with T = T1"1 and 1 ^ T.
Then the Cayley graph Cayley (G,T) is the graph with vertex set G and edges (x,xt)
(x £ G, t € T). The graph is connected because T generates G, it has no loops because
1 $ T, and it is undirected since whenever (x, xt) is an edge so is (xt, (xt)t-1) = (xt, x).
There is an extensive literature on Cayley graphs, partly because their simple represen-
tation and internal symmetry make them useful in applications (see, for example, the
recent papers [7, 8, 10] and [12]).

Two natural questions arise: (1) what graphs can be represented by Cayley graphs;
and (2) what different representations does a given graph have? The first of these
question seems quite difficult, although some progress has been made; see, for example,
[9] and the references there. With respect to the second question, most effort seems to
have gone into attempts to characterise "Cayley invariant groups" (Cl-groups) which
were introduced in [1] (the definition is given below); see [4, 5, 6] and references there.

In the present paper we consider question (2) for d-cubes which are of particular
interest for applications. We shall show how to compute a complete set of representa-
tions of a d-cube as a Cayley graph for small values of d. It turns out that there are
many representations even when d ^ 6. Our methods apply equally well to any graph
with a prime power number of vertices.

One reason that Cayley graphs are interesting is because of their in-built symme-
try. If A denotes the automorphism group of Cayley (G, T) (so A is the group of all
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permutations of the vertex set G which preserve adjacency), then A contains a copy
Go of G as a regular subgroup acting on the left, namely:

Go := {x •-> aTrx | a G G} ^ G.

Our constructions below are based on the following converse.

(1.1) Let Q be a connected graph (without loops) whose automorphism group A

contains a regular subgroup G (in its action on the vertex set), and let a be a vertex
of Q. Then T :- {t £ G \ a* is adjacent to a in Q) satisfies 1 £ T and T = T'1, and
Q is isomorphic to Cayley (G, T).

PROOF: See [2, Lemma 16.3]. D

When should two Cayley graphs be considered "the same"? The following is a
natural equivalence. Let (Gi,Ti) (i — 1,2) be two pairs where Ti is a generating
set for the group Gj such that 1 ^ 7* and Ti = T^1. We say that these pairs are
equivalent if there exists a group isomorphism ip from G\ onto Gi which maps T\

onto Ti. Evidently, if (Gi,7\) is equivalent to [Gi-,Ti) under ip, then ip induces
an isomorphism between Cayley (Gi,Ti) and Cayley (G2,T2). In general, pairs which
are inequivalent may still have isomorphic Cayley graphs; Babai [1] defines G to be a
Cl-group if inequivalent pairs (G,Ti) and (G,T2) always have nonisomorphic Cayley
graphs. The next result shows how we can determine equivalence in the situation of
(1.1).

(1.2) Suppose that the automorphism group A of a connected graph Q contains
two regular subgroups G\ and G<i. Let ai and a 2 be any two vertices of Q and define
Ti := {t G Gi | a\ is adjacent to on} for i = 1,2. Then (Gi,Ti) is equivalent to
(G2,T2) if and only if G\ is conjugate to G2 in A. In particular, the equivalence type
of (Gi, T\) does not depend on the choice of a\.

PROOF: See [1]. D

Finally, the following criterion for equivalence is useful for computations. Its simple
proof is omitted.

(1.3) Suppose that (Gi, Ti) (i — 1,2) are two pairs where Tj is a generating set for
the group Gi, and that G\ is a finite group of order g. Then there is an isomorphism
t/j of G\ onto G2 such that tp(Ti) — Ti if and only there is a bijection A : T\ —> T2

such that {(t, X(t)) \ t € 7\} generates a subgroup of order g in G\ x G2 (and in the
latter case A extends to an isomorphism ip of Gi onto G2).

REMARK. In a computation to decide whether two pairs (G\,Ti) and (G2,T2) are
equivalent, we work with partial (injective) functions A : Ti —¥ Ti. The criteria in
(1.3) is used to check whether A can be extended to an isomorphism on the subgroup
generated by its domain. If it is, we extend A so that its domain contains one further
element of 7 \ ; otherwise we backtrack by deleting an element from the domain.
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EXAMPLE 1. There are exactly four inequivalent pairs (G,T) for which Cayley (G,T)

is isomorphic to the 3-cube. (This is not obvious but see Example 2 below.) These are:

(i) G is elementary Abelian of order 23 with T — {a,b,c}: a2 — b2 = c2 = 1,

ab — ba, ac — ca and be = cb (the "standard example");
(ii) G is a direct product of cyclic subgroups of order 2 and 4 with T —

{a, b,b'1}: a
2 = b4 = l and ab = ba;

(iii) G is dihedral of order 8 with T = {a,b,c}: a? = b2 = c2 = 1, ab = ba,

ac = ca and be = cba;
(iv) G is dihedral of order 8 with T = {a, b, b'1}: a2 = b4 - 1 and ab = b3a.

The pairs (G, T) in (iii) and (iv) are obviously inequivalent even though the underlying
group is the same.

2. AUTOMORPHISMS OF THE d-cuBE

We shall define the (binary) d-cube (d > 2) as the graph whose vertex set is the
vector space V := (F2)d of d-tuples over the field of two elements with two vertices
adjacent if and only if they differ in exactly one entry. The automorphism group A of
the d-cube clearly contains the elementary Abelian 2-group B of order 2d consisting
of all translations of V by elements of V, and also the group 5 = Sym (d) consisting
of the permutations of V induced by permuting the coordinates of V. Since B acts
regularly on V, and 5 is the stabiliser of (0 ,0 , . . . ,0) in A, we have A = SB with
5 H B — 1. In its natural representation, A is a subgroup of Sym (V) of order 2dd! and
degree 2d. Alternatively, A may be represented as the reflection group consisting of all
dxd monomial matrices with nonzero entries ±1 (as a Coxeter group A is denoted by
Ai-i).

The next result follows immediately from (1.1) and (1.2).
(2.1) Let G be a group of order 2d. Then there exists a generating set T of G

with 1 £ T and T = T"1 such that Cayley (G,T) is isomorphic to the d-cube if and
only if G is isomorphic to a regular subgroup R of the group A defined above. The
equivalence types (G, T) correspond one-to-one with the .A-conjugacy classes of regular
subgroups of A isomorphic to G.

For computational purposes we prefer a more compact representation of A. Since
A is isomorphic to the wreath product Ci wr Sym (d) it has a faithful permutation
representation of degree 2d as well as its natural representation of degree 2d (see, for
example, [3, Chapter 2]). Specifically, let II be the partition of {1,2,... ,2d} whose
parts are the 2-subsets {1,d+1}, {2,d + 2} , . . . , {d, 2d}, and let Ao be the subgroup of
Sym (2d) consisting of all permutations which leave II invariant. Then A is isomorphic
to AQ with B corresponding to BQ := ( ( l , d + l ) , . . . ,(d,2d)), and 5 corresponding
to So := ((1,2)(d + 1, d + 2), (1,2,.. . , d)(d + 1, d + 2, . . . , 2d)) ^ Sym (d). It is easily
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verified that So is the set of all permutations in Sym (2d) which leave II invariant and
map {1,2,. . . , d} into itself, and that a subgroup R of A is regular (in the natural
representation) if and only if its image Ro in Ao has the properties: (i) \Ro\ = 2d\ and
(ii) Ro n So = 1 • Now (2.1) gives the following.

(2.2) Let G be a group of order 2d. Then there exists at least one set T of
generators of G with 1 ̂  T and T = T~1 such that Cayley(G, T) is isomorphic to the
d-cube if and only if G is isomorphic to a subgroup RQ of Sym (2d) such that:

(i) RQ leaves the partition II described above invariant; and
(ii) no nontrivial element of RQ maps {1,2,. . . , d} into itself.

REMARK. In particular, if Cayley(G, T) is isomorphic to the d-cube, then G has a
faithful permutation representation of degree 2d. This shows, for example, that if k is
the integer such that d < 2k ^ 2d then the orders of the elements of G are bounded
by 2fe and the solvable length of G is bounded by k.

3. ENUMERATING CONJUGACY CLASSES OF REGULAR SUBGROUPS

We now turn to the question of how to enumerate efficiently the regular subgroups
of the automorphism group A of the d-cube. By (1.2) we really want to enumerate
the j4-conjugacy classes of such groups. It turns out to be easier to enumerate first
the P-conjugacy classes of regular subgroups of a Sylow 2-subgroup P of A, and then
to remove extraneous groups which are A-conjugate but not P-conjugate. Since the
process we describe works equally well for a p-group for any prime p we shall describe
it in that more general setting.

PROBLEM. Let p be a prime. Given a finite p-group P and a subgroup PQ of index
pd, find representatives of the P-conjugacy classes of subgroups R of P satisfying:

(*) \R\=pd and RHP0= 1.

REMARK. In our original problem P is a transitive permutation group of degree 2d,
Po is a point stabiliser in P , and the subgroups R with property (*) are the regular
subgroups. The more general formulation is helpful because we want to work with the
representation of degree 2d described in (2.2).

Since P is a p-group, every subgroup is subnormal, so we can find a normal series:

P0<iPi<]...<Pd = P

where Pk/Pk-i is of order p and generated by Pk-\Zk, say, for k — 1,2,... , d. Suppose
that R is a subgroup of P with properties (*) and put Rk •= RC\Pk- Then
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is a normal series for R whose factors are each of order dividing p. Since \R\ = pd, each
factor in this series has, in fact, order equal to p, so we have a composition series for
R. Thus \Rk\ = pk and Pk = PoRk- In particular, 2fc G PoRk and so UkZk € Rk for
some Uk € Po- Since Ufc-zjt ^ Pfc-i, we conclude that Rk-iUkZk generates Rk/Rk-i-

Note that uk is completely determined by R since i i n Po = 1. Hence we can associate
with each subgroup R satisfying (*) a unique d-tuple ( « i , . . . ,uj) of elements from Po

such that
Rk = (uizi,... , ukzk) for k = 0 ,1 , . . . , d.

Let U denote the set of all such d-tuples as R ranges over the subgroups of P satisfying

(*)•

(3.1) A d-tuple (uj . , . . . ,Ud) of elements from Po lies in U if and only if, for
i = 1 , . . . ,d, we have:

(i) mzi normalises {u\Z\,... ,Ui-iZi-i); and
(ii) {uiZi)p £ (uiZ1,...,ui_i;Zi_i).

PROOF: It is easy to check that the two conditions are necessary, so assume that
(i) and (ii) both hold; we shall show that ( u i , . . . , Ud) 6 U.

Put Ri := (uizi,... ,UiZ{). Then 1 = RQ ^ R\ ^ . . . ^ Rj is a normal series
by (i), and the factors have orders dividing p by (ii), so |.Rd| ^ pd. Since PoP^d =

(Po,z\,... ,Zd) — P , Rd is of order at least \P:Po\—pd. Hence \Rd\ = pd, and now
P0Rd = P implies PQ f) Rd = 1. Thus Rd satisfies (*) as required. D

Now consider the condition of P-conjugacy. Suppose that ( « i , . . . ,Ud) and
(vi,... ,Vd) lie in U and define subgroups R and Q, respectively, which satisfy con-
ditions analogous to (*). Since P = PQR, R is conjugate to Q under P if and only
if R is conjugate to Q under Po. Suppose w € Po such that w~1Rw = Q. Then
w normalises Pk so w~1Rkiv — Qk for each k. Thus to find the P-conjugacy classes
of subgroups satisfying (*) in a backtrack program, it is enough to choose exactly one
Po-conjugacy class of subgroups Rk at each stage.

Assume that k ^ 1. Suppose that (u\,... ,Uk-i) is a (k — l)-tuple of ele-
ments from Po which extends to two fc-tuples of elements from Po, say (iii>- • • î fc)
and (u\,... ,Uk-i,v), both of which satisfy conditions of type (i) and (ii) of (3.1)
up to this stage. As before, put Ri := (uizi,... ,UiZi) for i = 0 , . . . ,k, and
Qk •- (uizi,...,Uk-iZk-i,vzk)•

(3.2) There exists IUEPO such that w~1Rkiv = Qk if and only if:

(i) w normalises -Rjt-i; and
(ii) Rk-ivzk = Rk-iw~lukzkw.

PROOF> The conditions are clearly sufficient for Rk and Qk to be conjugate under
w. Conversely, assume w~1RkW = Qk for some w € PQ. Then (i) holds because
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i2fc_i = Rk n Pfc-i = Qk n Pfc-i- Moreover, u.zfc G Qi fl P t , ufczfc G i?fc D Pfc and
to G Pfc-i, therefore wvzkw~l G i2fc n Pfc_1ujtzJk = (fl* nPfc_i)ufc.Zfc = Rk-\ukzk.
Condition (ii) now follows because w normalises Rk-i- D

The conditions of (3.1) and (3.2) can be used in a backtrack program to generate
a complete set of representatives of P-conjugacy classes ( = P0-conjugacy classes) of
subgroups of P satisfying (*). The d-tuples in U are generated one element at a time,
discarding branches which will lead to Po-conjugate subgroups. Suppose that k < d
and that {u\,... , uk-i) is a (k — l)-tuple of elements of Po such that conditions (i)
and (ii) of (3.1) hold for i — 1, . . . , A; — 1. Put Rk-i := (uizi,... , uk-\zk-i). Then in
the next step we must construct a subset W C Po such that

(i) (ui , . . . ,Ufc_i,Ufc) satisfies (i) and (ii) of (3.1) for i = k for each uk G W;
and

(ii) Rk := (uizi,..., ukzk) (uk € W) is a complete set of representatives of
the Po-conjugacy classes of subgroups obtained by extending Rk-i-

It follows from (3.1) and (3.2) that W has these properties provided the elements
Rk-iuzk (u G W) run over a complete set of representatives of the Np0(i?fc_i)-orbits
(under conjugation) of the set of elements of order p of the form Rk-\vzk (v G Po) in

It may happen that no extension of the (fc — l)-tuple is possible (W — 0). On the
other hand, suppose W ^ 0 and choose uk G W.

P u t Rk :— {u\Z\,... , u k z k ) , a n d Ni : = Npo(Ri) for i = 0 , . . . ,k. T h e n Nk ^
Nk-i ^ . . . ^ No — Po because Ri-i = Ri D Pk-i. Indeed, since ukzk normalises
Rk-i, the elements of the form Rk-\vzk (v G Po) in Npk(Rk-i)/Rk-i are precisely
those of the form Rk-iuukZk with u G Nk^i. Hence we can choose W as any set with
the property that vzk (v G W) is a set of representatives of the JVfc_i-conjugacy classes
of elements in {uukzk \ u G A^-i and (uukzk)

p G Rk-i}. Note that Rk-iNk-iukzk is
invariant under Nk-i. Indeed, if w G Nk-i, then w~1ukzkw h'es in Pk-iukzk (since
Pk-i < Pk) as well as in Np(Rk-i). Thus w~1UftZkVi G Rk-iNk-iukzk as required
because JVP(i?fc_i) nPfc_i = Rk-x

EXAMPLE 2. We explain how to enumerate the Cayley graphs isomorphic to the 3-
cube. In this case we can take P :— ((1,2,4,5), (1,4), (3,6)) of order 16 as a Sylow
2-subgroup of Sym(6) which leaves the partition II := {{1,4}, {2,5}, {3,6}} invariant.
The subgroup Po := (to) ^ P with w := (1,2)(4,5) has index 8, and corresponds
to a point stabiliser in the representation of degree 23 of P (see (2.2)). If we take
T :— {(1,4), (2,5), (3,6)}, then Q := (T) is an elementary Abelian normal subgroup of
order 8 in P with QDPQ = 1. Indeed Cayley (Q,T) gives the standard representation
of the 3-cube. We next find suitable elements, z\ := (3,6), z2 := (1,4)(2,5) and
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z3 := (2,5), so that 1 < (z\) < (z\, z2) < (zi, Z2, z3) — T is a P0-composition series for T.
We must now find the 3-tuples (ui, u2, u3) with Ui 6 Po for which (u\Zi, U2-Z2, U3Z3) has
order 8. Since z\, z2, z3 and w all commute except for the relation zj1102:3 = 1022,
we find using (3.1) that the only 3-tuples with the required property are (1,1,1),
(I, I, w), (w, I, I) and (w, I, w). It can be checked using (3.2) that the corresponding
groups, say Gi (i = 1 , . . . , 4 ) , are not Po-conjugate. In order to choose a set Tj of
generators for Gi so that Cayley (Gi, Ti) is isomorphic to the 3-cube (i = 1 , . . . .,4) we
refer back to T. We must choose Tj C Gi to consist of three elements such that right
multiplication by the j th element of Tj maps Po onto Potj where tj is the j th element
in T. This gives Tx = {z2zz, z3tzi}, T2 = {wz3z2, wz3,zi}, T3 = {z2z3,z3,wzi} and
I4 = {wz3z2,wz3,wzi} and so we obtain the four Cayley graphs listed in Example 1.
Since the pairs (Gi,Ti) are obviously mutually inequivalent, we are finished.

4. CAYLEY GRAPHS ISOMORPHIC TO THE d-cuBE

Example 2 shows how to enumerate the Cayley graphs isomorphic to the 3-cube.
For d > 3 the procedure is similar. It can be described as follows.

We start with a Sylow 2-subgroup P of Sym(2d) leaving the partition II :=
{{1, d + 1}, {2,2 + d},... ,{d, 2d}} invariant, and the subgroup Po of P consisting of
the permutations which map {1 , . . . , d} into itself. Then Q := ((1, d + 1), (2,2 + d),...
(d, 2d)) is an elementary Abelian normal subgroup of P of order 2d such that P =
PoQ and Q n P 0 = 1. We can therefore choose zt (i = 1,. . . ,d) in Q such that
1 < (zi) <... < (zx, z2,... ,Zd) = Q is a Po-composition series for Q. With these values
of Zi we carry out the backtrack program sketched in Section 3 to find a complete set
of representatives for the P-conjugacy classes of subgroups R of P which satisfy the
condition (*). For each of these subgroups we find a set TR of generators such that
Cayley (R, TR) is isomorphic to the d-cube. Finally extraneous pairs (R, TR) which are
equivalent to other pairs in our list are eliminated, first using a crude criterion based on
conjugacy classes to distinguish groups which are obviously not isomorphic, and then
using (1.3) to decide equivalence in the remaining undetermined cases.

All calculations were done using GAP 3.1 [11].

4.1 THE CAYLEY GRAPHS ISOMORPHIC TO THE 4-CUBE.

For d = 4, we obtained 22 P-conjugacy classes of subgroups R satisfying (*).
These 22 classes yielded 14 equivalence classes of Cayley graphs isomorphic to the 4-
cube. Generators for representatives of these classes are given by:

[a4,C4,d4,e4], [64,/4,54,/i4], [c4,d4,e4,/4], [a4,M,ff4,M], [i4, J4,fc4,*4],

[e4,/4,t4,fc4], [a4,/i4,m4,n4], [C4,d4,j4,l4], [64,g4,o4,p4], [e4,/4,m4,n4],

[a4,h4,i4,k4], [c4,d4,o4,p4], [g4,r4,s4,t4], [e4,n4,u4,v4]
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where

aA := (3,7), 64 := (4,8), cA := (2,4,6,8), d4 := cA~\ eA := (1,5)(2,4)(6,8),

fA := (2,4)(3,7)(6,8), gA := (2,6), hA := (1,5), z4 := (1J3)(2,4)6,8)(5,7),

jA := (1,3,5,7)(2,4)(6,8), *4 := 14"1, J4 := J 4 " \ m4 := (1,3)(4,8)(5,7),

nA := (1,3)(2,6)(5, 7), o4 := (1,3,5,7), pA := oA~\ qA := (1,2,3,4,5,6,7,8),

r4 := (1,2,7,8,5,6,3,4), s4 := r4"1, M : ^ " 1 , u4 := (1,2,3,8,5,6,7,4), i/4 := U4"1.

Many of the groups involved are isomorphic. For example, the first group is iso-
morphic to the second via the mapping aA H-» hA, cA i-> a4c4 and eA *-> 64.

4.2 THE CAYLEY GRAPHS ISOMORPHIC TO THE 5-CUBE.

For d = 5, we obtained 68 P-conjugacy classes of subgroups R satisfying (*).
These 68 classes yielded 45 equivalence classes of Cayley graphs isomorphic to the 5-
cube. Generators for representatives of these classes are given by:

[ab, c5,65,d5,e5], [fb,gb,hb,db,ib], [db,jb,lb,kb,mb], [n5,o5,p5,d5,g5],

[c5,d5,j'5, &5, e5], [gb,rb,db,sb,ib], [ab, bb,db,lb,m5], [fb, hb,tb,db,ub],

[cb,rb,db,sb,eb], [gb, db, jb, kb,ib], [ab,bb,tb,db,ub], [vb,xb,db,yb,wb],

[cb, zb, rb, sb, eb], [zb, aab, 665,ccb, ddb], [ab,65, zb, tb, ub], [zb,vb,xb, yb, wb],

[zb,aab,sb,bbb,eb], [ee5,a5, c5,65,e5], [fb,gb, eeb, hb,ib], [eeb,jb,lb,kb,mb],

[ee5,r5,i5,s5,u5], [fb,eeb,cb,hb,eb], [g5,ee5,a5,65,z'5], [ee5,r5,Z5,s5,m5],

[eeb,tb,jb,kb,ub], [ee5,c5,j5,A;5,e5], [gb, eeb,rb, sb,ib], [ee5,a5,65,Z5,m5],

[/5,ee5,/i5,t5,u5], [ee5,c5,r5, s5,e5], [gb,eeb,jb,kb,ib], [fb,eeb,hb,lb,mb],

[ee5,a5,65,£5,u5], [35,ee5,a5,65,e5], [fb,eeb, cb, hb,ib], [ffb,fb,gb,hb,ib],

[ffb,jb,lb,kb,mb], [ffb,cb,jb,kb,eb], [ffb,ab,bb,lb,mb], [ffb,fb,hb,tb,ub],

[ffb, aab, sb, 665, eb]

where

ab:= (2,4,7,9), 65 := O5"1, cb := (2,4)(3,8)(7,9), d5 := (1,3)(2,4)(5,10)(6,8)(7,9),

e5

r5

cc5

= (1,6)(2,4)(7,9), /5 := (4,9), 55 := (3,8), hb := (2,7), i5 := (1,6),

= (1,3)(2,4,7,9)(6,8), W ^ i S " 1 , 15 := (1,3,6,8)(2,4)(7,9), mb := /5" 1

— «R-I= (1,2)(3,4,8,9)(6,7), ob := nb~x pb := (1,2,6,7)(3,4)(8,9), qb := pb

= (1,3X4,9X6,8), s5:=(l,3)(2,7)(6,8), tb := (1,3,6,8), u 5 : = t 5 - \

= (1,2,3,4,6,7,8,8), w5:=vb-\ xb := (1,2,8,9,6,7,3,4), yb := xb~\

= (1,2)(3,4)(5,10)(6,7)(8,9), aab := (1,2,3,9,6,7,8,4), 665 := aab~\

= (1,4,3,2,6,9,8,7), dcB^ccS" 1 , ee5 := (2.4)(5,10)(7,9), / /5 :=(5 ,10) .
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4.3 T H E CAYLEY GRAPHS ISOMORPHIC TO THE 6-CUBE.

For d = 6, 894 P-conjugacy classes of subgroups R satisfying (*) were obtained.

These 894 classes yielded 238 equivalence classes of Cayley graphs isomorphic to the

6-cube.

REFERENCES

[1] L. Babai, 'Isomorphism problem for a class of point-symmetric structures', Ada Math.
Acad. Sci. Hungar. 29 (1977), 329-336.

[2] N. Biggs, Algebraic graph theory (Cambridge University Press, Cambridge, 1974).
[3] J.D. Dixon and B. Mortimer, Permutation groups (Springer-Verlag, Berlin, Heidelberg,

New York, 1996).
[4] E. Dobson, 'Isomorphism problem for Cayley graphs of Zp', Discrete Math. 147 (1995),

87-94.
[5] X.G. Fang and M.Y. Xu, 'On isomorphisms of Cayley graphs of small valency', Algebra

Colloq. 1 (1994), 67-76.
[6] A. Joseph, 'The isomorphism problem for Cayley digraphs on groups of prime-squared

order', Discrete Math 141 (1995), 173-183.
[7] P. Kulasinghe and S. Bettayeb, 'On the multiply-twisted hypercube', in Parallel and

Distributed Computing (Montreal, PQ, 1994), Lecture Notes in Computer Science 805
(Springer-Verlag, Berlin, Heidelberg, New York, 1994), pp. 267-278.

[8] A. Lubotzky, 'Cayley graphs: eigenvalues, expanders and random walks', in Surveys
in Combinatorics, 1995 (Stirling), London Math. Soc. Lecture Notes 218 (Cambridge
University Press, Cambridge, 1995), pp. 155-189.

[9] B.D. McKay and C.E. Praeger, 'Vertex transitive graphs which are not Cayley graphs I',
J. Austral. Math. Soc. Ser. A. 56 (1994), 53-63.

[10] S.T. Schibell and R.M. Stafford, 'Processor interconnection networks from Cayley graphs',
Discrete Appl. Math. 40 (1992), 333-357.

[11] M. Schonert et al, GAP - Groups, Algorithms and Programing, Lehrstuhl D. fur Math.
(Rheinisch Westfalische Technische Hochschule, Germany, 1994).

[12] G. Zmor, 'Hash functions and Cayley graphs', Des. Codes Cryptogr. 4 (1994), 381-394.

Department of Mathematics and Statistics
Carleton University
Ottawa
Canada K1S 5B6

https://doi.org/10.1017/S0004972700034055 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034055

