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Product Ranks of the 3 × 3 Determinant and
Permanent

Nathan Ilten and Zach Teitler

Abstract. We show that the product rank of the 3 × 3 determinant det3 is 5, and the product rank
of the 3× 3 permanent perm3 is 4. As a corollary, we obtain that the tensor rank of det3 is 5 and the
tensor rank of perm3 is 4. We show moreover that the border product rank of permn is larger than
n for any n ≥ 3.

Introduction

Let A = (a i j) be an n × n matrix. Recall that the permanent of A, denoted perm(A),
is given by

perm(A) = ∑
σ∈Sn

a1σ(1) ⋅ ⋅ ⋅ anσ(n) ,

the sumover the symmetric group Sn ofpermutationsof {1, . . . , n}. Wewritepermn =

perm((x i j)) for the permanent of the n×n genericmatrix, that is, amatrix whose en-
tries are independent variables. _e deûnition expresses permn as a sum of n! terms
that are products of linear forms, in fact, variables. Allowing terms involving prod-
ucts of linear forms other than variables allows for more eõcient representations. For
example Ryser’s identity [Rys63] gives

permn = ∑
S⊆{1, . . . ,n}

(−1)n−∣S∣
n

∏
i=1
∑
j∈S

x i j .

_is uses 2n − 1 terms. Even better, Glynn’s identity [Gly10] gives

permn = ∑
є∈{±1}n
є1=1

n

∏
i=1

n

∑
j=1

є iє jx i j .

_is uses 2n−1 terms. For example, perm3 can be written as a sum of 4 terms that are
products of linear forms. Explicitly,

perm3 = (x11 + x12 + x13)(x21 + x22 + x23)(x31 + x32 + x33)

− (x11 + x12 − x13)(x21 + x22 − x23)(x31 + x32 − x33)

− (x11 − x12 + x13)(x21 − x22 + x23)(x31 − x32 + x33)

+ (x11 − x12 − x13)(x21 − x22 − x23)(x31 − x32 − x33).
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Wewill show that it is not possible towrite perm3 as a sumof 3 or fewer such terms. In
fact, wewill show that it is not possible towrite perm3 as a limit of cubic polynomials
using 3 or fewer such terms.

Similarly wewrite detn for the determinant of an n×n genericmatrix. _e Laplace
expansion expresses detn as a sum of n! monomials. In particular det3 is a sum of 6
monomials; until recently it was not clear whether det3 could be written as a sum of
products of linear forms using 5 or fewer terms. However Derksen recently found
such an expression [Der13, §8]:

det3 =
1
2
((x13 + x12)(x21 − x22)(x31 + x32)

+ (x11 + x12)(x22 − x23)(x32 + x33)

+ 2x12(x23 − x21)(x33 + x31)

+ (x13 − x12)(x22 + x21)(x32 − x31)

+ (x11 − x12)(x23 + x22)(x33 − x32)) .

In hindsight it should have been clear that such an expression must exist. Indeed,
over e.g.,C, det3 can be regarded as a tensor inC3 ⊗C3 ⊗C3, and it is known that all
such tensors have rank at most 5 [BH13]. As we shall see, this implies an expression
involving at most 5 products of linear forms. Nevertheless, this does not seem to have
been noticed previously.

In any case det3 can be written as a sum of 5 products of linear forms. We show
that is not possible to write det3 as a sum of 4 or fewer such terms.
For both the permanent and determinant, the key ingredient in our proofs is an

analysis of certain Fano schemes parametrizing linear subspaces contained in the hy-
persurfaces perm3 = 0 and det3 = 0. We hope that our techniques may be employed
to attack other similar problems in tensor rank and algebraic complexity theory.

1 Product Rank

1.1 Basic Notions

_roughout we work over some ûxed ûeld K of characteristic zero. Recall that the
rank or tensor rank of a tensor T ∈ V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vk is the least number of terms r in
an expression T = ∑

r
i=1 v1i ⊗ ⋅ ⋅ ⋅ ⊗ vki . We denote the tensor rank by tr(T). Recall

also that theWaring rank of a homogeneous form F of degree d is the least number of
terms r in an expression F = ∑

r
i=1 c i l di , where each l i is a homogeneous linear form

and each c i ∈ K. We denote theWaring rankwr(F). For overviews of tensor rank and
Waring rank, including applications and history,we refer to [KB09,CGLM08,Lan12].

Herewe are concernedwith the product rank, also called the split rank or theChow
rank, see for example [Abo14]. For a homogeneous form F of degree d, the product
rank, denoted pr(F), is the least number of terms r in an expression

F =
r

∑
i=1

d

∏
j=1

l i j ,
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where each l i j is a homogeneous linear form. _is is related to theminimum size of
any homogeneous ΣΠΣ-circuit computing F, see [Lan14, §8] for details.

_e border product rank pr(F) is the least r such that F is a limit of forms of product
rank r, limt→0 Ft = F for some forms Ft with pr(Ft) = r for t ≠ 0. Taking the constant
family Ft = F shows pr(F) ≤ pr(F).

Note that pr(F) = r if and only if F lies in the closure of the locus of forms of prod-
uct rank r, but not in the closure of the forms of product rank r− 1. _e closure of the
forms of product rank r is exactly the r-th secant variety of the variety of completely
decomposable forms, that is, forms that decompose as products of linear forms. _e
latter is also called the split variety or the Chow variety of zero-cycles of degree d in
(the dual space) Pn . So pr(F) = r if F lies on the r-th, but not the (r − 1)st, secant
variety of the Chow variety. Furthermore, pr(F) = r if F lies in the span of some r
distinct points on the Chow variety. See [Abo14] for details.

1.2 Waring Rank and Product Rank

Evidently pr(F) ≤ wr(F). On the other hand, the expression

l1 ⋅ ⋅ ⋅ ld =
1

2d−1d! ∑
є∈{±1}d
є1=1

(∏ є i)(∑ є i l i)
d

means thatwr(l1 ⋅ ⋅ ⋅ ld) ≤ 2d−1. In fact, it is equalwhen the l i are linearly independent
[RS11]. In any case, we thus have wr(F) ≤ 2d−1 pr(F). For our purposes, this means
that a lower bound for Waring rank implies a lower bound for product rank. And in
fact, lower bounds for theWaring ranks of determinants and permanents have been
found by Shaûei [Sha15] and Derksen and Teitler [DT15]:

wr(permn) ≥
1
2
(
2n
n
), wr(detn) ≥ (

2n
n
) − (

2n − 2
n − 1

).

For n = 3, this is wr(perm3) ≥ 10 and wr(det3) ≥ 14. Hence, pr(perm3) ≥ 3 and
pr(det3) ≥ 4. On the other hand, the Glynn and Derksen identities above show
pr(perm3) ≤ 4 and pr(det3) ≤ 5. We will show that one cannot do better than this,
that is, pr(perm3) = pr(perm3) = 4 and pr(det3) = 5.

1.3 Tensor Rank and Product Rank

_ere is also a connection between tensor rank and product rank. Tensors in
V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vd can be naturally identiûed with multihomogeneous forms of multide-
gree (1, . . . , 1) on the product space V1 × ⋅ ⋅ ⋅ × Vd . Explicitly let each Vi have a basis
x i1 , . . . , x in i and consider polynomials in the x i j with multigrading inNd where each
x i j has multidegree e i , the i-th basis vector of Nd . _en each simple (basis) tensor
x1 j1 ⊗ ⋅ ⋅ ⋅ ⊗ xd jd is multihomogeneous of multidegree (1, . . . , 1) and in fact tensors
correspond precisely to multihomogeneous forms of this multidegree.
Arbitrary simple tensors v1⊗⋅ ⋅ ⋅⊗vd correspond to products of linear forms l1 ⋅ ⋅ ⋅ ld

with each l i multihomogeneous of multidegree e i . Hence tr(T) ≥ pr(T), where we
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slightly abuse notation by writing T for both a tensor and the corresponding multi-
homogeneous polynomial.

In particular our results will show tr(perm3) ≥ 4 and tr(det3) ≥ 5. On the other
hand, theGlynn and Derksen identities involve sums of products of linear forms that
happen to bemultihomogeneous (in the rows of the 3 × 3 matrix), hence correspond
to tensor decompositions. So tr(perm3) ≤ 4 and tr(det3) ≤ 5. In fact, Derksen gave
his identity originally in tensor form.

2 The Permanent

_eorem 2.1 Let n > 2. _en we have pr(permn) > n.

Proof Suppose that pr(permn) ≤ n. _en there exists a smooth curveC with special

point 0 ∈ C and an irreducible familyX ⊂ Kn2
×C with π∶X→ C the projection such

that π−1(0) = X0 = V(permn) and for c ≠ 0, π−1(c) = Xc is the vanishing locus of

F =
n

∑
i=1

n

∏
j=1

x i j

in Kn2
up to a homogeneous linear change of coordinates.

Let F(Xc) denote the Fano scheme parametrizing k = n(n− 1)-dimensional linear
spaces contained in Xc ⊂ Kn2

; see [EH00] for details on Fano schemes. _en F(X0)

consists of exactly 2n isolated points, see [CI15, Corollary 5.6]. _e corresponding
k-planes arise exactly by zeroing out one row or one column of an n × n matrix. In
any case, F(X0) is zero-dimensional of degree 2n.

On the other hand, for c ≠ 0, F(Xc) contains at least nn points.1 Indeed, the k-
planeV(x1 j1 , . . . , xn jn) is clearly contained inV(F) for any 1 ≤ j1 , . . . , jn ≤ n. But this
is impossible. Indeed, dimF(Xc) ≤ dimF(X0) by semicontinuity of ûber dimension
of proper morphisms [Gro64, §13.1.5], since these Fano schemes appear as ûbers in
the proper map from the relative Fano scheme of X/C to C. Hence, dimF(Xc) = 0,
so degF(Xc) ≥ nn > degF(X0) = 2n, which contradicts Lemma 2.2 below.

Lemma 2.2 ([Ilt14, Proposition 4.2]) Let C be a smooth curve, X ⊂ Pn × C a �at
projective family ofK-schemes overC with generalûberXc and specialûberX0. Suppose
that dimFk(X0) = dimFk(Xc) for some k ∈ N, where Fk(⋅) denotes the Fano scheme
of k-planes. _en degFk(Xc) ≤ degFk(X0).

Remark 2.3 In the case n = 3, it follows that

tr(perm3) = pr(perm3) = pr(perm3) = 4,

since Glynn’s identity gives an explicit expression showing pr(perm3) ≤ tr(perm3) ≤

4. On the other hand, for n > 3, the resulting bound pr(permn) > n is weaker than
the bound

pr(permn) ≥
1
2n (

2n
n
) ≈

2n
√

nπ
1In fact, a straightforward calculation shows that there are exactly nn points in this Fano scheme.
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obtained from Shaûei’s bound for wr(permn). However, our bound on pr(permn) is
the best bound we know.

3 The Determinant

_eorem 3.1 We have tr(det3) = pr(det3) = 5.

Before beginning the proof, we need a result about a special Fano scheme. Let

X = V(y1 y2 y3 + y4 y5 y6 + y7 y8 y9 + y10 y11 y12) ⊂ K12
= SpecK[y1 , . . . , y12],

and let F(X) be the Fano scheme parametrizing 6-dimensional linear spaces of X. Let
G be the subgroup of S12 acting by permutations of coordinates that map X to itself.

Proposition 3.2 Consider any irreducible component Z ofF(X) such that the 6-planes
parametrized by Z do not all lie in a coordinate hyperplane ofK12. _en Z is 4-dimen-
sional, and it can be covered by aõne spacesA4 = SpecK[p, q, r, s]. _e corresponding
parametrization of 6-planes is given by the rowspan of

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 p
1 q

−pq 1
1 r

1 s
−rs 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

up to some permutation in G.

Proof Consider the torus T ⊂ (K∗)12 deûned by the equations

y1 y2 y3 = y4 y5 y6 = y7 y8 y9 = y10 y11 y12;

X is clearly ûxed under the action of T . _is torus T also acts on F(X), and, up to per-
mutations byG, has exactly the ûxed points given by the spans of e5 , e6 , e8 , e9 , e11 , e12
and e3 , e6 , e8 , e9 , e11 , e12, respectively. Here, the e i are the standard basis ofK12.

Now, since every irreducible component of a projective scheme with a torus ac-
tion contains a toric ûxed point, every irreducible component Z of F(X) must in-
tersect one of the two Plücker charts containing the above two ûxed points, up to
permutations by G. _ese two corresponding charts of the Grassmannian G(6, 12)
are parametrized by the rowspans of thematrices

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 a13 a14 1 0 a15 0 0 a16 0 0
a21 a22 a23 a24 0 1 a25 0 0 a26 0 0
a31 a32 a33 a34 0 0 a35 1 0 a36 0 0
a41 a42 a43 a44 0 0 a45 0 1 a46 0 0
a51 a52 a53 a54 0 0 a55 0 0 a56 1 0
a61 a62 a63 a64 0 0 a65 0 0 a66 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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B =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b11 b12 1 b13 b14 0 b15 0 0 b16 0 0
b21 b22 0 b23 b24 1 b25 0 0 b26 0 0
b31 b32 0 b33 b34 0 b35 1 0 b36 0 0
b41 b42 0 b43 b44 0 b45 0 1 b46 0 0
b51 b52 0 b53 b54 0 b55 0 0 b56 1 0
b61 b62 0 b63 b64 0 b65 0 0 b66 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Imposing the condition that these 6-planes be contained in X leads to the ideals
IA ⊂ K[a i j] and IB ⊂ K[b i j] for the Plücker charts of F(X). We are interested
in the irreducible decompositions of V(IA) and V(IB), in other words, in minimal
primes of IA and IB . Furthermore, since we only care about components parametriz-
ing 6-planes not lying in a coordinate hyperplane ofK12,wemay discard anyminimal
primes containing all a i j or b i j for some ûxed j.

In principle, one can compute theminimal primes of IA and IB using standard al-
gorithms. In practice, however, this is not feasible. We believe that one obstruction is
due to an extremely large number of irreducible components parametrizing 6-planes
lying in a coordinate hyperplane ofK12. We avoid this obstruction by utilizing amod-
iûed algorithm, which we describe below.

Now, it is easy to see that a i1a i2a i3 ∈ IA for i = 1, . . . , 6, and likewise, b11b12 and
b23b24 are in IB . Using the action of G, we may thus assume that for any minimal
prime PA of IA, a11 , a63 ∈ PA and for any minimal prime PB of IB , b11 , b23 ∈ bA. We
now proceed as follows starting with the ideal J = IA + ⟨a11 , a63⟩ or J = IB + ⟨b11 , b23⟩:
1. Find theminimal primes {P1 , . . . , Pm} of the ideal J′ generated by themonomials
among a set ofminimal generators of J.

2. Discard those Pk such that J + Pk contains all a i j or b i j for some ûxed j.
3. Return to the ûrst step, replacing J by J + Pk for each remaining prime Pk .

We continue this process until it stabilizes, that is, among the J + Pk we have no
new ideals. Doing this calculation with Macaulay2 [GS] (see Appendix A for code)
takes less than 20 seconds on a modern computer. In the case of IA, we are le� with
no ideals, that is, all minimal primes of IA contain all a i j for some ûxed j. In the case
of IB , we are le� with 8 ideals, corresponding to components whose parametrization
is exactly of the formpostulated by the proposition. Each of these components is toric
(with respect to a quotient of T) and projective, hence admits an invariant aõne cover,
each of whose charts contains a T-ûxed point. _e claim now follows.

Proof of_eorem 3.1 We will use the fact that 6-planes contained in V(det3) ⊂ K9

are parametrized by two copies of P2, see [CI15,_eorem 4.7 and Corollary 5.1]. Fur-
thermore, every point of V(det3) is contained in such a plane. Indeed, any point of
X may be viewed as a singular matrix M ∈ K3 ⊗ (K3)∗. For any nonzero vector
v ∈ kerM, the space of all singular 3× 3 matrices containing v in their kernel forms a
6-dimensional linear subspace of V(det3), which clearly contains M.

To begin with, we have that pr(det3) > 3, as follows from the lower bound on the
Waring rank of det3. Let us assume that pr(det3) = 4. We now consider the hypersur-
face X from Proposition 3.2. Our assumption implies that there is a 9-dimensional
linear subspace L ⊂ K12 such that V(det3) = X ∩ L. Furthermore, there must be a
component Z of F(X) containing a copy of P2 such that the 6-planes parametrized
by this P2 are all contained in L (and hence in V(det3)). Since these 6-planes sweep
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out V(det3), the planes parametrized by the component Z must not all be contained
in a coordinate hyperplane V(y i) of K12, otherwise L would be also be contained in
V(y i). But in that case, we can clearly write det3 as a sum of three products of linear
forms, contradicting the assumption that pr(det3) > 3.

We can now apply Proposition 3.2 to the component Z. On a local chart, the sub-
variety P2 ⊂ Z must be cut out by setting either p, q constant or r, s constant. In-
deed, suppose that p and r are non-constant. Each of q and s is either non-constant
or constant but nonzero, for if q = 0 or s = 0 is constant on the P2 then the 6-planes
parametrized by the P2 are contained in a coordinate hyperplane inK12. _en pq and
rs are also non-constant, so the corresponding 6-planes span at least a 10-dimensional
subspace ofK12 and hence cannot all be contained in L.

_us, making use of symmetry, we may assume that p, q are constant. But if this
is the case, then L must be cut out by y3 = −pqy6, y4 = py1, y5 = qy2. Hence, up
to homogeneous linear change of coordinates, X ∩ L = V(det3) ⊂ K9 is cut out by
y7 y8 y9 + y11 y12 y13, which contradicts pr(det3) > 3.

We conclude that pr(det3) > 4. Combining thiswithDerksen’s identity shows that
tr(det3) = pr(det3) = 5.

Appendix A Code for Macaulay2

R=QQ[x_1..x_12]
f=x_1*x_2*x_3+x_4*x_5*x_6+x_7*x_8*x_9+x_10*x_11*x_12
S=QQ[a_(1,1)..a_(6,6)]
N=transpose genericMatrix(S,6,6)
O=id_(S^6)
M_A=N_{0,1,2,3}|O_{0,1}|N_{4}|O_{2,3}|N_{5}|O_{4,5}
M_B=N_{0,1}|O_{0}|N_{2,3}|O_{1}|N_{4}|O_{2,3}|N_{5}|O_{4,5}
T=S[s_1..s_6]
p_A=map(T,R,(vars T)* sub(M_A,T))
p_B=map(T,R,(vars T)* sub(M_B,T))
-- These are the ideals for the two charts:
I_A=ideal sub((coefficients p_A(f))_1,S)
I_B=ideal sub((coefficients p_B(f))_1,S)

--Detects if a component only contains linear spaces contained
--in a coordinate hyperplane
lowRank=J->(genlist:=flatten entries mingens J;

any(toList (1..6),i->(
all(toList (1..6),j->member(a_(j,i),genlist)))))

--Deletes multiple occurrences of an ideal in a list
uniqueIdealList=L->(outlist:={};

scan(L,i->(if not any(outlist,j->j==i)
then outlist=outlist|{i}));

outlist)
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--Writes an ideal as an intersection of multiple ideals, up to
radical
partialDecomposition=J->(genlist:=flatten entries mingens J;

monlist:=select(genlist,i->size i==1);
dl:=decompose monomialIdeal ideal monlist;
select(apply(dl,i->i+J),i->not lowRank i))

--verify that a_(i,1)*a_(i,2)*a_(i,3) are in I_A:
transpose mingens I_A
--by symmetry, can assume a_(1,1)=0, a_(6,3)=0
L1=partialDecomposition (I_A+ideal {a_(1,1),a_(6,3)});
L2=uniqueIdealList flatten (L1/partialDecomposition);
# flatten (L2/partialDecomposition)
--everything has low rank!

--verify that a_(1,1)*a_(1,2), and a_(2,3)*a_(2,4) are in I_B:
transpose mingens I_B
--by symmetry, can assume a_(1,1)=0, a_(2,3)=0
L1=partialDecomposition (I_B+ideal {a_(1,1),a_(2,3)});
L2=uniqueIdealList flatten (L1/partialDecomposition);
L3=uniqueIdealList flatten (L2/partialDecomposition);
scan(#L3,i->(print i;print transpose mingens L3_i))
--everything has low rank or desired form!
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