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Abstract

Frames have been defined as a certain type of generalization of Room square. Frames have proven
useful in the construction of Room squares, in particular, skew Room squares.

We generalize the definition of frame and consider the construction of Room squares and skew
Room squares using these more general frames.

We are able to construct skew Room squares of three previously unknown sides, namely 93, 159,
and 237. This reduces the number of unknown sides to four: 69, 87, 95 and 123. Also, using this
construction, we are able to give a short proof of the existence of all skew Room squares of (odd)
sides exceeding 123.

Finally, this frame construction is useful for constructing Room squares with subsquares. We can
also construct Room squares “missing” subsquares of sides 3 and S. The “missing” subsquares of
sides 3 and 5 do not exist, so these incomplete Room squares cannot be completed to Room squares.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 B 30.

1. Introduction: Room squares

A Room square of side s is a square array R of side s, satisfying the following
properties:

(1) each cell of R is either empty or contains an unordered pair of elements
(symbols) chosen from a set S of size s + 1,

(2) each symbol occurs precisely once in each row and column of R,

(3) every unordered pair of symbols occurs in a unique cell of R.

The following is shown in [9].
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THEOREM 1.1. A Room square of side s exists if and only if s is a positive odd
integer other than 3 or 5, or (by convention) if s = 0.

Suppose R is a Room square of side s, on symbol set S. A square ¢ by ¢
subarray of R is said to be a Room subsquare of side t provided it is itself a
Room square (of side ). We will refer to a Room subsquare simply as a
subsquare.

An incomplete Room square of side s missing a subsquare of side ¢, is a square
array R of side s, which satisfies the following:

(1) each cell of R is either empty or contains an unordered pair of symbols
chosen from S (|.S| = s + 1),

(2) there exists an empty square subarray R’ of R, having side ¢,

(3) a row of column of R not meeting R’ contains each symbol of S precisely
once,

(4) a row of column of R which meets R’ contains precisely the symbols
S\T,where T C Sand |T|= ¢+ 1,

(5) the pairs occurring in R are precisely those {x,y} C (S X S)\(T X T),
with x # y.

For brevity, we refer to an incomplete Room square of side s missing a
subsquare of side ¢t as an incomplete (s, £)-Room square. Clearly existence
requires s and ¢ to be odd, or zero. Also, if ¢ is odd and not 3 or 5, or if 1 = 0,
then the existence of an incomplete (s, £)-Room square is equivalent to the
existence of a Room square of side s containing a subsquare of side ¢. This is
clear since the subsquare of side ¢ may be inserted or removed at will. If 7 = 3 or
5, however, an incomplete (s, £)-Room square cannot be completed, since the
missing subsquare does not exist.

A Room square R, on symbol set S, is said to be standardized with respect to
the symbol oo € S, provided the rows and columns of R have been permuted (if
necessary) so that oo occurs in the cells of R on the main diagonal. Given a
standardized Room square, it is natural to index the rows and columns of R so
that { oo, x} occurs in cell (x, x) of R, for every x € §, x # co.

A standardized Room square R (of side s) is said to be a skew Room square
(of side s) provided that, for any pair of cells (i,j) and (J, i), where i #j,
precisely one is empty.

Skew Room squares have been studied extensively, and the following is
known [1].

THEOREM 1.2. There exists a skew Room square of side s if s is odd, s > 5, and
s & {69, 87, 93, 95, 123, 159, 237}.
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We will construct skew Room squares of sides 93, 159, and 237, reducing the
number of unknown cases to four.

A subsquare of a skew Room square R is said to be a skew subsquare
provided it is located symmetrically with respect to the main diagonal of R.

Suppose R is an incomplete (s, £)-Room square. R is standardized as follows.
Pick an element co € T. If necessary, permute the rows and columns of R so
that R’ is located symmetrically with respect to the main diagonal, and so that
oo occurs in the cells of R \ R’ on the main diagonal. Choose any indexing of
the rows and columns of R (by S) such that {0, x} occurs in cell (x, x), for all
x&e S\T.

We say that a (standardized) incomplete (s, £)-Room square is skew provided
that, of any two cells (i, j) and (j, i) where j # i, and {i,j} ¢ T X T, precisely
one is empty. Thus if there exists a skew incomplete (s, f)-Room square, say R,
and there exists a skew Room square of side ¢, then R may be completed to a
skew Room square of side s.

In the next section we define and give a construction for a general type of
frame. In Section 3, we use these frames to construct some incomplete Room
squares, both skew and nonskew.

2. Frames

Suppose y; and £, 1 <i < k, are positive integers. Let .S be a set of cardinality

s = S%_, t;u, and suppose S = U/_, S, where n = Z¥_, u. Further, suppose
the S;’s are pairwise disjoint, and there exist exactly u, S/’s with cardinality ¢, for
1<i<k.

We define a frame of type t{"t32 - - - t* to be a square array F of side s whose

rows and columns are indexed by S, which satisfies the following:

(1) each cell of F is either empty or contains an unordered pair of elements of
S,

(2) the subsquares S; X S; of F are empty, for 1 < j <n,

(3) row (or column) x contains precisely the symbols S \ S;, where x € §;,

(4) the pairs occurring in F are precisely those {x,y} C § X § such that
x #y,and {x,y} ¢ S; X S,foranyj,1 <j<n.

A frame is skew if, given any pair of cells (i, k) and (k, i) where i # k and
{i, k} ¢ S}, for any j, precisely one is empty.

In [4], a (¢, u)-frame is defined to be a frame of type r*. It is clear that the
existence of a Room square of side s is equivalent to the existence of a
(1, s)-frame. More generally, the existence of an incomplete (s, f)-Room square
is equivalent to the existence of a frame of type 1°#!. Also, the two notions of
skew (for frames and Room squares) agree.
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We will describe a construction for frames which uses group-divisible designs.
First, some definitions.

A pairwise balanced design (or PBD) is a pair (X, %), where % is a set of
subsets of X, called blocks, such that every unordered pair of elements of X
occurs in a unique block. A group-divisible design (or GDD), is a triple (X, G, &)
where § is a partition of X into subsets called groups, and & is a set of subsets of
X (blocks), such that (X, § U &) is a PBD. A GDD is said to have group type
g\t - - - gg if there are precisely u, groups of size g, for 1 < i < k (the s and
g/’s are positive integers).

THEOREM 2.1. Suppose (X, 8§, @) is a GDD with group-type gi" - - - g%, and let
t be a positive integer. Suppose that for every block A € & there exists a
(, |A|)-frame. Then there exists a frame of type tgitgs> - - - tg*.

REMARK. If all the (¢, |A|)-frames are skew, then the resulting frame is also
skew.

ProOOF. Let I, = (1,2, ..., t}. We construct the desired frame F on symbol
set X' X I,, with empty subsquares determined by the natural partition X X I, =
UgedG X I). For any block 4 € @, there exists a (¢, |4|)-frame F, on
symbol set 4 X I, having empty subsquares determined by the partition 4 X I,
= UxEA({‘x} X It)

Now, choose a cell C = ((x, i), (¥,/)) € (X X I)* of F. If {x,y} C G for
some G € §, define F(C) to be empty. If not, there is a unique 4 € @ with
{x,y} C A. Then define F(C) = F,(C).

It may be verified that F is indeed a frame of the given type.

The following construction was given in [4]. We may derive it as a corollary to
Theorem 2.1.

COROLLARY 2.2. Suppose (X, B) is a PBD, and let ¢ be a positive integer.
Suppose that, for every block B € B, there eixsts a (t, |B|)-frame. Then there

exists a (t, | X |)-frame.

PROOF. (X, {{x}, x € X}, B) is a GDD.

3. Frames and Room squares

We first describe a simple method of constructing Room squares by filling in
the empty subsquares of a frame. The proof is trivial and therefore is omitted.
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THEOREM 3.1. Let w > 0. Suppose there exists a frame F of type t{ - - - t;% and
suppose there exists a Room square of side t, + w containing a subsquare of side w,
Jor 1 € i <k. Then there exists a Room square of side s + w, where s =
Sho

REMARK. If the frame F, and all the Room squares hypothesized above are
skew, then the resulting Room square is skew.

Closely related is the following result.

THEOREM 3.2. Suppose there exists a frame of type ;" - - - t{* where u, = 1.
Further, suppose there exists an incomplete (1, + w, w)- Room square, for 1 <i <
k — 1. Then there exists an incomplete (s + w, t, + w)-Room square, where
s =3*_ tu,

In applying these constructions for Room squares, it is convenient to use
truncated transversal designs. A transversal design TD(k, n) is a GDD with
group type n*, all of whose blocks have size k. It is well known that the
existence of a TD(n, k) is equivalent to the existence of k — 2 mutually orthogo-
nal Latin squares (MOLS) of order n (for a definition, see [6]). A truncated
transversal design is the GDD that results from deleting some points from a TD.

COROLLARY 3.3. Suppose there exists a TD(k + /,n) and 0 <t <n, for
1 <i <\l Lett > 1| and suppose there exists a (1, k + j)-frame if 0 < j < I. Then

there exists a frame of type n*t] - - - t}.

ProoF. Choose any / groups, say G, ..., G, of a TD(k + I, n) and delete
n — ¢, points from G;, 1 <i </. Then every block has size k + j, where
0<,;<L

We further specialize Corollary 3.3, and apply it to the case of constructing
skew Room squares.

LEMMA 3.4. There exist skew (t, u)-frames for (t, u) = (4, 4), (4, 5), (2, 8), and
(2, 9).

PrOOF. A skew (4, 4)-frame is given in [10]. Skew (4, 5)- and (2, 9)-frames are
given in [4, Theorem 3.4]). D. E. McDougall {7} has constructed the following
skew (2, 8)-frame. Consider

S = ({1, 14}, {2, 11}, {3, 15}, {4, 9), {5, 6}, {7, 13}, {10, 12}},
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and
T = {{7, 4}, {3, 12}, {10, 6}, {9, 14}, {1, 2}, {5, 11}, {13, 15}},

where the elements are unordered pairs of numbers of Z,,. S and T generate a
(2, 8)-frame by [4; Theorem 2.3), and it may be checked that this frame is skew.

COROLLARY 3.5. (i) Suppose there exists a TD(5, n), and let 0 < t < n. If there
exists a skew Room square of side 4n + 1 then there exists a skew incomplete
(s, 4t + 1)- Room square, where s = 44n + 1) + 1. If, further, there exists a skew
Room square of side 4t + 1, then there exists a skew Room square of side s.

(ii) Suppose there exists a TD(9, n), and let 0 < t < n. If there exist skew Room
squares of sides 2n + 1 and 2t + 1, then there exists a skew Room square of side
s=28n+ 1)+ 1

Proor. (i) In Corollary 3.3, put k =4, / = 1. Now apply Theorem 3.2 with
w = 1 (note that any skew Room square contains a skew subsquare of side 1).
(ii) In Corollary 3.3, put £ = 2, / = 1, and proceed as above.

COROLLARY 3.6. There exist skew Room squares of sides 93, 237, and 159.

PrROOF. First, 93 =4-23 + 1, and 23 =4-5+ 3. Thus put n=5,¢ =3 in
Corollary 3.5(i)). A TD(5, 5) exists, as do skew Room squares of sides 21 and 13.

Next, 237 =4-59 + 1, and 59 = 4 - 13 + 7. The required ingredients are a
TD(5, 13), and skew Room squares of sides 53 and 29.

Finally, 159 =2 -79 4+ 1,and 79 =8 -9+ 7. Put n = 9, ¢ = 7 in Corollary
3.5(i). A TD(9, 9) exists, as well as skew Room squares of sides 19 and 15. Thus
the result follows.

If we attempt to construct a skew Room square of side 69 by the above
method, we fail. The following is obtained, however.

COROLLARY 3.7. There exists a skew incomplete (69, 5)- Room square.

PROOF. 69=4-17+ 1 and 17=4-4+ 1,50 put n =4, ¢t = 1 in Corollary
3.5(1). A TD(5, 4) exists, and likewise a skew Room square of side 17 exists.
However, a skew Room square of side 5 does not exist, so we are able only to
obtain the incomplete Room square of side 69.

We close this section by showing how Lemma 3.4 may be used to close the
spectrum of skew Room squares. In establishing a constant s, such that s > s, 5

odd, implies there exists a skew Room square of side s, PBD constructions are
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used. In [8], the first value of s, obtained is approximately 45,000. The construc-
tion of Lemma 3.4 would enable a much better preliminary bound for s, to be
obtained. We first need a result concerning TDs.

LEMMA 3.8. Suppose n > 8. Then there exists n, such that n — 5 < n, < n and
such that a TD(9, n,) exists.

ProoOF. Brouwer [3] has published a (finite) list of orders # for which 7 MOLS
of order n are not known. The required property can be easily checked.

THEOREM 3.9. Suppose there exists a skew Room square for any odd side s,
125 € s < 1961. Then there exists a skew Room square of any odd side s > 1963.

Proor. We use Corollary 3.5(i1). Let s > 1963 be odd, s = 2m + 1. Write
m = 8n + t, where 62 < r < 69. By Lemma 3.8, choose n, such thatn — 5 < m,
< n and such that a TD(9, n,) exists. Let t;, = m — 8n, so thatm = 8n, + ¢,.

We check that 0 < f, < n,. We have t;, < 69 +8-5=109, and n, > n—5
=(m—t—40)/8 > (981 — 109)/8 = 109 > ¢,, since s > 1963 = 2 - 981 + 1.

By an induction assumption, skew Room squares of sides 2n + 1 and 2¢ + 1
exist, so we have the result. (Note that2n + 1 > 2t + 1 > 125)

Thus a preliminary bound of under 2000 may be obtained for s, assuming
that the initial segment from 125 to s, can be dealt with, as it can be.

4. Incomplete Room square

We now apply our construction to find classes of incomplete Room squares.

LEMMA 4.1. There exist (2, u)-frames for u = 5, 6, and 7.

ProoF. See [12].

COROLLARY 4.2. Suppose there exists a TD(1, n), and let 0 <, t <n, t; > 3.
Then there exists an incomplete (s, t)-Room square, where s =2(5n + t; + ) +
1.

ProoF. Corollary 3.3 yields a frame of type 2n°2¢'2¢], by setting k = 5,/ = 2.
Apply Theorem 3.1 with w = 1, noting that a Room square of order m exists if

m is odd and not 3 or 5 (Theorem 1.1). The result is obtained.
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We use the following resuit on TDs, found in Brouwer [3].

LEMMA 4.3. There exists a TD(7, n) if n > 63.

THEOREM 4.4. If s > max{u + 644, 6u + 9), with s, u odd, then there exists an
incomplete (s, u)- Room square.

PrOOF. Lets =2m + L,u=2t+ 1. Writem =5n+ ¢, + t,with3 < ¢, < 7.
We must check that n > max{63, ¢, ¢,}. We have s > u + 644, 50 2m + 1 > 2¢
+645, and m >t +322. Nown > (m—t, — )/5>(m -7~ 0/5 > 315/5
= 63.

Also, we have s > 6u + 9. Thus 2m+ 1 > 12¢ + 15, or m > 61 + 7. Now
n=(m-t,-0/5>m-T-0/5>6t+T-T7T-101/5=1t

Finally, n > 63 and ¢, < 7, so n > t,. Corollary 4.2 yields the desired incom-
plete (s, ¥)-Room square.

Of course, Theorem 4.4 could be improved, given any particular value of u, by
examining individually the orders s less than max{u + 644, 6u + 9}. For small
values of u, the term u + 644 term dominates. The existence of many TDX(7, n)
with n < 63 indicates that the bound could very well be improved.

We state another result similar to Theorem 4.4.

THEOREM 4.5. If s > max{u + 868, Su + 16}, with s, u = 1 mod 4, then there
exists an incomplete (s, u)- Room square.

PrOOF. Start with (4, u)-frames for ¥ = 4, 5, and 6, which are shown to exist
in [5]. Proceed as in Corollary 4.2 and Theorem 4.4, using the fact that a
TDV(6, n) exists if n > 53 ([3)).

We have lowered the factor of 4 from 6 to 5, at the expense of increasing the
constant ¢ in the term u + c.

We finish by giving a construction for skew incomplete Room squares based
on the construction of Corollary 3.7.

THEOREM 4.6. If n# 1,2,3,6 or 17, then there exists a skew incomplete
(16n + 5, 5)-Room square.

PROOF. It is known [2] that, if n # 1, 2, 3, or 6, then there exist two MOLS of
order n containing a common transversal. The corresponding TD(4, n) has a set
of n blocks which contain each point exactly once. Adjoin a new point co to
these blocks, and create a new group {co0}. This yields a GDD with group type
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n*1' and blocks of size 4 and 5. Theorem 2.1, with ¢ = 4, yields a skew frame of
type 4n*4!. Now apply Theorem 3.2, with w = 1. This yields the desired skew
incomplete Room square provided a skew Room square of side 4n + 1 exists.
Thus, by Theorem 1.2 and Corollary 3.6, we are done, since n 7= 17.

5. Remarks

A generalization of frames has yielded a new construction for Room squares
and skew Room squares using GDDs. Several applications are considered in this
paper.

The utility of this GDD construction lies in the fact that we may use
truncated transversal designs, which contain block sizes which are two consecu-
tive integers. Previous GDD constructions (see [8]) have used GDDs where the
block sizes can only be odd integers exceeding 5 (that is sides of (skew) Room
squares). The greater flexibility allowed by the use of truncated TDs yields good
bounds much more easily than with the older GDD constructions.

Finally, we wish to note that a skew (2, 6)-frame, if it exists, could be used to
construct skew Room squares of sides 87, 95, and 123, leaving only side 69 in
doubt. The existence of a skew (2, 6)-frame is not known, however.
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