CROSSED PRODUCTS AND HEREDITARY ORDERS

SUSAN WILLIAMSON

Introduction. Let S be the integral closure of a discrete rank one valua-
tion ring R in a finite Galois extension of the quotient field of R, and denote
the Galois group of the quotient field extension by G. It has been proved by
Auslander and Rim in [4] that the trivial crossed product 4(1, S, G) is an
hereditary order for tamely ramified extensions S of R, and that 4(1, S, G) is
a maximal order if and only if S is an unramified extension of R. The purpose
of this paper is to study the crossed product 4(f, S, G) where [f] is any
element of H*G, U(S)) and S is a tamely ramified extension of R with
multiplicative group of units U(S).

The main theorem of Section 1 states that for an extension S of R the
following three properties are equivalent:

(1) S is a tamely ramified extension of R

(2) the crossed product 4(f, S, G) is an hereditary order for each [f] in
H*(G, U(S))

(3) the trivial crossed product 4(1, S, G) is an hereditary order.

We then give an example to show that not every hereditary order is equivalent
to a crossed product over a tamely ramified extension.

In Section 2 we study the number of maximal two-sided ideals in the cros-
sed product 4(f, S, G). It has been proved by Harada in [6] that the number
of maximal two-sided ideals in an hereditary order A over a discrete rank one
valuation ring R in a central simple algebra X over the quotient field of R is
equal to the length of a saturated chain of orders over R in J containing 4.
This is the main motivation for our study. Given a crossed product 4(f, S,
G) over a tamely ramified extension S of R we define the conductor group Hy
of 4(f, S, G) to be a certain subgroup of the inertia group of a maximal ideal
of S. Then we show that the number of maximal two-sided ideals in 4(f, S,

G) is equal to the order of the conductor group Hy. In particular, the number
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of maximal two-sided ideals in the trivial crossed product is equal to the
ramification index.

In Section 3 we motivate the naming of the conductor group of the crossed
product 4= 4(f, S, G) by proving that if I denotes any maximal order con-
taining 4, and Cr(4) is the conductor of I' in 4, then the length of S/Cr(4) NS
is equal to g(h —1) where g is the number of maximal ideals of S and & is
the order of the conductor group Hy of 4(f, S, G).

The following notation shall be in constant use throughout the paper. If
R is a local ring, then R shall denote its residue class field. The multiplicative
group of units of a ring R shall be denoted by U(R). Unless otherwise stated,
R shall always denote a discrete rank one valuation ring, S the integral closure
of R in a finite Galois extension of the quotient field of R, and G the Galois
group of the quotient field extension.

Let G be a finite group, R a commutative ring with identity element, and
A a G-ring over R. Then each element f in Z*(G, U(A)) gives rise to the
crossed product 4(f, A, G), namely the R-algebra which is the free (left) A-
module with free generators u, indexed by the elements of G and with multipli-
cation defined by (au,)(bu.) =ab’f(o, t)u,. for a and b in A. The crossed
product 4(f, A, G) depends up to isomorphism only on the cohomology class
[f]. Furthermore, given [f] in H*(G, U(A)) we can always choose the 2-
cocycle f such that f(r, 1) = f(1, v) for each element r in G. Thus we shall
always assume that the cocycle f is normalized so that = is the identity
element of 4(f, A, G).

Let R be a domain with quotient field 2, and let 5 be a central simple k-
algebra. Then a subring 4 of % is said to be an order over R if 4 is a finitely
generated R-module which spans X over k2. An order is said to be an hereditary
order if it is hereditary as a ring.

Let an extension S of a local ring R be an integral extension of integrally
closed domains, such that the quotient field extension is finite and Galois with
Galois group G. If f is an element of Z*(G, U(S)), then 4(f, S, G) is an
order over R. The ring S is said to be a tamely ramified extension of R if
there exists a maximal ideal P in S such that S is separably algebraic over
R and the order of the inertia group of P is relatively prime to the field chara-

cteristic of R.  Since all the maximal ideals are conjugates, it follows that.if
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one maximal ideal of S has the above property, so does each maximal ideal.
The author expresses her appreciation of the direction given to her by

Dr. Dock Sang Rim for the preparation of this paper, and also for the intro-

duction to the study of hereditary orders given to her by Dr. Maurice Auslander.

1. The crossed product 4(7, S, G)

The main purpose of this section is to prove that every crossed product
over a tamely ramified extension S of a discrete rank one valuation ring R is
an hereditary order. The method of proof will be to reduce the problem to
the inertial case by considering the inertia ring U of S over R.

The first theorem is a generalization of Maschke’s Theorem on the semi-
simplicity of the group ring, and will be useful in proving the assertion in the

inertial case.

TaeoreM 1.1. Let G be a finite group of order n, and let k be a field of
characteristic p such that p is relatively prime to n. If G operates trivlally on
k, then every crossed product 4= A f, k, G) is k-separable.

Proof. Cousider the exact sequence

¢
0—>]—>4Q rd°—>4—>0

of left 4® 4°-modules where 4° denotes the opposite ring of 4 and ¢ is defined
by ¢(0;®0ds:) =0:0:. This sequence splits if and only if there exists an element
Jo in J such that jjo =7 for all s in J.

Since p is relatively prime to n, we have that 1/x# is in &  Now define
Jo = %—Eﬂ](l@l - f(&—’la—_rlr)mua@uc—n)- Since J is generated as a left ideal in
4® 4° by elements of the form 1®u: — #.®1 where v runs through all the
elements of G, it suffices to show that (1Q#:— % QD) ji=1Qu: —u. Q1 for

any element v in G; and this is true provided that

PACES s Sl o) ~
27‘(0.,0.—1) ua@uo—l‘: f(o‘,(j_l) u10®uc—1—0

Consider #-, ® u,-1 for some element p in G, and let v in G satisfy o =tp. By
repeated application of the associativity relation satisfied by the cocycle f, we
can observe that f(o™, 7)f(p, o) = f(r, 0)f(w, ©™*), so that
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T oy e @ty = i ®

Therefore (1Q@u- — u. ®1) >} 7@}0_—1 #s @ us-1 =0, since the terms cancel

in pairs. Hence the sequence splits, and) we know that 4 is 4® 4°-projective,
i.e. that 4 is k-separable.

We proceed to prove the assertion in the inertial case. Throughout the
rest of this section we shall make use of the following fact which has been

proved by Auslander and Goldman (see p. 5 of [3]).

LemMma. Let R be a discrete rank one valuation ring. If A is an R-algebra
which is a finitely generated torsion free R-module such that the radical of A is
left A-projective, then A is both left and right hereditary.

Prorosition 1.2. Let the extension S of R be a tamely ramified inertial
extension of discrete rank one valuation rings such that the quotient field exten-
sion is finite and Galois with Galois group G. Then the radical of the crossed
product 4= A(f, S, G) is IT4, where II denotes the prime element of S. Hence

4 is an heredilary order.

Proof. Define 4 to be the crossed product 4(f, S, G) where the action of
G on S is given by the natural homomorphism G-> Aut(S/R), and f is the
image of s under the natural map Z*(G, U(S)) - Z*(G, U(S)). We observe that
4 is semi-simple. For, since S is an inertial extension of R, we know that
S=R, so that G acts trivially on S. From the assumption that S is tamely
ramified over R, it follows that the field characteristic of S is relatively prime
to the order of G. Hence by Theorem 1.1 we have that 4 is S-separable and
hence semi-simple.

By the preceding lemma it remains to show that rad 4 = IT4. Since 4 is a
finitely generated S-module, and 74 is a two-sided ideal in 4, we know that
IT4 is contained in rad 4. It is easily seen that 4 = 4/IT4. Therefore 4/114
is semi-simple and so rad 4 = 774. Using the fact that 774 is a free 4-module,

it follows from the lemma that 4 is an hereditary order.

ProrosiTioN 1.3. Let the extension S of R be a tamely ramified extension
of discrete rank one valuation rings such that the quotient field extension is
Sfinite and Galois with Galois group G. Then the radical of the crossed product
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4=4(f, S, G) is ITd where II is the prime element of S. Hence 4 is an

hereditary order.

Proof. Let U be the inertial ring of S over R. By virtue of Proposition
1.2, we may as well suppose that U properly contains R. Since S is tamely
ramified over R, we know that S=U since U is the separable closure of R in
S. Therefore the extension S of U is a tamely ramified inertial extension of
discrete rank one valuation rings. The Galois group of S over U is G;, the
inertia group of S. We now define 4, = 4(f;, S, G;) where f; is the restriction
of f to G:xG;. By Proposition 1.2 we know that rad 4; = I14;.

Let 4 =4/114 and 4; = 4;/IT4; and note that there is a natural injection of
4 into 4. We observe that (rad 4) N4, =0. For (rad4) N4, is a nilpotent
two-sided ideal in 4;. Therefore it is contained in rad 4;, and hence (rad 4)
N4,=0.

We prove finally that rad4 =0. Note that 4= 4(f, U, G) where f is
induced by f. Let G = L,J G, gi be a right coset decomposition of G with respect

1(8) .
to G;. Then each element ¢ in can be written as é§ = >.0; where 8; = ECZ’uhg,-
h

with % in G; and ¢’ in . Let & be an element in raEIZ, and write § =§6,~.
We claim that §=0. The proof is by induction on ¢(8). If #(8) =1, then—6 is
in (rad4)N4;, and so §=0. Let #(0) =1 and assume that y =0 for each
element r in rad4 such that #(y)<t. Since S is a Galois extension of R we
can write S= R(#) for some element § in S. Now consider the element a = 64

t—1

—0gr () =§(ﬂ—g;g{‘(ﬂ))6i. Since « is in rad4, and t(a) <t, we conclude
from the imiuction hypothesis that « =0. Since 0 ~gigr'(§) =0 for i=t¢, it
follows that 0; =0 for i%¢# so that § =48  Then dug-: is in (rad4) N 4; and
hence dug+=0 and finally 6 =0. This concludes the proof.

Finally we delete the requirement that S be a discrete rank one valuation

ring, and prove the following theorem.

ProrosiTiON 1.4. Let S be a tamely ramified extension of a discrete rank
one valuation ring R, such that the quotient field extension is finite and Galois
with Galois group G. Then each crossed product 4= A(f, S, G) is an hereditary
order.

Proof. Let R be the completion of R, and consider 4 = 4QR. Since R

is R-flat it is clear that 4 is an hereditary order over R if and only if 4 is an
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~ A

hereditary order over R (see p. 7 of [3]). Note that 4 =S 4= 4(/f, S, )
whsre S =SQ®zR = Si® + - - ®S,. and S; denotes the completion of the localiza-
tion of S at the maximal ideal P; of S. If we let ¢; be the identity element of
S; then G acts as a transitive permutation group on the set (e;, . .., es). We
shall denote by G; the decomposition group of P; in the extension S of R
Denote e;de; by 4;, and let [f;] be the image of [f] under the natural
map HX(G, U(S)) - H*(G:, U(S:)). Then 4; = 4(f;, Si, Gi) and since the quotient
field extension of the extension S; of R has Galois group Gi, we know by
Proposition 1.3 that 4; is an hereditary order and that rad 4; = P; 4;.
Next we observe that 4;N rad 4 is contained in rad 4;. For suppose that
§ is in 4;Nrad4, and let §; be any element of 4;. Then #(1+4d;0) =1 for
some element ¢; in 4;. Hence e;tiei(e;+8id) =e; in 4;, and so ¢ is in rad 4;.
We show finally that rad4 = (rad S)4. Suppose that 6 is in 4. Then
we can write 0 = > ;0. Let ¢ be any element of G and suppose that o(e;) = es.
If 6 is in rad 4, then by the above remark, e;du.e; is in rad4;. Now suppose
that ¢ is in rad4, and write 8 = >} s;%#. where s; is in S and ¢ is in G. Let
o and p be defined by r=¢"'w and p=0¢""ts. Then r(er) =e¢; if and only if
ot(er) = er, from which it follows that e;du-e; = > eisp»-1f (0s~", o)u, for elements
p in G;. This equality together with the fact ‘:chat e;0use; is in rad 4; implies
that e;s,,-1 =e;s: is in P;4; for each r in G. Hence rad 4 is contained in (rad
S)4. Since (rad S) 4 is a two-sided ideal in 4, we conclude that rad 4 =
(rad S)4. If P;=1IS; then rad S is the principal ideal (Il ..., ITg). Since
(rad $)4 is a free-4 module, we conclude from the lemma to Proposition 1.1
that 4 is an hereditary order over R. Hence 4 is an hereditary order over R.
We shall make use of the following proposition which is due to Auslander
and Rim (see [41).

ProrosiTiON 1.5. Given an extension S of R, the trivial crossed product

41, S, G) is hereditary if and only if S is a tamely ramified extension of R.

Thus we have established the following theorem.

TueoreM 1.6. Let R be a discrete rank one valuation ring, and S the
integral closure of R in a finite Galois extension of the quotient field of R with
Galois group G. Then the following statements are equivalent:

(1) S is a tamely ramified extension of R
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(2) the crossed product A(f, S, G) is an hereditary order for each Lf] in
H*(G, U(S))
(3) the trivial crossed product A(1, S, G) is an hereditary order.

An equivalence relation on the set of hereditary orders H'(R) over a discrete
rank one valuation ring R is introduced in [2]. Namely, if 4;, and 4. are in
H'(R), then A; is said to be equivalent to 4, if there exist finitely generated
free R-modules E; and E; such that

A1® g Homg(E;, E)) = 4@ r Homg(E,, E).

It is established in [2] that each separable order is equivalent to a crossed

product over a Galois extension of R.

Remark. An hereditary order need not be equivalent to a crossed product
over a tamely ramified extension. We show that this is true by an example.

For let R be the ring of 2:adic integers. Denote the quotient field of R by
k, and let K=k(V2). Then the integral closure S of Rin Kis R [V21 It
is easily seen that S is a local domain with maximal ideal (¥ 2 ), and the Galois
group G of K over k is cyclic of order two, G= (1, ¢). Let 4=4(1, S, G).
Then rad4= (2, 1+u,). We define I by adjoining the element (1 + u.)/2
to 4. Then I' is an order, and rad I'=+v 2 I. Since the radical of I" is a free
Imodule, it follows that I" is an hereditary order. Suppose that I" is equivalent
to a crossed product 4(f, T, H) where T is an extension of R. Then there

exist finitely generated free R-modules E; and E; such that
I'® r Homg(E:, E\)=4(f, T, H) @ r Homg(E:, E,).

If rad T = (a), then the above isomorphism must map V2 into au where # is
a unit in 4(f, T, H) @ g Homx(E;, E;), so that a®>=2 v for some unit v in 7.
Hence the ramification index of T over R must be two, and so T can not be

a tamely ramified extension of R.

2. The conductor group of 4(f, S, G)

The purpose of this section is to give a criterion for determining "the
number of maximal two-sided ideals in the crossed product 4(f, S, G) when
S is a tamely ramified extension of a discrete rank one valuation ring. We

first restrict the problem to the case when S is also a discrete rank one
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valuation ring, and then reduce the general problem to this case by taking
completion with respect to the prime ideal of R.

Let the extension S of R be an integral extension of discrete rank one
valuation rings such that their quotient field extension is finite and Galois.
Then if we denote by G the Galois group of the quotient field extension, we
have the exact sequence

(1)>G;>G-~G(S/R)~(1)

where G, is the inertia group of S.

ProrositiON 2.1. Let the extension S of R be a tamely ramified extension
of discrete rank one valuation rings such that the quotieni field extension is
finite and Galois with Galois group G. Then

a) the inertia group G, is cyclic and its order e is not divisible by the field
characteristic of R. Furthermore, S contains all the e roots of unity.

b) for each element t in G, we have that ©(¢) =C™ for each & root of
unity C in S where n(c) is an integer defined modulo e by the relation tor™' =

™% and s is a generator of Gi.

Proof. a) Replacing R by the inertia ring, we may assume that S is a
tamely ramified inertial extension of R, so that S=FR. Let I be the prime
element of S. For each element r in G, we can write =(IT) = s.II where s:isa
unit in S. The map ¢: G- U(R) defined by ¢(r) = ¢(IT)/IT mod (IT) is a group
homomorphism. Since S is tamely ramified over R, it follows from Hilbert’s
ramification theory that the higher ramification groups vanish (see Theorem
25, p. 295 of [8]). The kernel of ¢ is the second ramification group. Therefore

¢ is a monomorphism and G is cyclic.

Let o be a generator of G. Then 1= ¢(¢)° and so ¢(s) must be a primitive
¢ root of unity, since ¢ is a monomorphism.

Let ¢ be the primitive e root of unity in S defined by ¢ = o(I)/ 1T mod (IT)
where ¢ is a generator of the inertia group G;, and observe that { does not
depend on the choice of the prime element I7. Then (&) = coc ¢ (I /< (IT)
mod(IT) = ¢ (IT) /T mod(IT) =¢™™,

Now let S and R be as above and consider a crossed product 4(f, S, G)
where [f1 is in H*(G, U(S)). The number of maximal two-sided ideals in
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4(f, S, G) is the same as the number of simple components in 4(f, S, G)
where [ /] is the image of [f] under the canonical map H*(G, U(S)) -~ H*(G,
U(S)). Thus the problem reduces to the following:

Given 1) a finite Galois field extension K of % and a finite group G together
with an exact sequence

(1)»Gi»G-~>G(K/E) > (1)

such that G; is a cyclic group whose order e is not divisible by the field
characteristic of &;
2) that K contaius all the ¢ roots of unity and if r is any element of G,
then 7(¢) = o™ for all the e roots of unity ¢ where x(r) is an integer defined
1 7(t)

modulo e by the relation ror™ =¢ and ¢ is a generator of G;;
3) the cohomology class [f] in H*G, U(K))

Problem Determine the number of simple components in 4(f, K, G).

In order to do this we define for each cohomology class [f] two subgroups
of G, associated with [f].

Definition The group I's is defined to be the maximal subgroup of G, such
that the image of I'y under the restriction map H*(G, U(K))~H (I'y, UK))
is trivial. The group Hy is defined to be the maximal subgroup of G:; such
that [f] is in the image of the inflation map H*(G/Hy, U(K)) - H*(G, U(K)).

We shall call Hy conductor group of 4(f, K, G); its meaning will be
justified in the main theorem of this section. The group Iy is of technical
nature.

The group Hy is contained in Iy, since the composition map H*(G/Hy,
U(K)) - HG, UK)) -~ H*(Hy, U(K)) is trivial. If G=G,, then it will follow
from Proposition 2.3 that Hy = TIy.

Remark. The conductor group Hy need not equal Iy.

For let R be the ring of 3-adic integers, k its quotient field, and K = k(;,
V3). Then the integral closure S of R in K is R[Z, V31 and the inertia ring
U is R[]. The inertia group G: = (1, o) is the cyclic group of order two, and
the Galois group G of K over k is the Klein four group G=(l, g, 7, 7).
Define f : GXG-U(S) by f(o, 0) = f(z,7) = f(z,0) = flor, o) = f(r, o7) =1,
and f (g, v) = f(g, ta) = f(o7, ©) = f(o1, 6tr) = —1. Then it can be verified by
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computation that £ is in Z*(G, U(S)), that Hs = (1), and I'r = G;.

We observe that, given [f] in H*(G, U(K)), we may assume that the
restriction of f to I'y x Iy is trivial. For, it follows from the definition of Iy
that there exists a map ¢: I'r—> U(K) such that f(g, 7) =¢(a)9°(r)/¢(ar) for
all s and v in I'y. Extend the map ¢: I'r~» U(K) to ¢: G- U(K) by defining
#(0) =¢(p) if pisin I'r and ¢(p) =1 if p is not in I'r.  Set f'(g, 7) = f(q, 7)
#(o)/¢(0)¢°(r). Then [1=[f] and f'(s, ) =1 when both ¢ and r are in I'y.
From now on we shall always assume that each cocycle f is properly normalized,
i.e. that f(s, ) =1 for all ¢ and 7 in I7y.

Given a 2-cocycle f we have the following chain of crossed products:
A(f; K, G)DA(fI, K’ Gl) '_—)A(fl"y K) rf) :)A(th K) Hf)
where fr denotes the restriction of f to Tx7T. We have

ProrosiTiON 2.2. The number of simple components of A(f:, K, Gi) is
equal to the number of simple components of A(fr, K, I'r) and the primitive
orthogonal idempotents are given by

m

i = (Ciur)k

1
m k=1
Jori=1, ..., m where v is a generator of I'y, m is the order of I'y and &,

Cs, - .. ,Cm are the distinct m™ roots of unity.

Proof. Since G; is cyclic, we have a canonical isomorphism H*(G;, U(K))
= U(K)/U(K)® where e is the order of G;. Let [f] correspond to @ mod U(K)®
under the above identification. Then # is the maximal divisor of e such that
a™ is in U(K)% i.e. e/m is the order of @ in U(K)/U(K)®. Let c be an element
of U(K) satisfying a=c¢". Then 4(f,, K, G) = K[X1/(X®—a), and so the
number of simple components of 4(f;, K, G;) is equal to the number of
irreducible factors of X°-a= I::il(Xe’"'-C,-c) in K[X]. Since K contains all
the € roots of unity, it follox;v—s that each X%™— (i is irreducible over K.
For let ¢(X) be an irreducible factor of X“™—¢;c in K[X], and let « be a
root of ¢(X). Then Nxuwyx(a) = a’) where 3 is an m"* root of unity and d = deg
¢(X) =e/m. Since a’ and 7 are in K, we have that «%is in K. Now a?=¢™
= (Gic)™ = ™™ = (¢%)®, so that a® is in U(K)°. Hence d=0 mod (e/m).

Since d<e/m, we must have d=e/m. Therefore deg ¢(X)=e/m and-
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consequently X“™— Cic is irreducible. Therefore the number of simple com-
ponents of 4(f;, K, G;) is equal to m =the order of Iy.

On the other hand, assuming that f is properly normalized, we have an
isomorphism K[X1/(X™—1) = 4(fr, K, I'y) defined by X-ur where r is a
generator of I'y. Consequently the number of simple components of 4(fr, K,
T'y) is equal to m =the order of Iy, since K contains all the m" roots of unity.
Since 4(fr, K, I'r)C 4(f:, K, G;) is an inclusion of commutative algebras, we
conclude that the idempotent elements of 4(f;, K, G:) are present in 4(fr, K,

I'r). In order to compute the primitive idempotents, we next observe that

K[X]/(X™—1) is the algebra direct sum of the ideals generated by ‘)gc_z.l.
z
m m_

However, the fact that mX™ ' = EEX 4,1 implies that the primitive idem-
§=1 -Gz

potents of 4(f;, K, G;) are of the form %; = —7}1— CCiwu)™ 4+ (Ciur)™ 4+ - - - +
(Ciur)].

ProrosiTiON 2.3. Let f be a properly normalized 2-cocycle, and ¢ an element
of T'y. Then the cyclic group (p) generated by o is contained in Hy if and only
if f(z, 0) = (0™, ¢) for each element t in G.

Proof. 1If p is in Hy, then by the definition of Hy there exists a map ¢:
G- U(K) together with a 2-cocycle g such that f(z, ¢) = g(z, ) ¢(ra)/¢(7)p" (o)
for - and ¢ in G, and g(r, ¢) =1 if r or ¢ is in Hy. Then f(z, p) =¢(rp)/
#(r)¢p"(p) and f (o™, v) = ¢(7p)/¢(p™™)p(r). Since f and g are both trivial
on HyxHy, it follows that ¢(p) =» for some t* root of unity » where t = the
order of Hy. Using condition 2), we have that ¢"(p) = () =" = [¢(p) 17,
and so we conclude that f(z, p) = f(p*", ) for each r in G.

Conversely, assume that p is in I'r, and that 7(z, o) = F(p™, ¢) for each
rin G. If o' is any element of (p), we can observe that f(r, o') = f(o™™, )
for each r in G. For by repeated application of the associativity relation for

2-cocycles together with the fact that f is trivial on I'rXI'r we have the
equalities :

flz, o) = I'If(rp, o) and f(¢™®, t) = Hf(p”“’, )

It now follows from the assumption on f and p that f(z, o) = £(o™™, ©) for
each element 7 in G.
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In order to show that (p) is contained in Hy we shall show that f is
cohomologous to a 2-cocycle g with the property that g(r, ¢) =1 if ¢ or ¢ is in
(p). Let G=U (p)r; be a right coset decomposition of G with respect to (p),
and define ¢: ]G—>U(K) by ¢(d't;) =1/7(¢', ©;). Now define g by g(r, o) = f(r,
a)¢p(ra)/¢p*(a)p(r) for r and ¢ in G. Let r be any element of G and ¢ any
element of (p). Using the above coset decomposition of G, write r = wr; where
w is in (p). Then from the definition of g together with the associativity
relation and the assumption satisfied by f, it follows that g(r, ¢) = g(wtj, o)
= (0™, ;) f(0, ™)/ f(wd™™, t;) =1 and that g(g, ) = f(ow, 7;) f(s, 0)/
f(ow, ;) =1. Thus g has the desired property and we conclude that (p) is in
Hy.

ProrosiTION 2.4. The number of simple components of A(f, K, G) is equal

to the order of the conductor group Hy.

Proof. The number of simple components of 4(f, K, G) is equal to the
number of primitive orthogonal idempotents required to generate the center of
4(f, K, G). Since G, is the kernel of the map G- G(K/k)- (1), it follows
that the center of 4(f, K, G) is contained in 4(f:, K, G:). For let 6= > ku-
be an element in the center of 4(f, K, G), with k.x0. Let K=£%(0). Then
00 = >17v(6)k-u-, so that 00 =56 if and only if () =6, ie. if and only if r is
in Gy. Hence the center of 4(f, K, G) is in 4(f:, K, G;). Since we are
assuming that f is properly normalized, we conclude that the idempotent
elements in the center of 4(f, K, G) are precisely those partial sums P of
elements »; such that P is in the center of 4(f, K, G) where the ; are defined

as in Proposition 2.2.
I3
So let P=>)v; be any partial sum of % with a suitable reordering of the
=1

»i. Since the elements of G; act trivially on K, it follows that P is in the
center of 4(f, K, G) if and only if #.P= Pu. for each r in G. But

< 1 k f(T» Tk) kn(t
u.P = EEAE‘T(Q)WMTM ‘U~

From condition 2) we have that (¢¥) =¥

14
F(z, ¥%) = £(¥*, ¢) for each r in G and each integer % such that gljr(c?) is

, so that #.P= Pu-. if and only if

non-zero. It now follows that P is in the center of 4(f, K, G) if and only if.
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Pis in 4(fu, K, Hy), by an application of Proposition 2.3. Therefore 4(f, K,
G) has precisely as many simple components as 4(fu, K, Hy), and this number
is equal to the order of Hy since fy is trivial.

Throughout the rest of this section, S shall denote the integral closure of
a discrete rank one valuation ring R in a finite Galois extension of the quotient
field of R, and G the Galois group of the quotient field extension. Let [f] be
an element of H*(G, U(S)). We shall compute the number of maximal two-
sided ideals in 4= 4(f, SG) by considering the crossed product 4= 4® zR
=4(f, S, G) which is formed by taking the completion of 4. As in the
preceding section, R denotes the completion of R, and S=S,® - - - &S, where
S; is the completion of the localization of S at the maximal ideal P; of S. Now
4 contains the crossed product 4, = 4(f;, Si, G;) where G; is the decomposition
group of P, and [f] in H*(G:, U(S))) is defined by fi(r, ¢) = e f(r, ¢) where
e; is the identity element of S;. If the extension S of R is tamely ramified,
then we know from Section 1, that 4 /rad 4 = 4(F, ®S;, G) and 4;/rad 4, =
4(f1, Si, Gy), where f and f; are induced by f in the obvious way. Hence the
inclusion of crossed products 4 D 4, gives rise to the inclusion 4(f, ®S;, G) D
A(f1, Si, Gy).

If [f] is an element of H*(G, U(S)), then we define the conductor group
Hy of 4(f, S, G) to be the conductor group of the crossed product 4(f3, S, Gy).
Thus the conductor group of 4(f, S, G) is determined up to conjugation in G.

TaEOREM 2.5. Let S be a tamely ramified extension of a discrete rank one
valuation ving R, and [ f] an element of H*(G, U(S)). Then the number of
maximal two-sided ideals in the crosSed product A(f, S, G) is equal to the order
of the conductor group of A(f, S, G).

Proof. For convenience of notation, let 4=4(f, S, G). Since 4/rad 4
=4 /rad 4, it follows that the number of maximal two-sided ideals in 4 is
equal to the number of simple components of 4/rad 4 = 4(f, ®Si, G). To
prove the theorem, we shall establish a one-to-one correspondence between the
primitive orthogonal idempotents of 4(f, ©S;, G) and 4(f;, Si, Gy). Since S
is a tamely ramified extension of R it will then follow by applying Proposition
2.4 to the crossed product 4(f;, Si, Gi) that the number of maximal two-sided
ideals in 4 is precisely the order of Hyr. For since the extension S of R is
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tamely ramified, the field extension S; of R and the exact sequence
(1)'9G1”>G1—’G(>_S—1/'E)-> (1)

satisfy the hypothesis of Proposition 2.4, where G; denotes the inertia group
of Pi.

So, if % is an idempotent in the center of 4(fi, Si, Gi), we define
x =23 (uz;) "'9(us,) where G=\UGytj is a left coset decomposition of G with
respejct to Gi. The element xJis clearly an idempotent, and we next show that
% is in the center of 4(f, ®S;, G). It is easily seen that x commutes with
the elements of @®S;, and to prove that (u:) '(%)u.=x for each ¢ in G, we
shall show that the effect of conjugating x by %. is the permutation of the
terms (#-,) " (x)u-, in the expression of x. So let v be any element of G, and
let G,7r be the coset containing tjr, so that rjt = prr for some element p in G;.
Then

(ut—l[(urj)—lﬂurj]ut
_ Fle™ o DFT T p) £ (g ) f (<%, %)
T AT O F NG o) F R, o TE R o, 1)

= (2=, Pths,

= (utk‘)_lﬂutk

since by the associativity property of /¥ we have the relations
_ FACHS )7 (07 0 P (¢, 1)
F it o) o, ) F (et )

(=1 _-1 _f (T]yT]
Rl (e

o)

Therefore () '(x)u.=x, and it follows that each idempotent in the center of
4(f1, S1, G:) defines an idempotent in the center of A(f, ®S;, G) in the
above way.

On the other hand, if x is an idempotent in the center of 4(f, ®S; G)
then x = Ze,x where ¢; is the identity element of S;, and e;x is an idempotent
in the center of 4(f1, Si, G1). Let r be an element of G such that t *(e;) = eg.
Then (#:) '(exx)u. = e, so that x= >, (#:,) " (%) ts;.

Thus if ¥ is an idempotent in t}ie center of A(f, ®S;, G), then x is of
the form x= Zj(u:,-)"nu-.,. where 7 is an idempotent in the center of 4(fi, Sy,

G,). Since x is primitive if and only if y is primitive, it follows that 4(7, ® Sj,
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G) and 4(fi, Si, G;) have the same number of simple components, and this

concludes the proof.

COROLLARY 2.6. Let S be a tamely ramified extension of a discrete rank
one valuation ring R. Then the number of maximal two-sided ideals in the
trivial crossed product 4(1, S, G) is equal to the order of the inertia group of
any maximal of S in the extension S of R.

Proof. If [f] is trivial in H*(G, U(S)), then [ /1] is trivial in H*(Gi, U(S))).
By the definition of the group Hy it follows that Hy is the inertia group

whenever [f1] is trivial.

3. The length of the conductor

Let S be a tamely ramified extension of a discrete rank one valuation ring
R, and I a maximal order over R containing the hereditary order 4= 4(f, S,
G). The conductor Cr(4) of I' in 4 is defined to be the set of all elements ¢
in 4 such that 6I' is contained in 4. We may also consider the ideal Ci(d4)
defined by Cr(4) =Cr(4)NS. Then Cr(4) is the set of all elements s in S
such that sI” is contained in 4. The purpose of this section is to motivate the
naming of the conductor group Hy of 4(f, S, G) by proving that the length of
S/Cr(4) is equal to g(h —1) where g is the number of maximal ideals of S,
and h is the order of Hy.

As in the preceding sections we shall consider the completion 4 = 4(f, S,
G) of 4. Letting I'; for 2=1, . . ., h denote the maximal orders containing 4,
then the maximal orders containing 4 are given by [i=I:®zR. For con-
venience of notation we shall denote the conductor of [ in 4 by Ci. From
Theorem 3.3 of [6]1 we know that the conductors C; are the minimal two-sided
idempotent ideals of 4. In order to compute the conductors C;, we shall make

use of the following well-known facts.

ProposiTiON 3.1. Let the extension S of R be a tamely ramified extension
of cuvmplete discrete rank one valuation rings, and let U denote the inertia ring
of S over R. Then U contains a primitive n'* root of unity C, where n is the
order of the inertia group. If ¢ is a generator of the inertia group, then o(IT)
=C(CII for a proper choice of the prime element II of S.

Proof. From section 2 we know that S =U contains a primitive #” root
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of unity. Since U is a complete local ring, it follows from Hensel’s lemma
that U contains a primitive #* root of unity. Let P denote any prime element
of S. Since S is totally ramified over U we know that P” =zu for some unit
u in S, where = denotes the prime element of R. It follows from the fact that
S =U that there exists an element » in U such that #=» mod (P). Hence
#/v=1 mod (P), and we consider the polynomial f(X)=X"—#%/v in S[X].
Then the polynomial 7(X) = X"—1 in U[X] is separable since the field chara-
cteristic of U is relatively prime to ». Since f(1) =0, it now follows from
Hensel’'s lemma, that f(X) has a root, say a, in S. Then «” = /v and (P/a)”
—7v =0, so we choose Il = P/a.

We proceed to define the elements of 4 which generate the ideals Ci.
Let P; be a maximal ideal in the tamely ramified extension S, and denote by
G;, G;, and U the decomposition group, inertia group, and inertia ring of Py
respectively. If [f]is any element of H*(G, U(S)), let f; and f; be the elements
of Z%(Gy, U(S:)) and Z*(G,, (S))) induced by f in the usual way. We may
assume that f; is normalized in the sense of cyclic groups. If f; corresponds
to the element @ of U(U) under the canonical identification H*(G;, U(S;))
= U(U)/N(U(S,)), where N(U(S;)) denotes the norm of U(S,) in U(U), then
it follows by an applicaticn of Hensel's lemma to the polynomial X°— a, that
a=b" for some element b in U where e is the order of G; and m is the order
of I';,. Denoting the order of Hy by h, we define ¢ =5"", so that =a.

We now define elements 4; in 4 for =1, ...,k by

. 1 h Ci k
Ai= 7 kg <_C - uo)
where the ¢; are the distinct 4 roots of unity in U and ¢ is a generator of

Hy. By a computation similar to that of Proposition 2.2 it follows that the 2;

form a system of mutually orthogonal idempotents in 4.

ProrosiTioN 3.2. Let S be a tamely ramified extension of a discrete rank
one valuation ring R, and [f] an element of H*(G, U(S)). Then

1) the two-sided ideals (1;) are the minimal two-sided idempotent ideals of
4 =4(f, S, G), and therefore Ci= (X).

2) the elements A; satisfy the relation 117 'NIT' = vt for a proper choice of
the prime element IT of S..
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Proof. To prove 1), it suffices to show that the A; generate the simple
components of 4/rad 4. Recall that 4/rad 4 =(f, ®S:, G) where 7 is the
image of f under the natural map Z*(G, U(S)) » Z*G, U(®S;)). We observe
next that f is cohomologous to a cocycle g in Z*(G, U(®S;)) such that g is
a properly normalized element of Z*(Gy, U(S;)). For we know from Section 2
that /1 is cohomologous by some map ¢:: G;-»U(S:) to a cocycle g1 in
Z*(G;, U(S,)) such that g is properly normalized. Extend ¢; to a map ¢:
G->U(DT,) by defining ¢(r) =1 if 7 is in G— Gy, and $(z) = ¢;(r) +l21e,- if ¢
is in G;. By setting g(z, 0) = f(r, 0) ¢(c)¢"(0)/¢(rs) we define a ct)cycle g
with the desired property. We know from section 2 that the elements %; =
%é(c;uo)k generate the simple components of 4(g, ©S:, G). Under the
canonical isomorphism 4(g, ®Si, G) = 4(f, ®Si, G), the elements »; are map-
ped onto the 4;. It now follows that the A; generate the simple components of
4A(f, ®S;, G). Therefore by Lemma 3.2 of [6] the A; generate the minimal
two-sided idempotent ideals of 4(f, S, G). By Theorem 3.3 of [6] we conclude
that Ci= (4).

It follows from Proposition 3.1 that 17 ‘AT = e

Let G = U Girj be a right coset decomposition of G with respect to the
decompositionj group G,. Define 7I; in § by IIj = «;'(II) where IT is a prime
element of S; satisfying the statement of Proposition 3.1. Then N= @ II; is a
generator of the radical of §. From the above proposition it followsj that C;
= (1) = () where y; is the element of 4 defined by yi = >\ (u:,) A, The
v; are related by N 'y, N’ = yis1. J

We know by Theorem 3.3 of [6] that each order containing 4(f, S, G) is

a union of minimal orders containing 4(f, S, G).

ProrosiTIiON 3/.3. Let S be a tamely ramified extension of a discrete rank
one valuation ring R. Then the minimal orders containing A(f, S, G) are given
by Ai=A4[yiN*Yz] for i=1,...,h where h is the order of the conductor
group Hy, e is the order of the inertia group, and the brackets denote ring

adjunction.

Proof. The maximal two-sided idempotent ideals of 4(f, §, G) are the two-
sided ideals D; generated by the elements yi, . . ., 5, . . ., ¥» where » means
to omit y;. Since the ¥; are in the center of 4(f, ©S;, G), the D; are generated
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as left ideals in 4 by elements of the form y;N’ where t=0,...,k—1 and
j*1 when ¢=0. By Proposition 1.7 of [6], the fact that D; is a maximal two-
sided idempotent ideal implies that End (D;) is a minimal order containing 4
where End (D;) denotes the left endomorphism ring of the 4-module D;. We
next observe that the element »;N°*/x is in End(D;). For (y;N*)(yiN°'/rn)
=0 or yiN***"!/z with =1, and in either case is in 4. By the minimality of
End (D;). we conclude that End (D;) = 4[y:N®"/x].

ProroziTION 3.4. Let S be a tamely ramified extension of a discrete rank
one valuation ring R, and [ f] an element of H (G, U(S)). If I is a maximal
order containing the crossed product 4(f, S, G), then the length of S/Cr(4) is
equal to g(h —1) where g is the number of maximal ideals of S and h is the
order of the conductor group Hy of 4(f, S, G).

Proof. From Proposition 3.3 together with Theorem 3.3 of [6] we know
that '

F=4A0yNYm, ..., mN“Y)* ..., yaN¢Yx]
for some i=1, ..., h where ( )* indicates omission. The order /" is generated
as a right 4-module by elements of the form y;_pN¢ VR /ph=k for p=1,
...,h—1 Consider the element ;- N V" V/z*D  The least positive
integer x for which N%;—; N V" 0/ 21 s in 4 must satisfy x+ (e —1)(h—1)
=e(h—1) so that x=h—1. It follows that Ch(4) = (rad S)*"!; therefore
S/Cr(4) has length g(h—1).
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