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Abstract

Sequential order statistics can be used to describe the ordered lifetimes of components in
a system, where the failure of a component may affect the performance of remaining
components. In this paper mixture representations of the residual lifetime and the
inactivity time of systems with such failure-dependent components are considered.
Stochastic comparisons of differently structured systems are obtained and properties
of the weights in the mixture representations are examined. Furthermore, corresponding
representations of the residual lifetime and the inactivity time of a system given the
additional information about a previous failure time are derived.
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1. Introduction

For assessing the reliability of technical systems that consist of several components, it is of
interest to study probability models that describe the system lifetime by taking into account
the component lifetimes. The lifetime T of a coherent system can be represented as T =
φ(X1, . . . , Xn), where φ denotes a structure function and X1, . . . , Xn denote random variables
that describe the component lifetimes (see Barlow and Proschan (1981, p. 12)). Under the
usual assumption of independent and identically distributed (i.i.d.) component lifetimes, it can
be shown that

P(T > t) =
n∑

i=1

siP(Xi:n > t), t ∈ R, (1.1)

where s1, . . . , sn denote appropriately chosen nonnegative coefficients and X1:n ≤ · · · ≤ Xn:n
are the order statistics of the component lifetimes X1, . . . , Xn. For i.i.d. component lifetimes
with a common continuous distribution function, the preceding representation has been obtained
in Samaniego (1985). The vector s = (s1, . . . , sn) is called the system signature. Under these
assumptions, the ith entry of the signature vector satisfies si = P(T = Xi:n), that is, it coincides
with the probability that the ith failure of a component leads to the system failure. For a survey
of applications of system signatures, we refer the reader to Samaniego (2007).

The i.i.d. assumption in (1.1) can in fact be relaxed. Navarro and Rychlik (2007) have shown
that representation (1.1) is also valid for exchangeable random variables X1, . . . , Xn with an
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absolutely continuous joint distribution. Moreover, Navarro et al. (2008b) proved that (1.1)
still holds for arbitrary exchangeable random variables X1, . . . , Xn, if the signature vector is
obtained by considering a system with the same structure and i.i.d. component lifetimes from a
common continuous distribution instead of the original system. In all these cases, the signature
is given by the ratio of the number of orderings for which the ith failure of a component causes
the system failure to the total number, n!, of possible orderings of the n component lifetimes
(cf. Samaniego (2007, p. 23)). In particular, the system signature depends only on the structure
function and the number of components in the system.

In general, if a component in a technical system fails, the performance of the remaining
components might be affected by the failure. In order to take into account such phenomena,
Kamps (1995a) (see also Kamps (1995b)) introduced the model of sequential order statistics.
These random variables describe the increasingly ordered failure times of components in a
sequential k-out-of-n system (see Cramer and Kamps (2001)).

Sequential order statistics can be motivated as follows. In the following, let F1, . . . , Fn

denote continuous distribution functions with support [0, ∞). Let us assume that at time t = 0
all the n components in a system start to work. The lifetimes of the components are described
by independent random variables X

(1)
1 , . . . , X

(1)
n which are identically distributed according to

the distribution function F1. The first failure time of a component is then given by

X∗
1:n = min{X(1)

1 , . . . , X(1)
n }.

If this first failure occurs at time t1 = X∗
1:n then we assume that the residual lifetimes of the

n− 1 remaining components are equal in law to the residual lifetimes of i.i.d. components with
age t1 and distribution function F2 (instead of F1). Here the distribution function F2 is used
to model the influence of the first component failure on the behavior of the other components.
The lifetimes of such components will be represented by random variables X

(2)
1 , . . . , X

(2)
n−1.

Given that X∗
1:n = t1, the random variables X

(2)
1 , . . . , X

(2)
n−1 are i.i.d. according to the truncated

distribution function F2(· | t1) with F̄2(x | t1) = F̄2(x)/F̄2(t1) for x ≥ t1. In particular, given
that X∗

1:n = t1, these random variables satisfy X
(2)
i ≥ t1 for i = 1, . . . , n−1. Then, the second

failure time in the system is given by

X∗
2:n = min{X(2)

1 , . . . , X
(2)
n−1}.

We proceed this way and, by induction, we assume that the ith component failure occurs at time
ti = X∗

i:n (1 ≤ i ≤ n − 1). Then we assume that the residual lifetimes of the n − i remaining
components are equal in law to the residual lifetimes of i.i.d. components with age ti and
distribution function Fi+1. The lifetimes of such components will be represented by X

(i+1)
1 , . . . ,

X
(i+1)
n−i . Given that X∗

i:n = ti , the random variables X
(i+1)
1 , . . . , X

(i+1)
n−i are i.i.d. according to the

truncated distribution function Fi+1(· | ti ) with F̄i+1(x | ti ) = F̄i+1(x)/F̄i+1(ti) for x ≥ ti .
Then, the (i + 1)th component failure time is

X∗
i+1:n = min{X(i+1)

1 , . . . , X
(i+1)
n−i }.

In particular, X∗
n:n denotes the failure time of the last component in the system. The resulting

ordered lifetimes X∗
1:n ≤ · · · ≤ X∗

n:n are called sequential order statistics based on F1, . . . , Fn.
The distribution functions F2, . . . , Fn are used to describe the effects of failures on remaining
components. If F1 = · · · = Fn (i.e. when the failure of a component does not affect the other
components) then their joint distribution coincides with the distribution of usual order statistics

https://doi.org/10.1239/jap/1363784438 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1363784438


274 M. BURKSCHAT AND J. NAVARRO

based on n i.i.d. random variables that are distributed according to F1. For further details about
the definition of sequential order statistics, we refer the reader to Kamps (1995a) (see also
Cramer and Kamps (2001), Cramer and Kamps (2003), and Cramer (2006)).

Recently, the idea underlying sequential order statistics has been extended to general coherent
systems (see Burkschat (2009) and Navarro and Burkschat (2011)). In order to describe
component lifetimes in a system, where failures might change the lifetimes of remaining
components, a particular dependence model for the components is assumed. The vector of
component lifetimes (X∗

1, . . . , X∗
n) is chosen to be an exchangeable random vector such that the

vector of associated order statistics coincides with sequential order statistics (X∗
1:n, . . . , X∗

n:n)
based on F1, . . . , Fn. Then T = φ(X∗

1, . . . , X∗
n) describes the lifetime of a coherent system,

where failures can affect the lifetimes of remaining components. In the following, such systems
are called coherent systems based on sequential order statistics or coherent systems with failure-
dependent component lifetimes X∗

1, . . . , X∗
n (based on F1, . . . , Fn). Furthermore, note that the

corresponding system lifetime has the representation

P(T > t) =
n∑

i=1

siP(X∗
i:n > t), t ∈ R, (1.2)

where s = (s1, . . . , sn) denotes the signature vector. For applications of this representation to
orderings of system lifetimes, we refer the reader to Navarro and Burkschat (2011). Related
results can also be found in Burkschat and Navarro (2011).

The notion of a coherent system has been extended by introducing the concept of a mixed
system (see, e.g. Samaniego (2007, p. 29)). For describing the lifetime of a mixed system,
the vector s = (s1, . . . , sn) in the mixture representation (1.1) is allowed to be an arbitrary
probability vector, that is, the entries only have to satisfy si ≥ 0 for i = 1, . . . , n and s1 +· · ·+
sn = 1. Such a lifetime can be interpreted as the result of randomly selecting among different
coherent systems. By analogy, mixed systems with failure-dependent components are obtained
by using arbitrary probability vectors s in the corresponding representation (1.2).

In this paper we study mixture representations of the residual lifetime and the inactivity
time of systems with failure-dependent components. Stochastic comparisons of differently
structured systems are obtained and properties of the weights in the mixture representations are
examined. The results extend known results for systems with i.i.d. component lifetimes given
in Navarro et al. (2008a) and Zhang (2010a). Further related results can be found, for instance,
in Navarro and Shaked (2006) and Zhang (2010b). Moreover, we derive representations of the
residual lifetime and the inactivity time of a system with failure-dependent components given
the additional information about a previous failure time.

In this paper we frequently focus on sequential order statistics with underlying distribution
functions given by

Fi(x) = 1 − (1 − F(x))αi , x ∈ R, (1.3)

where F denotes a continuous distribution function and α1, . . . , αn > 0. We also assume that
the support of F is given by the interval [0, ∞) for simplicity. If F is absolutely continuous
with density f then the corresponding hazard rates satisfy

λFi
(x) = αiλF (x), i = 1, . . . , n. (1.4)

Therefore, (1.3) is usually referred as the proportional hazard rate (PHR) assumption. It is well
known that in this case sequential order statistics can be treated as generalized order statistics.
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For further information on the relation between sequential and generalized order statistics, we
again refer the reader to Kamps (1995a), Cramer and Kamps (2001), (2003), and Cramer (2006)
(see also Section 2).

2. Mixture representations of residual lifetimes and inactivity times

In the following we consider mixture representations of the residual lifetime and the inactivity
time of a system. The first result of Theorem 2.1 below was obtained in Navarro and Burkschat
(2011) and extends a result given in Navarro et al. (2008a). The second representation is shown
similarly and, therefore, the derivation is omitted. For systems with i.i.d. components, the
corresponding result was shown in Zhang (2010a).

Theorem 2.1. Let s = (s1, . . . , sn) denote the signature of a mixed system with failure-
dependent component lifetimes X∗

1, . . . , X∗
n based on F1, . . . , Fn, and let T denote the

corresponding system lifetime.

(a) Let x ≥ 0 and t ≥ 0. Then

P(T − t > x | T > t) =
n∑

i=1

pi(t)P(X∗
i:n − t > x | X∗

i:n > t) (2.1)

with

pi(t) = siP(X∗
i:n > t)∑n

k=1 skP(X∗
k:n > t)

, i = 1, . . . , n. (2.2)

(b) Let 0 ≤ x ≤ t . Then

P(t − T > x | T ≤ t) =
n∑

i=1

p̃i(t)P(t − X∗
i:n > x | X∗

i:n ≤ t) (2.3)

with

p̃i(t) = siP(X∗
i:n ≤ t)∑n

k=1 skP(X∗
k:n ≤ t)

, i = 1, . . . , n. (2.4)

In the following, we apply the notation

p(t) = (p1(t), . . . , pn(t)), p̃(t) = (p̃1(t), . . . , p̃n(t)).

Several of the subsequent results are shown by imposing the PHR assumption (1.3). Given this
assumption, the joint distribution of sequential order statistics coincides with that of generalized
order statistics with the model parameters

γi = αi(n − i + 1), i = 1, . . . , n

(see, e.g. Cramer and Kamps (2001)). For this reason, it is helpful to briefly recall the definition
of generalized order statistics (see Kamps (1995a) or Kamps (1995b)). Uniform generalized
order statistics U∗

1:n, . . . , U∗
n:n are introduced by specifying their joint density function as

fU∗
1:n,...,U∗

n:n(u1, . . . , un)

=
( n∏

j=1

γj

)(n−1∏
j=1

(1 − uj )
γj −γj+1−1

)
(1 − un)

γn−1, 0 ≤ u1 ≤ · · · ≤ un < 1,
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with the model parameters γ1, . . . , γn > 0. Generalized order statistics X∗
1:n, . . . , X∗

n:n based
on the distribution function F are then obtained via the quantile transformation

X∗
r:n = F−1(U∗

r:n), r = 1, . . . , n. (2.5)

In the proofs of the next results, we use the fact that generalized order statistics are ordered
according to the likelihood ratio ordering, i.e. X∗

r:n ≤lr X∗
r+1:n for r = 1, . . . , n − 1 (see,

for instance, Cramer et al. (2003) or Hu and Zhuang (2005)). Here and in the following, the
notation ‘≤st’, ‘≤hr’, ‘≤rh’, and ‘≤lr’ refer to the stochastic, hazard rate, reversed hazard rate,
and likelihood ratio orderings, respectively. Detailed information about these orderings can be
found, for instance, in Chapter 1 of Shaked and Shanthikumar (2007).

Theorem 2.2. Let T1 and T2 denote the lifetimes of two mixed systems with the same failure-
dependent component lifetimes X∗

1, . . . , X∗
n. Let the PHR assumption (1.3) hold.

(a) Let p1(t) and p2(t) denote the vectors of coefficients (2.2) of T1 and T2, respectively.
Then the following statements hold for the residual lifetimes of the systems.

• If p1(t) ≤st p2(t) then (T1 − t | T1 > t) ≤st (T2 − t | T2 > t).

• If p1(t) ≤hr p2(t) then (T1 − t | T1 > t) ≤hr (T2 − t | T2 > t).

• If p1(t) ≤lr p2(t) and F is absolutely continuous, then (T1 − t | T1 > t) ≤lr
(T2 − t | T2 > t).

(b) Let p̃1(t) and p̃2(t) denote the vectors of coefficients (2.4) of T1 and T2, respectively.
Then the following statements hold for the inactivity times of the systems.

• If p̃1(t) ≤st p̃2(t) then (t − T1 | T1 ≤ t) ≥st (t − T2 | T2 ≤ t).

• If p̃1(t) ≤rh p̃2(t) then (t − T1 | T1 ≤ t) ≥rh (t − T2 | T2 ≤ t).

• If p̃1(t) ≤lr p̃2(t) and F is absolutely continuous, then (t − T1 | T1 ≤ t) ≥lr
(t − T2 | T2 ≤ t).

Proof. Since X∗
i:n ≤lr X∗

i+1:n for i = 1, . . . , n−1, it follows from Theorems 1.C.8 and 1.C.6
of Shaked and Shanthikumar (2007) that

(X∗
i:n − t | X∗

i:n > t) ≤lr (X∗
i+1:n − t | X∗

i+1:n > t), i = 1, . . . , n − 1.

Then (a) is obtained by utilizing representation (2.1) and applying the preservation results for
mixtures given in Theorems 1.A.6, 1.B.14, and 1.C.17 of Shaked and Shanthikumar (2007).
The assertion in (b) follows similarly from (2.3).

Lemma 2.1. Let p(t) and p̃(t) denote the respective vectors of coefficients (2.2) and (2.4).
Under the PHR assumption (1.3), p(t1) ≤lr p(t2) and p̃(t1) ≤lr p̃(t2) hold for all 0 ≤ t1 ≤ t2.

Proof. First we note that p(t1) and p(t2) considered as discrete distributions on {1, . . . , n}
have the same support. Let us consider 1 ≤ i < j ≤ n in this support. Then

pi(t1)

pi(t2)
= siP(X∗

i:n > t1)

siP(X∗
i:n > t2)

∑n
k=1 skP(X∗

k:n > t2)∑n
k=1 skP(X∗

k:n > t1)

and
pj (t1)

pj (t2)
= sjP(X∗

j :n > t1)

sjP(X∗
j :n > t2)

∑n
k=1 skP(X∗

k:n > t2)∑n
k=1 skP(X∗

k:n > t1)
.
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Hence,
pi(t1)

pi(t2)
≥ pj (t1)

pj (t2)

if and only if
P(X∗

i:n > t1)

P(X∗
i:n > t2)

≥ P(X∗
j :n > t1)

P(X∗
j :n > t2)

since si, sj > 0. This last expression holds whenever X∗
i:n ≤hr X∗

j :n holds. But, under the PHR
assumption, we know that X∗

i:n ≤lr X∗
j :n holds. Also, it is well known that the likelihood ratio

order implies the hazard rate order. Hence, pi(t1)/pi(t2) is decreasing in i (in their common
support) and then p(t1) ≤lr p(t2). The proof of the other case is similar.

Remark 2.1. Exploiting known results for orderings of sequential order statistics based on
F1, . . . , Fn (see Navarro and Burkschat (2011)), similar results can be obtained by replacing the
PHR assumption with other conditions. For instance, if h1, . . . , hn denote the respective hazard
rates of F1, . . . , Fn and the ratios hk/kk+1 are nondecreasing functions for k = 1, . . . , n − 1,
then X∗

r:n ≤hr X∗
r+1:n holds for r = 1, . . . , n − 1 and, therefore, the vector of coefficients

(2.2) for the corresponding mixed system based on sequential order statistics also satisfies
p(t1) ≤lr p(t2) for 0 ≤ t1 ≤ t2.

For systems with i.i.d. components, it has been shown in Navarro et al. (2008a) that

lim
t→∞ p(t) = (0, . . . , 0︸ ︷︷ ︸

j−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
n−j times

)

holds for systems with a signature vector s = (s1, . . . , sj , 0, . . . , 0) with sj > 0, that is, in the
limit the complete probability mass is concentrated in only one entry of the vector. In the case
of sequential order statistics, the limit behavior may be different, as we illustrate in Example 2.1
below. This example also proves that this property is not necessarily true for coherent systems
based on exchangeable components.

Since we make use of the marginal distributions of generalized order statistics in this example,
we recall here some particular results. If the parameters γ1, . . . , γn are pairwise different,
i.e. γi �= γj for i �= j , then it is known (see Kamps and Cramer (2001)) that the distribution
function of the rth generalized order statistic and, if F is absolutely continuous with density f ,
the corresponding density function are given by

F
X

(r)∗
(t) = 1 − cr−1

r∑
i=1

ai,r

γi

(1 − F(t))γi , (2.6)

f
X

(r)∗
(t) = cr−1

r∑
i=1

ai,r (1 − F(t))γi−1f (t),

with the constants

cr−1 =
r∏

j=1

γj , ai,r =
r∏

j=1
j �=i

1

γj − γi

, 1 ≤ i ≤ r ≤ n. (2.7)

The empty product
∏

∅
is defined to be 1.
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Example 2.1. Consider the system lifetime

T = max{X∗
1, min{X∗

2, X∗
3}}

with failure-dependent component lifetimes X∗
1 , X∗

2 , and X∗
3 . The signature of this system is

given by s = (0, 2
3 , 1

3 ) (see, e.g. Navarro and Rychlik (2007)). Let the lifetimes satisfy the PHR
assumption (1.3) with α1 = 1, α2 = 1.6, and α3 = 3.4, and an underlying standard exponential
distribution, i.e. F(t) = 1 − e−t , t ≥ 0. Then, in particular, the corresponding parameters γ1,
γ2, and γ3 are strictly increasingly ordered:

γ1 = 3 < γ2 = 3.2 < γ3 = 3.4.

Because s1 = 0, we obtain the following functions:

p1(t) = 0, p2(t) = 2P(X∗
2:3 > t)

2P(X∗
2:3 > t) + P(X∗

3:3 > t)
,

p3(t) = P(X∗
3:3 > t)

2P(X∗
2:3 > t) + P(X∗

3:3 > t)
.

(2.8)

By utilizing (2.6), the survival functions of the relevant sequential order statistics are given by

P(X∗
2:3 > t) = 16e−3t − 15e−3.2t , P(X∗

3:3 > t) = 136e−3t − 255e−3.2t + 120e−3.4t .

After substituting these expressions into (2.8), it can be shown that

lim
t→∞ p(t) = (

0, 4
21 , 17

21

) �= (0, 0, 1).

Analogously, it can be seen that

lim
t→0+ p̃(t) = (0, 1, 0)

and
lim

t→∞ p̃(t) = (
0, 2

3 , 1
3

)
.

In fact, by making use of known limits of Meijer’s G-function given in Cramer et al. (2004)
and Bieniek (2007), the limits of the coefficients in Theorem 2.1 can be completely determined.
The corresponding result is based on the next lemma. In order to simplify the presentation, we
use the notation

γ1:r = min{γ1, . . . , γr}, 1 ≤ r ≤ n.

Lemma 2.2. Let the PHR assumption (1.3) hold. If 1 ≤ r < k ≤ n then

lim
t→∞

P(X∗
r:n > t)

P(X∗
k:n > t)

=
k∏

l=r+1

γl − γ1:k
γl

(2.9)

and

lim
t→0+

P(X∗
k:n ≤ t)

P(X∗
r:n ≤ t)

= 0. (2.10)
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Proof. Owing to the quantile transformation (2.5), it is sufficient to consider uniform
generalized order statistics U∗

r:n, r = 1, . . . , n. From results given in Cramer and Kamps
(2003), it follows that the marginal density function of the rth uniform generalized order
statistic with arbitrary model parameters γ1, . . . , γr > 0 is given by

fU∗
r:n(t) = cr−1Gr(t), t ∈ (0, 1), (2.11)

where cr−1 is the constant given in (2.7) and

Gr(t) = Gr,0
r,r

[
1 − t

∣∣∣∣ γ1, . . . , γr

γ1 − 1, . . . , γr − 1

]
, t ∈ (0, 1),

denotes a particular Meijer’s G-function (for its definition, see, e.g. Luke (1969) or Mathai
(1993)). For proving (2.9), we obtain, by utilizing l’Hôpital’s rule and (2.11),

lim
t→1−

P(U∗
r:n > t)

P(U∗
k:n > t)

= lim
t→1−

cr−1Gr(t)

ck−1Gk(t)
.

By applying Lemma 3 of Bieniek (2007), it follows that

lim
t→1−

Gr(t)

Gk(t)
=

⎧⎪⎪⎨
⎪⎪⎩

0, r < �k,
k∏

l=r+1

(γl − γ�k
), r ≥ �k,

with �k = max{1 ≤ j ≤ k : γj = γ1:k}. Since γ�k
= γ1:k , this proves the first assertion. Let us

turn to the proof of (2.10). Arguing analogously to the above, we obtain

lim
t→0+

P(U∗
k:n ≤ t)

P(U∗
r:n ≤ t)

= lim
t→0+

ck−1Gk(t)

cr−1Gr(t)
.

It can be shown (see Equations (6) and (12) of Bieniek (2007), and also Cramer et al. (2004))
that

lim
t→0+

Gk(t)

Gr(t)
= 0.

Hence, the second assertion is also proven.

Remark 2.2. If γi �= γj for i �= j then the proof of Lemma 2.2 can be directly obtained as
follows. Let us consider the first limit. From (2.6), if γ1:k < γ1:r , we have

lim
t→∞

P(X∗
r:n > t)

P(X∗
k:n > t)

= 0.

Analogously, if γ1:k = γ1:r = γi , we have

lim
t→∞

P(X∗
r:n > t)

P(X∗
k:n > t)

= cr−1ai,r

ck−1ai,k

.

Hence, (2.9) follows from (2.7). To show the second limit, consider

lim
t→0+

P(X∗
r+1:n ≤ t)

P(X∗
r:n ≤ t)

= lim
t→0+

cr

∑r+1
i=1 ai,r+1(1 − t)γi−1

cr−1
∑r

i=1 ai,r (1 − t)γi−1
= lim

z→1−
γr+1

∑r+1
i=1 ai,r+1z

γi∑r
i=1 ai,rzγi

.
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Since
∑r

i=1 ai,rγ
p−1
i = 0 for 1 ≤ p ≤ r − 1 (see Balakrishnan et al. (2001, Remark 2.8)), we

arrive at the following relation after invoking l’Hôpital r − 1 times:

lim
t→0+

P(X∗
r+1:n ≤ t)

P(X∗
r:n ≤ t)

= lim
z→1−

γr+1
∑r+1

i=1 ai,r+1γ
r−1
i zγi∑r

i=1 ai,rγ
r−1
i zγi

.

Using the identity
r∑

i=1

ai,rγ
r−1
i = (−1)r+1,

(2.10) follows. The preceding identity can be shown by utilizing the approach via Lagrange
interpolation polynomials in Balakrishnan et al. (2001) with the functional relation for vr(x) =
xr evaluated at x = 0.

From the definition of the coefficients (2.2) and (2.4), it is obvious that

lim
t→0+ p(t) = s = lim

t→∞ p̃(t).

In the following theorem the corresponding opposite limits are considered. The result for the
coefficients in the inactivity time is the same as that given in Zhang (2010a) for i.i.d. component
lifetimes. However, as we illustrated earlier, the limits for the residual lifetimes may be different
from those obtained in Navarro et al. (2008a) for the i.i.d. case.

Theorem 2.3. Let j ∈ {1, . . . , n}. Let s = (s1, . . . , sn) denote the signature of a mixed system
with failure-dependent component lifetimes, and let p(t) and p̃(t) denote the respective vectors
of coefficients (2.2) and (2.4). Let the PHR assumption (1.3) hold.

(a) Let s = (s1, . . . , sj , 0, . . . , 0) with sj > 0. If i = max{1 ≤ d ≤ j : γd = γ1:j } then
limt→∞ pk(t) = 0 for 1 ≤ k ≤ i − 1 and

lim
t→∞ pk(t) = sk

(k−1∑
r=i

sr

k∏
l=r+1

γl − γ1:k
γl

+ sk +
j∑

r=k+1

sr

r∏
l=k+1

γl

γl − γ1:r

)−1

for i ≤ k ≤ j . In particular, if γ1 ≥ · · · ≥ γj then

lim
t→∞ p(t) = (0, . . . , 0︸ ︷︷ ︸

j−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
n−j times

).

(b) If s = (0, . . . , 0, sj , . . . , sn) with sj > 0 then

lim
t→0+ p̃(t) = (0, . . . , 0︸ ︷︷ ︸

j−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
n−j times

).

Proof. For proving (a), recall the representation given in Theorem 2.1(a):

pk(t) = skP(X∗
k:n > t)∑j

r=1 srP(X∗
r:n > t)

, t ≥ 0.

Since sk = 0 for k = j + 1, . . . , n by assumption, we obviously have

pk(t) = 0, k = j + 1, . . . , n.
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Now consider k ∈ {1, . . . , j}. Because

lim
t→∞ pk(t) = sk lim

t→∞

(k−1∑
r=1

sr
P(X∗

r:n > t)

P(X∗
k:n > t)

+ sk +
j∑

r=k+1

sr
P(X∗

r:n > t)

P(X∗
k:n > t)

)−1

,

the assertion then follows by applying the first limit in Lemma 2.2. Assertion (b) follows
similarly by applying the second limit.

Remark 2.3. Under the assumption that γ1 ≥ · · · ≥ γj given in Theorem 2.3, we obtain the
same limits as in the i.i.d. case (in fact, the case of i.i.d. components is included in the result by
choosing γk = n − k + 1, 1 ≤ k ≤ n). The ordering assumption on the γks has the following
natural interpretation. Whereas the hazard rate of a component at a time t between the (k−1)th
and kth failure is given by αkλF (t) (see (1.4)), the expression αk(n − k + 1)λF (t) = γkλF (t)

can be interpreted as the hazard of the next failure among the n − k + 1 active components
at this time t (1 ≤ k ≤ n). We would expect that the load on a component is nondecreasing
after a failure, i.e. α1 ≤ · · · ≤ αn, but that the load on the system itself is nonincreasing,
i.e. γ1 ≥ · · · ≥ γn. Since the number of components is decreasing after each failure, the risk
for the next failure among the still active components should decrease. If we assume (without
loss of generality) that α1 = 1 then there are two extreme situations: (a) no additional load is
imposed on each component after a failure (α1 = · · · = αn = 1) and the risk for the next failure
among the active components is proportional to their number; (b) after a failure the initial load
on the system is completely redistributed among the remaining components (γ1 = · · · = γn = n

and αk = n/(n − k + 1), 1 ≤ k ≤ n), that is, the load on the system remains constant (see
Balakrishnan et al. (2011, Example 1)).

3. Mixture representations using additional information about a previous failure time

In this section we derive representations of the residual lifetime and the inactivity time of a
system given some information about times of failures. It is assumed that the ith failure time
of the components is known and that, at this time, the system is still active.

Theorem 3.1. Let s = (s1, . . . , sn) denote the signature of a mixed system with failure-
dependent component lifetimes X∗

1, . . . , X∗
n based on F1, . . . , Fn, and let T denote the

corresponding system lifetime. Let 1 ≤ i ≤ n−1, and letY ∗
1:n−i , . . . , Y

∗
n−i:n−i denote sequential

order statistics based on H1, . . . , Hn−i with

Hj(z) = Fi+j (z) − Fi+j (y)

1 − Fi+j (y)
, z ≥ y, j = 1, . . . , n − i.

(a) Let x ≥ 0 and 0 < y ≤ t . If (si+1, . . . , sn) �= (0, . . . , 0) then

P(T − t > x | T > t, X∗
i:n = y) =

n−i∑
j=1

pj (y, t)P(Y ∗
j :n−i − t > x | Y ∗

j :n−i > t) (3.1)

with

pj (y, t) = si+jP(Y ∗
j :n−i > t)∑n−i

k=1 si+kP(Y ∗
k:n−i > t)

, j = 1, . . . , n − i. (3.2)
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(b) Let 0 ≤ x ≤ t − y and 0 < y < t . If (si+1, . . . , sn) �= (0, . . . , 0) then

P(t − T > x | y < T ≤ t, X∗
i:n = y) =

n−i∑
j=1

p̃j (y, t)P(t − Y ∗
j :n−i > x | Y ∗

j :n−i ≤ t)

(3.3)
with

p̃j (y, t) = si+jP(Y ∗
j :n−i ≤ t)∑n−i

k=1 si+kP(Y ∗
k:n−i ≤ t)

, j = 1, . . . , n − i.

Proof. We only prove (a), because (b) is shown similarly. Consider

P(T − t > x | T > t, X∗
i:n = y) =

n∑
j=1

P(T − t > x, T = X∗
j :n | T > t, X∗

i:n = y).

Note that

P(T − t > x, T = X∗
j :n | T > t, X∗

i:n = y)

= P(T = X∗
j :n | T > t, X∗

i:n = y)P(T − t > x | T = X∗
j :n, T > t, X∗

i:n = y) (3.4)

if P(T = X∗
j :n) > 0; otherwise, the probability is equal to 0. The first factor in (3.4) is given

by

P(T = X∗
j :n | T > t, X∗

i:n = y) = P(T = X∗
j :n, T > t | X∗

i:n = y)

P(T > t | X∗
i:n = y)

= P(T = X∗
j :n, X∗

j :n > t | X∗
i:n = y)

P(T > t | X∗
i:n = y)

.

Since the random variables X∗
1, . . . , X∗

n are exchangeable, the random variables 1{T =X∗
j :n} and

X∗
1:n, . . . , X∗

n:n are independent. Here, 1A denotes the indicator function of the set A. Thus, by
utilizing additionally that X∗

1:n ≤ · · · ≤ X∗
n:n almost surely, we obtain

P(T = X∗
j :n | T > t, X∗

i:n = y)

= P(T = X∗
j :n)P(X∗

j :n > t | X∗
i:n = y)∑n

l=i+1 P(T = X∗
l:n)P(X∗

l:n > t | X∗
i:n = y)

, j = i + 1, . . . , n, (3.5)

and this probability is equal to 0 for j = 1, . . . , i. Note that the denominator in (3.5) is positive
by assumption. Furthermore, the second factor in (3.4) is given by

P(T − t > x | T = X∗
j :n, T > t, X∗

i:n = y) = P(T − t > x, T = X∗
j :n, T > t | X∗

i:n = y)

P(T = X∗
j :n, T > t | X∗

i:n = y)

= P(X∗
j :n > x + t, T = X∗

j :n | X∗
i:n = y)

P(X∗
j :n > t, T = X∗

j :n | X∗
i:n = y)

= P(X∗
j :n > x + t | X∗

i:n = y)

P(X∗
j :n > t | X∗

i:n = y)
,
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where in the last step we have again used the independence of 1{T =X∗
j :n} and X∗

1:n, . . . , X∗
n:n.

Furthermore, by exploiting the Markov property of sequential order statistics (see the transition
probabilities (3.9) below), it can be shown that

P(X∗
j :n > t | X∗

i:n = y) = P(Y ∗
j−i:n−i > t), t ≥ y.

This yields the assertion.

Remark 3.1. (a) Note that (3.1) and (3.3) coincide with the corresponding signature-based
representations (2.1) and (2.3) of a mixed system consisting of n − i components with the
probability vector

s|i =
(

si+1

Si

, . . . ,
sn

Si

)
, Si = si+1 + · · · + sn(> 0),

and failure-dependent component lifetimes Y ∗
1 , . . . , Y ∗

n−i based on H1, . . . , Hn−i with support
[y, ∞). In particular, under the PHR assumption, properties analogous to the results given in
Section 2 can be shown.

(b) It becomes obvious from the proof of Theorem 3.1 that, under the given assumptions,

pj (y, t) = P(T = X∗
j :n | T > t, X∗

i:n = y),

p̃j (y, t) = P(T = X∗
j :n | y < T ≤ t, X∗

i:n = y)

hold for j = i +1, . . . , n. Therefore, the weights can be interpreted as the probabilities that the
j th failure leads to the system failure given the respective information on the system lifetime
and the ith failure time.

(c) The representations in Theorem 3.1 can be alternatively obtained by showing that

P(T ∈ B | X∗
i:n = y) =

n∑
j=1

sjP(X∗
j :n ∈ B | X∗

i:n = y)

for Borel sets B ⊂ R at first and then considering appropriate ratios of these expressions. In
fact, this derivation relies on the same arguments as those given in the proof of Theorem 3.1.

(d) Additional conditioning under earlier failure times X∗
i−1:n, . . . , X∗

1:n also leads to the
expressions given in Theorem 3.1, since sequential order statistics possess the Markov property.

Example 3.1. Let the lifetime of a system be described by

T = min{X∗
1, max{X∗

2, X∗
3, X∗

4}}
with X∗

1, . . . , X∗
4 denoting failure-dependent lifetimes of four components. Let the PHR

assumption (1.3) be fulfilled with the parameters α1 = 1, α2 = 1.2, α3 = 1.4, and α4 = 1.6.
Moreover, assume here that the time axis is chosen in such a way that the underlying distribution
function F is given by the standard exponential distribution F(t) = 1 − e−t , t ≥ 0. Note
that the signature of the given system is the vector s = ( 1

4 , 1
4 , 1

2 , 0). Suppose that the first
failure of a component is recorded at time y = 0.6 and that the system is still active after that
failure. In particular, only one of the components belonging to the lifetimes X∗

2 , X∗
3 , and X∗

4
must have failed. Furthermore, an inspection at time t = 1.5 reveals that the system is not
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operating anymore. If no data is available about further failures of components between the
times y and t , it is of interest to study the distribution of the inactivity time of the system given
the information provided so far. Theorem 3.1 yields

P(t − T > x | y < T ≤ t, X∗
1:3 = y)

=
3∑

j=1

p̃j (y, t)P(t − Y ∗
j :3 > x | Y ∗

j :3 ≤ t), 0 ≤ x ≤ 0.9, (3.6)

with the weights (because s4 = 0)

p̃1(y, t) = P(Y ∗
1:3 ≤ t)

P(Y ∗
1:3 ≤ t) + 2P(Y ∗

2:3 ≤ t)
,

p̃2(y, t) = 2P(Y ∗
2:3 ≤ t)

P(Y ∗
1:3 ≤ t) + 2P(Y ∗

2:3 ≤ t)
, p̃3(y, t) = 0,

where Y ∗
1:3, Y ∗

2:3, and Y ∗
3:3 denote sequential order statistics based on the new parameters α̃1 =

1.2, α̃2 = 1.4, and α̃3 = 1.6, and with underlying (truncated) distribution function H(z) =
1−e−(z−y), z ≥ y. Observe that, in fact, probability (3.6) does not depend on the last parameter
α4 = α̃3. By plugging in the known values y = 0.6 and t = 1.5, and utilizing (2.6), it can be
shown via numerical evaluation that

p̃1(0.6, 1.5) = 1 − p̃2(0.6, 1.5) ≈ 0.382 67.

Therefore, it is more likely that the third failure among the components led to the system failure
(see Remark 3.1(b)). Moreover, since we obtain

E(1.5 − T | 0.6 < T ≤ 1.5, X∗
1:3 = 0.6) ≈ 0.535 97,

it is to be expected that the system failed some time before t = 1.5.

As a corollary, we obtain the following result given in Navarro and Burkschat (2011). For
completeness, we give the new proof.

Corollary 3.1. Let s = (s1, . . . , sn) denote the signature of a mixed system with failure-
dependent component lifetimes X∗

1, . . . , X∗
n based on F1, . . . , Fn, and let T denote the

corresponding system lifetime. Let 1 ≤ i ≤ n − 1. Then the distribution of (T − t | X∗
i:n =

t < T ) coincides with the distribution of the lifetime of a mixed system with n − i components
and signature

s|i =
(

si+1

Si

, . . . ,
sn

Si

)
(with Si = si+1 + · · · + sn > 0) based on the sequential order statistics with underlying
distributions G1, . . . , Gn−i with

Gj(x) = Fi+j (x + t) − Fi+j (t)

1 − Fi+j (t)
, x ≥ 0, j = 1, . . . , n − i.

Proof. We get the result by choosing t = y in Theorem 3.1(a). This is seen as follows. At
first, because Y ∗

j :n−i > y holds almost surely for j = 1, . . . , n− i, it follows that, for the vector
of coefficients in (3.2), p(y, y) = s|i . Moreover, if t = y then

P(Y ∗
j :n−i − t > x | Y ∗

j :n−i > t) = P(Y ∗
j :n−i − y > x)
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and the joint distribution of Y ∗
1:n−i − y, . . . , Y ∗

n−i:n−i − y with underlying H1, . . . , Hn−i

coincides with the distribution of sequential order statistics Z∗
1:n−i , . . . , Z

∗
n−i:n−i based on

G1, . . . , Gn−i (the latter relation is seen from the corresponding transition probabilities of the
sequential order statistics; cf. (3.9) below).

Finally, we establish a connection to the dynamic signature representation given in
Samaniego et al. (2009) for systems with i.i.d. component lifetimes X1, . . . , Xn based on F .
From the results in this paper, it follows that (for 1 ≤ i ≤ n − 1)

P(T − t > x | T > t, Xi:n ≤ t < Xi+1:n) =
n−i∑
j=1

si+j

Si

P(Zj :n−i > x) (3.7)

with the constant Si from Corollary 3.1 and order statistics Z1:n−i , . . . , Zn−i:n−i from i.i.d.
random variables with distribution function

G(x) = F(x + t) − F(t)

1 − F(t)
, x ≥ 0.

In fact, the preceding corollary can be regarded as an extension of representation (3.7) to
sequential order statistics. This follows from the distribution theoretical relation

(X∗
i+1:n, . . . , X∗

n:n | X∗
i:n = y) ∼ (X∗

i+1:n, . . . , X∗
n:n | X∗

i:n ≤ y < X∗
i+1:n)

for sequential order statistics. Related recent results in settings of generalized order statistics
can be found in Xie and Hu (2008), Balakrishnan et al. (2009), Burkschat and Lenz (2009),
and Hashemi et al. (2010). Here we give some arguments for the univariate relation, i.e. for
1 ≤ i < j ≤ n, the equality

P(X∗
j :n > t | X∗

i:n ≤ y < X∗
i+1:n) = P(X∗

j :n > t | X∗
i:n = y) (3.8)

holds for PX∗
i:n -almost all y ≥ 0. The general relation in the multivariate case follows

analogously. At first, let j = i + 1. It is well known that (cf. Kamps (1995a, p. 29))

P(X∗
i+1:n > t | X∗

i:n = y) =

⎧⎪⎨
⎪⎩

(
1 − Fi+1(t)

1 − Fi+1(y)

)n−i

, t ≥ y,

1, t < y,

(3.9)

for PX∗
i:n -almost all y ≥ 0. In particular, we obtain

P(X∗
i+1:n > t, X∗

i:n ≤ y < X∗
i+1:n)

=
∫ y

0

(
1 − Fi+1(max{y, t})

1 − Fi+1(z)

)n−i

dPX∗
i:n(z), t ≥ 0.

Dividing by

P(X∗
i:n ≤ y < X∗

i+1:n) =
∫ y

0

(
1 − Fi+1(y)

1 − Fi+1(z)

)n−i

dPX∗
i:n(z)

and exploiting (3.9) yields relation (3.8) for j = i + 1. Now, let n ≥ j > i + 1. Then

P(X∗
j :n > t | X∗

i:n ≤ y < X∗
i+1:n)

=
∫ ∞

y

P(X∗
j :n > t | X∗

i+1:n = z, X∗
i:n ≤ y < X∗

i+1:n) dPX∗
i+1:n|X∗

i:n≤y<X∗
i+1:n(z).

(3.10)
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Since sequential order statistics have the Markov property, the past and the future are
conditionally independent given the present. Therefore, for z > y,

P(X∗
j :n > t | X∗

i+1:n = z, X∗
i:n ≤ y < X∗

i+1:n) = P(X∗
j :n > t, X∗

i:n ≤ y | X∗
i+1:n = z)

P(X∗
i:n ≤ y | X∗

i+1:n = z)

= P(X∗
j :n > t | X∗

i+1:n = z)

= P(X∗
j :n > t | X∗

i+1:n = z, X∗
i:n = y),

where in the last step we have again used the Markov property. By utilizing the preceding
relation and the previously proven fact that (3.8) holds for j = i + 1, we obtain, from (3.10),

P(X∗
j :n > t | X∗

i:n ≤ y < X∗
i+1:n)

=
∫ ∞

y

P(X∗
j :n > t | X∗

i+1:n = z, X∗
i:n = y) dPX∗

i+1:n|X∗
i:n=y(z)

= P(X∗
j :n > t | X∗

i:n = y)

for PX∗
i:n -almost all y ≥ 0.
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