A NOTE ON THE MODULUS OF CONVEXITY

by ANDREW T. PLANT

(Received 13 November, 1979)

In [1, Corollary 5], Figiel gives an elegant demonstration that the modulus of convexity δ in real Banach space X is nondecreasing, where

$$\delta(\varepsilon) = \inf\{1 - ||x + y||/2 : x, y \in S_X, ||x - y|| = \varepsilon\},\$$

$$S_X = \{x : ||x|| = 1\}.$$

It is deduced from this that in fact $\delta(\varepsilon)/\varepsilon$ is nondecreasing [Proposition 3]. During the course of the proof [Lemma 4] it is stated that if $v \in S_X$ is a *local* maximum on S_X of $\varphi \in S_{X^*}$, then v is a global maximum ($\varphi(v) = 1$). This is false; it could be that v is a global minimum. It is easy to construct such an example in \mathbb{R}^2 endowed with the maximum norm. What is true is that v is a global maximum of $|\varphi|$.

To see this, choose $\varepsilon > 0$ and $u \in S_X$ such that $\varphi(u) > 1 - \varepsilon$. Then, by local maximality, $\varphi((v + \lambda u)/||v + \lambda u||) \le \varphi(v)$ for all sufficiently small positive λ . By rearrangement

$$\lambda(1-\varepsilon) < \lambda\varphi(u) \leq (\|v+\lambda u\| - \|v\|)\varphi(v) \leq \lambda |\varphi(v)|.$$

Hence, as required, $|\varphi(v)| = 1$.

Making the necessary modifications to [1, Lemma 4], we complete this note by proving the following result.

LEMMA.
$$\delta(\varepsilon) = \inf\{1 - \|x + y\|/2 : x, y \in B_X, \|x - y\| = \varepsilon\}, \text{ where } B_X = \{x : \|x\| \le 1\}.$$

Monotonicity of δ then follows easily as in Corollary 5 of [1].

Proof of Lemma. Without loss in generality we may assume X is finite dimensional and $\varepsilon > 0$. Let x and y be chosen in B_x such that ||x + y|| is maximal, subject to $||x - y|| = \varepsilon$. Assume $||x|| \le ||y||$. Then $y \ne 0$.

In fact ||y|| = 1. To see this, set $x_1 = (x - c(x - y))/||y||$ and $y_1 = (y + c(x - y))/||y||$, where c = (1 - ||y||)/2. Then $x_1, y_1 \in B_X$, $||x_1 - y_1|| = \varepsilon$ and $||x_1 + y_1|| = ||x + y||/||y||$. Hence, by maximality of ||x + y||, ||y|| = 1.

To complete the proof we show either ||x|| = 1, or $z \in B_X \cap (y + \varepsilon S_X)$ implies ||z + y|| = ||x + y||. Since S_X is connected (dim $X \ge 2$), $S_X \cap (y + \varepsilon S_X) \neq \emptyset$ for $\varepsilon \le 2$. Hence the lemma holds whichever case applies.

Assume ||x|| < 1. Choose $\varphi \in S_{X^*}$ such that $\varphi(x+y) = ||x+y||$. Let $z \in B_X \cap (y+\varepsilon S_X)$. By maximality of ||x+y||,

$$\varphi(z+y) \leq ||z+y|| \leq ||x+y|| = \varphi(x+y). \tag{1}$$

So $\varphi(z) \leq \varphi(x)$, and hence, $(x-y)/\varepsilon$ is a local maximum of φ on S_x . Either (a) $\varphi(x-y) = ||x-y||$ or (b) $\varphi(x-y) = -||x-y||$.

Glasgow Math. J. 22 (1981) 157-158.

If (a) holds,

$$1 = ||y|| \le (||x + y|| + ||x - y||)/2$$

= $(\varphi(x + y) + \varphi(x - y))/2 = \varphi(x),$

implying ||x|| = 1. Consequently, if ||x|| < 1, (b) holds. Then $\varphi(z - y) \ge -\varepsilon = \varphi(x - y)$ and so, using (1), ||z + y|| = ||x + y||, as required.

REFERENCE

1. T. Figiel, On the moduli of convexity and smoothness, Studia Math. 56 (1976), 121-155.

DEPARTMENT OF MATHEMATICS UNIVERSITY GARDENS GLASGOW G12 80W

158