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Abstract We consider large-time behaviour of global solutions of the Cauchy problem for a parabolic
equation with a supercritical nonlinearity. It is known that the solution is global and unbounded if the
initial value is bounded by a singular steady state and decays slowly. In this paper we show that the
grow-up of solutions can be arbitrarily slow if the initial value is chosen appropriately.
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1. Introduction

This paper is a continuation of our research project on the large-time behaviour of global
classical solutions of the Cauchy problem

ut = ∆u + up, x ∈ R
N , t > 0,

u(x, 0) = u0(x), x ∈ R
N ,

}
(1.1)

where we assume that u0 is continuous, N � 11 and

p > pc :=
(N − 2)2 − 4N + 8

√
N − 1

(N − 2)(N − 10)
.
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Problem (1.1) has been studied as a typical super-linear problem and as a canonical
problem of more general super-linear equations after taking a scaling limit. In spite of
its simple appearance, (1.1) is known to have a rich mathematical structure and has
been studied extensively by many authors. The exponent pc appeared for the first time
in [13] and recent studies have revealed that it is an important critical exponent for the
dynamics of solutions (see [17] and the references therein).

So far, we have studied grow-up [1, 2, 4, 5], the convergence of solutions to regular
steady states [6,12], the decay to the trivial solution [3,7] and the convergence to self-
similar solutions [8]. For some previous related results we refer the reader to [9–11,20]. It
is shown in [15] that the solution of (1.1) exists globally in time but becomes unbounded
if the initial value satisfies

0 � u0(x) � ϕ∞(|x|) := L|x|−m, x ∈ R
N \ {0}, (1.2)

and
|x|m+λ1 |ϕ∞(|x|) − u0(x)| → 0 as |x| → ∞, (1.3)

where

m =
2

p − 1
, L = {m(N − 2 − m)}1/(p−1)

and λ1 is the smaller positive root of

λ2 − (N − 2 − 2m)λ + 2(N − 2 − m) = 0. (1.4)

We note that this equation has two distinct positive roots if p > pc.
In our previous papers [1,5], given a specific decay rate of u0 as |x| → ∞, we determined

the exact grow-up rate of solutions. More precisely, if the initial value satisfies (1.2) and

c1|x|−l < ϕ∞(|x|) − u0(x) < c2|x|−l, |x| > R,

with some positive constants c1, c2, R and l ∈ (m + λ1, m + λ2 + 2), where λ2 is the
larger positive root of (1.4), then the solution of (1.1) satisfies

C1(t + 1)m(l−m−λ1)/2λ1 < ‖u(·, t)‖L∞ < C1(t + 1)m(l−m−λ1)/2λ1 , t > 0, (1.5)

with some positive constants C1, C2 (see [2] for the critical case p = pc and [14] for the
optimality of this result, and see also [16] for other types of global unbounded solutions).

In particular, (1.5) shows that, in (1.1), arbitrarily slow grow-up occurs in terms of
algebraic rates: as the deviation of u0 from the steady state ϕ∞ approaches the critical
spatial decay rate |x|−m−λ1 , the temporal growth of the corresponding solution takes
place at arbitrarily small positive powers of t. We investigate whether grow-up can occur
at even smaller rates than any positive power. Accordingly, we assume that the initial
value satisfies (1.2) and

b1|x|−m−λ1ω(|x|) < ϕ∞(|x|) − u0(x) < b2|x|−m−λ1ω(|x|), |x| > R, (1.6)
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with some positive constants b1, b2 and R. Here ω ∈ C2([0,∞)) is a function satisfying

ω(z) > 0, ω′(z) < 0 and ω′′(z) � 0 for all z � 0, (1.7)

and representing slow decay at infinity in the sense that

zω′(z)
ω(z)

→ 0 as z → ∞. (1.8)

Moreover, for technical reasons we will also require the regularity property

∣∣∣∣zω′′(z)
ω′(z)

∣∣∣∣ � Cω for all z � 0 (1.9)

with some constant Cω > 0. Note that, as a consequence of (1.8) and (1.9), we also see
that

z2ω′′(z)
ω(z)

→ 0 as z → ∞. (1.10)

Under the above assumptions, the initial value satisfies (1.2) and (1.3) so that the solution
of (1.1) is global and unbounded in time.

The main result of this paper is as follows.

Theorem 1.1. Let N � 11 and p > pc. Suppose that the initial value satisfies (1.2)
and (1.6). Then the solution of (1.1) satisfies

C1ω
−m/λ1(t1/2) � ‖u(·, t)‖L∞ � C2ω

−m/λ1(t1/2) for all t > 0.

with some constants C1, C2 > 0.

This theorem implies that the solution grows up arbitrarily slowly if u0 is chosen
appropriately. For example, the function

ω(z) = [log(log(· · · (log(z + z0)) · · · ))]−α, α > 0,

satisfies our assumptions if z0 > 0 is sufficiently large.
After the first draft of this paper was completed, our result was extended in [18] to

very slow convergence to zero and in [19] to very slow convergence to positive steady
states.

This paper is organized as follows. In § 2 we give a lower bound of radial solutions by
constructing a suitable subsolution. In § 3 we give an upper bound of radial solutions
by constructing a suitable super-solution. In § 4 we prove Theorem 1.1 by using these
estimates for radial solutions. In the following sections, we assume N > 10 and p > pc

throughout.
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2. Lower bound

In this section and the next we consider radially symmetric solutions u = u(r, t), r := |x|,
of (1.1). Then we may write (1.1) as

ut = urr +
N − 1

r
ur + up, r > 0, t > 0,

u(r, 0) = u0(r), x ∈ R
N ,

⎫⎬
⎭ (2.1)

where u0(r) is assumed to satisfy (1.2) and (1.6). We shall construct a subsolution of
(2.1) that inherits the asymptotic behaviour of the initial value, at least in an outer
domain that will be specified by an inequality of the form r � B(T + 1)1/2 with B > 0
in Corollary 2.2.

Lemma 2.1. For any θ ∈ (0, min{1, 1
2 (λ2 − λ1)}) and b1 > 0, there exists b2 > 0 such

that

u−
out(r, t) := max{0, Lr−m − b1r

−m−λ1ω(r) − b2r
−m−λ1−2θω(r)(t + 1)θ}

defines a subsolution of (2.1) for all r � 0 and t � 0.

Proof. Let θ ∈ (0, min{1, 1
2 (λ2 − λ1)}) and b1 > 0 be given, and fix δ > 0 such that

0 < δ � θ(λ2 − λ1 − 2θ)
|N − 1 − 2m − 2λ1 − 4θ| + 1

. (2.2)

In view of (1.8) and (1.10), we may choose z0 > 0 so large that∣∣∣∣zω′(z)
ω(z)

∣∣∣∣ � δ and
∣∣∣∣z2ω′′(z)

ω(z)

∣∣∣∣ � δ for all z � z0. (2.3)

We now take b2 > 0 such that

b2 � Lzλ1+2θ
0

ω(z0)
(2.4)

and

b2 � b1(|N − 1 − 2m − 2λ1| + 1)δ
min{θ, θ(λ2 − λ1 − 2θ)} . (2.5)

Then, at each point from the positivity set

S := {(r, t) ∈ [0,∞)2 | u−
out(r, t) > 0}

of u−
out, we have

Lr−m > b2r
−m−λ1−2θω(r)(t + 1)θ � b2r

−m−λ1−2θω(r),

and hence, by (2.4),
rλ1+2θ

ω(r)
>

b2

L
>

zλ1+2θ
0

ω(z0)
.
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Since r �→ rλ1+2θ/ω(r) is strictly increasing on (0,∞) in view of (1.7), this implies

r > z0 for all (r, t) ∈ S. (2.6)

Moreover, if (r, t) ∈ S, then

Pu−
out

:= (u−
out)t − (u−

out)rr − N − 1
r

(u−
out)r − (u−

out)
p

= −b2θr
−m−λ1−2θω(r)(t + 1)θ−1

−
{

(Lr−m)rr +
N − 1

r
(Lr−m)r

}

+ b1

{
(r−m−λ1ω(r))rr +

N − 1
r

(r−m−λ1ω(r))r

}

+ b2

{
(r−m−λ1−2θω(r))rr +

N − 1
r

(r−m−λ1−2θω(r))r

}
(t + 1)θ − (u−

out)
p

= −b2θr
−m−λ1−2θω(r)(t + 1)θ−1 + (Lr−m)p

+ b1{(m + λ1)(m + λ1 + 2 − N)r−m−λ1−2ω(r)

+ (N − 1 − 2m − 2λ1)r−m−λ1−1ω′(r) + r−m−λ1ω′′(r)}
+ b2{(m + λ1 + 2θ)(m + λ1 + 2θ + 2 − N)r−m−λ1−2θ−2ω(r)

+ (N − 1 − 2m − 2λ1 − 4θ)r−m−λ1−2θ−1ω′(r) + r−m−λ1−2θω′′(r)}(t + 1)θ

− (u−
out)

p.

(2.7)

By the convexity of z �→ (1 − z)p for z < 1, we have, using (p − 1)m = 2 and pLp−1 =
(m + 2)(N − 2 − m),

(u−
out)

p � (Lr−m)p − pLp−1r−(p−1)m[b1r
−m−λ1ω(r) − b2r

−m−λ1−2θω(r)(t + 1)θ]

= (Lr−m)p − b1(m + 2)(N − 2 − m)r−m−λ1−2ω(r)

− b2(m + 2)(N − 2 − m)r−m−λ1−2θ−2ω(r)(t + 1)θ

for all (r, t) ∈ S. Therefore, for all (r, t) ∈ S,

Pu−
out

� −b2θr
−m−λ1−2θω(r)(t + 1)θ−1

+ b1{[(m + λ1)(m + λ1 + 2 − N) + (m + 2)(N − 2 − m)]r−m−λ1−2ω(r)

+ (N − 1 − 2m − 2λ1)r−m−λ1−1ω′(r) + r−m−λ1ω′′(r)}
+ b2{[(m + λ1 + 2θ)(m + λ1 + 2θ + 2 − N)

+ (m + 2)(N − 2 − m)]r−m−λ1−2θ−2ω(r)

+ (N − 1 − 2m − 2λ1 − 4θ)r−m−λ1−2θ−1ω′(r) + r−m−λ1−2θω′′(r)}(t + 1)θ.
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Here we observe that, by the definition of λ1,

(m + λ1)(m + λ1 + 2 − N) + (m + 2)(N − 2 − m)

= λ2
1 − (N − 2 − 2m)λ1 + 2(N − 2 − m)

= 0

and, consequently,

(m + λ1 + 2θ)(m + λ1 + 2θ + 2 − N) + (m + 2)(N − 2 − m)

= 2θ(m + λ1 + 2θ + 2 − N) + (m + λ1)2θ

= 2θ(2m + 2λ1 + 2θ + 2 − N)

= 2θ[2θ − (λ2 − λ1)],

where we have used the equalities

2m + 2λ1 = N − 2 −
√

(N − 2 − 2m)2 − 2(N − 2 − m)

and

λ2 − λ1 =
√

(N − 2 − 2m)2 − 2(N − 2 − m).

Accordingly,

Pu−
out

� −b2θr
−m−λ1−2θω(r)(t + 1)θ−1

+ b1{(N − 1 − 2m − 2λ1)r−m−λ1−1ω′(r) + r−m−λ1ω′′(r)}
+ b2{−2θ(λ2 − λ1 − 2θ)r−m−λ1−2θ−2ω(r)

+ (N − 1 − 2m − 2λ1 − 4θ)r−m−λ1−2θ−1ω′(r) + r−m−λ1−2θω′′(r)}(t + 1)θ

= b2r
−m−λ1−2θω(r)(t + 1)θ−1

×
{

−θ +
b1

b2

[
(N − 1 − 2m − 2λ1)

rω′(r)
ω(r)

+
r2ω′′(r)

ω(r)

](
t + 1
r2

)1−θ

− 2θ(λ2 − λ1 − 2θ)
t + 1
r2

+
[
(N − 1 − 2m − 2λ1 − 4θ)

rω′(r)
ω(r)

+
r2ω′′(r)

ω(r)

]
t + 1
r2

}

for all (r, t) ∈ S. Using the trivial estimate

(
t + 1
r2

)1−θ

� max
{

1,
t + 1
r2

}
� 1 +

t + 1
r2
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and recalling (2.6), we obtain from (2.3) that

Pu−
out � b2r

−m−λ1−2θω(r)(t + 1)θ−1

×
{

−θ +
b1

b2
[|N − 1 − 2m − 2λ1|δ + δ]

(
1 +

t + 1
r2

)

− 2θ(λ2 − λ1 − 2θ)
t + 1
r2 + [|N − 1 − 2m − 2λ1 − 4θ|δ + δ]

t + 1
r2

}
= b2r

−m−λ1−2θω(r)(t + 1)θ−1

×
{

−θ +
b1

b2
[|N − 1 − 2m − 2λ1| + 1]δ

−
(

2θ(λ2 − λ1 − 2θ) − b1

b2
[|N − 1 − 2m − 2λ1| + 1]δ

− [|N − 1 − 2m − 2λ1 − 4θ| + 1]δ
)

t + 1
r2

}
,

and hence, in view of (2.2) and (2.5), we conclude that Pu−
out < 0 for (r, t) ∈ S. Since

u ≡ 0 is evidently a subsolution, this completes the proof. �

Corollary 2.2. Suppose that

u0(r) � Lr−m − b−r−m−λ1ω(r) for all r > 0 (2.8)

holds with some b− > 0. Then, for all B > 0, there exists b0 > 0 such that the solution
u of (2.1) satisfies

u(r, t) � Lr−m − b0r
−m−λ1ω(r) for all t � 0 and r � B(t + 1)1/2. (2.9)

Proof. We apply Lemma 2.1 to b1 := b− and any θ ∈ (0, min{1, 1
2 (λ2−λ1)}) to obtain

some b2 > 0 such that u−
out as given in Lemma 2.1 is a subsolution of (2.1). Our lower

estimate (2.8) for u0, in conjunction with the fact that u0 is non-negative, implies that
u−

out(r, 0) � u0(r) for all r � 0. Therefore, the maximum principle shows that u−
out � u for

all r � 0 and t � 0. In particular, if B > 0 is given, then, for all t � 0 and r � B(t+1)1/2,
we find

u(r, t) � u−
out(r, t)

� Lr−m − b1r
−m−λ1ω(r) − b2r

−m−λ1−2θω(r)(t + 1)θ

� Lr−m − b1r
−m−λ1ω(r) − b2B

−2θr−m−λ1ω(r),

which proves (2.9). �

We proceed to derive an estimate from below in a corresponding inner region. In
preparation, let us recall some facts about the solutions ψ and Ψ of the initial-value
problems

ψξξ +
N − 1

ξ
ψξ + ψp = 0, ξ > 0,

ψ(0) = 1, ψξ(0) = 0

⎫⎬
⎭ (2.10)
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and
Ψξξ +

N − 1
ξ

Ψξ + pψp−1Ψ = ψ +
1
m

ξψξ + χ(ξ), aξ > 0,

Ψ(0) = −1, Ψξ(0) = 0,

⎫⎬
⎭ (2.11)

respectively, where χ(ξ) := 1/(1 + ξ−m−λ1). More specifically, it is known [5] that there
exist a1 > 0 and K > 0 such that

ψ(ξ) � Lξ−m − a1ξ
−m−λ1 , (2.12)

Ψ(ξ) � Kξ2−m−λ1 , (2.13)

Ψξ(ξ) � (2 − m − λ1)Kξ1−m−λ1 , (2.14)

as ξ → ∞. In fact, in what follows we shall refer neither to the prescribed explicit value
of Ψ(0) nor to the precise form of χ as introduced above, for which (2.13) and (2.14)
were proved in [5]. Both formulae would remain unchanged for any value of Ψ(0) and
any smooth positive decreasing χ satisfying ξm+λ1χ(ξ) → A � 0 as ξ → ∞.

Lemma 2.3. Fix an arbitrary κ > 2/m. Then there exists µ0 > 0 such that if

σ(t) := εω−m/λ1((t + µ−κ)1/2), ε := µωm/λ1(µ−κ/2), r � 0, t � 0, (2.15)

with
ξ(r, t) := σ1/m(t)r, r � 0, t � 0, (2.16)

and some µ < µ0, then

u−
in(r, t) := max

{
0, σ

(
ψ(ξ) +

σt

σp
Ψ(ξ)

)}
(2.17)

defines a subsolution of (2.1) for all r � 0 and t � 0.

Proof. Since u ≡ 0 is a subsolution, we only need to consider those points where u−
in

is positive.
By (2.13) and (2.14), there exists ξ0 > 0 such that

Ψ(ξ) � 0 and Ψξ(ξ) � 0 for all ξ � ξ0. (2.18)

Then

Ψ(ξ) � C and |ξΨξ(ξ)| � C for all ξ � ξ0 (2.19)

with some C > 0. Next we take δ > 0 so small that

m + λ1 − 2
λ1

ω2/λ1(0)δ � 1 (2.20)

and then, according to (1.8), we take z0 large with the property that∣∣∣∣zω′(z)
ω(z)

∣∣∣∣ � δ for all z � z0. (2.21)
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We finally fix µ0 > 0 small enough to satisfy

µ0 � z
−2/κ
0 (2.22)

and

µ0 �
(

χ(ξ0)
C([(m + λ1 − 1)/2λ1]δ + 1

2 + 1
2Cω)

)
. (2.23)

With these choices of constants, we take µ < µ0 and let u−
in be defined by (2.17).

Regarding Pu−
in with P as defined in the proof of Lemma 2.1, it can easily be checked

using the convexity of z �→ zp for z > 0 that, at each point where u−
in is positive, we have

Pu−
in = σt

(
ψ +

1
m

ξψξ

)
+

(
σt

σp−1 Ψ

)
t

− σt

(
Ψξξ +

N − 1
ξ

Ψξ

)
− σp

{(
ψ +

σt

σp
Ψ

)p

− ψp

}

�
(

σt

σp−1 Ψ

)
t

+ σt

(
− Ψξξ − N − 1

ξ
Ψξ − pψp−1Ψ + ψ +

1
m

ξψξ

)

=
(

σt

σp−1 Ψ(ξ)
)
t

− σtχ(ξ).

Suppressing the argument (t + µ−κ)1/2 in ω, we compute

σt = − m

2λ1
εω(−m−λ1)/λ1ω′(t + µ−κ)−1/2,

σt

σp−1 = − m

2λ1
ε(m−2)/mω(−m−λ1+2)/λ1ω′(t + µ−κ)−1/2,

σ2
t

σp
=

m2

4λ2
1
ε(m−2)/mω(−m−2λ1+2)/λ1ω′2(t + µ−κ)−1.

Hence, using

ξ =
1
m

σ1/m−1σtr =
1
m

ξσt

σ
,

we obtain that

Pu−
in �

(
σt

σp−1

)
t

Ψ(ξ) +
1
m

σ2
t

σp
ξΨξ +

m

2λ1
εω(−m−λ1)/λ1ω′(t + µ−κ)−1/2χ(ξ)

= ε(m−2)/m

{
m(m + λ1 − 2)

4λ2
1

ω(−m−2λ1+2)/λ1ω′2(t + µ−κ)−1

+
m

4λ1
ω(−m−λ1+2)/λ1ω′(t + µ−κ)−3/2

− m

4λ1
ω(−m−λ1+2)/λ1ω′′(t + µ−κ)−1

}
Ψ(ξ)

+
m

4λ2
1
ε(m−2)/mω(−m−2λ1+2)/λ1ω′2(t + µ−κ)−1ξΨξ(ξ)

+
m

2λ1
εω(−m−λ1)/λ1ω′(t + µ−κ)−1/2χ(ξ). (2.24)
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Now, for (r, t) such that ξ(r, t) � ξ0, (2.18) in combination with the monotonicity and
convexity of ω and the positivity of χ implies that

Pu−
in � ε(m−2)/m

{
m(m + λ1 − 2)

4λ2
1

ω(−m−2λ1+2)/λ1ω′2(t + µ−κ)−1

+
m

4λ1
ω(−m−λ1+2)/λ1ω′(t + µ−κ)−3/2

}
Ψ(ξ).

Here, in view of (2.22), we have µ−κ � z2
0 and hence, by (2.21) and (2.20),

[m(m + λ1 − 2)/4λ2
1]ω

(−m−2λ1+2)/λ1ω′2(t + µ−κ)−1

[m/4λ1]ω(−m−λ1+2)/λ1 |ω′|(t + µ−κ)−3/2

=
m + λ1 − 2

λ1
ω2/λ1((t + µ−κ)1/2)

(t + µ−κ)1/2|ω′((t + µ−κ)1/2)|
ω((t + µ−κ)1/2)

� m + λ1 − 2
λ1

ω2/λ1(0)δ

� 1,

which yields
Pu−

in � 0 if u−
in(r, t) > 0 and ξ(r, t) � ξ0. (2.25)

On the other hand, if ξ < ξ0, then, due to (2.24), (2.19) and the fact that ω and χ are
decreasing, we have

Pu−
in

εω(−m−λ1)/λ1 |ω′|(t + µ−κ)−1/2

� ε−2/m

{
m(m + λ1 − 2)

4λ2
1

ω(−λ1+2)/λ1 |ω′|(t + µ−κ)−1/2

+
m

4λ1
ω2/λ1(t + µ−κ)−1 +

m

4λ1
ω2/λ1

|ω′′|
|ω′| (t + µ−κ)−1/2

}
C

+
m

4λ2
1
ε−2/mω(−λ1+2)/λ1 |ω′|(t + µ−κ)−1/2C − m

2λ1
χ(ξ0)

= Cµ−2/mω−2/λ1(µ−κ/2)ω2/λ1((t + µ−κ)1/2)(t + µ−κ)1/2

×
{

m(m + λ1 − 2)
4λ2

1

∣∣∣∣ (t + µ−κ)1/2ω′((t + µ−κ)1/2)
ω((t + µ−κ)1/2)

∣∣∣∣
+

m

4λ1
+

m

4λ1

∣∣∣∣ (t + µ−κ)1/2ω′′((t + µ−κ)1/2)
ω′((t + µ−κ)1/2)

∣∣∣∣
+

m

4λ2
1

∣∣∣∣ (t + µ−κ)1/2ω′((t + µ−κ)1/2)
ω((t + µ−κ)1/2)

∣∣∣∣
}

− m

2λ1
χ(ξ0)

� Cµκ−2/m

{
m(m + λ1 − 2)

4λ2
1

δ +
m

4λ1
+

m

4λ1
Cω +

m

4λ2
1
δ

}
− m

2λ1
χ(ξ0)

� 0
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by (2.23), where we also have used (2.21), (1.9) and (2.22). This proves the desired
subsolution property. �

In order to compare u in a suitable inner region with one of the functions u−
in that

we just constructed, we need to show that u−
in � u holds at the corresponding ‘lateral’

boundary. We prepare for this with the next lemma.

Lemma 2.4. Let κ > 2/m and b0 > 0. Then there exists µ1 > 0 such that if µ � µ1,
then the function u−

in defined in Lemma 2.3 satisfies

u−
in � Lr−m − b0r

−m−λ1ω(r) for all (r, t) ∈ P,

where
P := {(r, t) ∈ [0,∞)2 | r = (t + µ−κ)1/2}.

Proof. According to (2.12) and (2.13), we can find large ξ1 > 0 such that

ψ(ξ) � Lξ−m − 1
2a1ξ

−m−λ1 for all ξ � ξ1 (2.26)

and

Ψ(ξ) � 2Kξ2−m−λ1 for all ξ � ξ1. (2.27)

With large z1 > 0 such that∣∣∣∣zω′(z)
ω(z)

∣∣∣∣ � a1λ1

4Km
for all z � z1, (2.28)

we let µ1 > 0 be so small that

µ1 � ξ
−2/(κ−2/m)
1 , (2.29)

µ1 � z
−2/κ
1 (2.30)

and

µ1 �
(

a1ω(0)
4b0

)m/λ1

. (2.31)

Then, for any µ � µ1, (2.29) guarantees that if t � 0 and r = (t + µ−κ)1/2, then ξ as
given by (2.16) and (2.15) satisfies

ξ(r, t) = σ1/m(t)r

� σ1/m(t)µ−κ/2

= µ1/mω1/λ1(µ−κ/2)ω−1/λ1((t + µ−κ)1/2)µ−κ/2

� µ1/mµ−κ/2

� ξ1.
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Hence, from (2.26), (2.27) and (2.30) we obtain that, at r = (t + µ−κ)1/2,

u−
in � σ

(
Lξ−m − 1

2a1ξ
−m−λ1 +

σt

σp
2Kξ2−m−λ1

)

= Lr−m − 1
2a1σ

−λ1/mr−m−λ1 + 2Kσ(−m−λ1)/mσtr
2−m−λ1

= Lr−m − 1
2a1ε

−λ1/mω((t + µ−κ)1/2)r−m−λ1

− 2K
m

2λ1
ε−λ1/mω′((t + µ−κ)1/2)(t + µ−κ)−1/2 · r2−m−λ1

= Lr−m − ε−λ1/m

{
1
2a1 − Km

λ1

∣∣∣∣rω′(r)
ω(r)

∣∣∣∣
}

r−m−λ1ω(r)

� Lr−m − 1
4a1ε

−λ1/mr−m−λ1ω(r).

Since
ε−λ1/m = µ−λ1/mω−1(µ−κ/2) � µ−λ1/mω−1(0)

due to the fact that ω decreases on (0,∞), the restriction (2.31) on µ1 yields the desired
inequality. �

Lemma 2.5. Suppose that u0 = u0(r) is continuous and positive for r � 0 and that
it satisfies

u0(r) � Lr−m − b−r−m−λ1ω(r) for all r > 0

with some positive constant b−. Then there exists µ2 > 0 such that, whenever µ � µ2,
the function u−

in introduced in Lemma 2.3 satisfies

u−
in(r, 0) � u0(r) for all r ∈ [0, µ−κ/2]. (2.32)

Proof. In a similar way to the proof of Lemma 2.4, we first choose ξ1 � 0 such that
(2.26) and (2.27) hold. Since ψ and Ψ are continuous and 0 < ψ(ξ) < Lξ−m for all ξ � 0,
we can then fix C > 0 satisfying

Ψ(ξ)
ψ(ξ)

� C for all ξ � ξ1 (2.33)

and find that
ν := 1

2 min(L − ξmψ(ξ)) (2.34)

is positive. Next we let r0 > 0 be large enough that

rλ1

ω(r)
� b−

ν
for all r � r0 (2.35)

and set
δ := min{u0(r) | r � r0}, (2.36)

which is greater than zero because u0 is positive. By (1.8), we can find z2 > 0 satisfying∣∣∣∣zω′(z)
ω(z)

∣∣∣∣ � min
{

a1λ1

4Km
, 1

}
for all z � z2, (2.37)
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and, finally, we take µ2 > 0 so small that

µ2 � z
−2/κ
2 , (2.38)

µ2 �
(

2λ1

mC

ν

L − 2ν

)1/(κ−(2/m))

, (2.39)

µ2 � L − 2ν

L − ν
δ, (2.40)

µ2 �
(

a1

4b−ω(0)

)m/λ1

. (2.41)

In deriving (2.32), we may evidently assume that u−
in(r, 0) > 0 and first consider those

r � µ−κ/2 for which ξ = σ1/m(0)r = µ1/mr � ξ1 holds. At such points, from (2.26), (2.27)
and (2.37) we obtain

u−
in(r, 0) � σ(0)

{
Lξ−m − 1

2a1ξ
−m−λ1 +

σt(0)
σp(0)

ξ2−m−λ1

}
= Lr−m − 1

2a1σ
−λ1/m(0)r−m−λ1 + 2Kσ(−m−λ1)/λ1(0)σt(0)r2−m−λ1

= Lr−m − 1
2a1ε

−λ1/mω(µ−κ/2)r−m−λ1

− Km

λ1
ε−λ1/mω′(µ−κ/2)r−m−λ1µκ/2r2−m−λ1

= Lr−m − µ−λ1/m

{
1
2a1 − Km

λ1

∣∣∣∣µ−κ/2ω′(µ−κ/2)
ω(µ−κ/2)

∣∣∣∣µκr2
}

r−m−λ1

� Lr−m − 1
4a1µ

−λ1/mr−m−λ1

� Lr−m − a1

4ω(0)
µ−λ1/mr−m−λ1ω(r)

� Lr−m − b−r−m−λ1ω(r),

because ω is decreasing. Hence,

u−
in(r, 0) � u0(r) if µ−1/m � r � µ−κ/2. (2.42)

Next, if ξ < ξ1, then by (2.33), (2.37)–(2.39),

[σt(0)/σp(0)]Ψ(ξ)
ψ(ξ)

� C
σt(0)
σp(0)

= −mC

2λ1
ε−2/mω(2−λ1)/λ1(µ−κ/2)ω′(µ−κ/2)

=
mC

2λ1
µκ−2/m

∣∣∣∣µ−κ/2ω′(µ−κ/2)
ω(µ−κ/2)

∣∣∣∣
� mC

2λ1
µκ−2/m

� ν

L − 2ν
. (2.43)
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Since (2.34) implies that ψ(ξ) � (L − 2ν)ξ−m for all ξ < ξ1, we thus obtain

u−
in(r, 0) = σ(0)ψ(ξ)

{
1 +

[σt(0)/σp(0)]Ψ(ξ)
ψ(ξ)

}

=
L − ν

L − 2ν
σ(0)ψ(ξ)

� L − ν

L − 2ν
σ(0)(L − 2ν)ξ−m

= (L − ν)r−m for all r � µ−1/mξ1. (2.44)

By definition (2.35) of r0, however, in the case where r � r0, we have

u0(r) � Lr−m − b−r−m−λ1ω(r)

� Lr−m − νr−m,

which, combined with (2.44), yields

u−
in(r, 0) � u0(r) if r0 � r < µ−1/mξ1, (2.45)

so that we are left with small r satisfying r < r0. With regard to these, we recall (2.36)
and use (2.43) and the trivial estimate ψ(ξ) � 1 to obtain

u−
in(r, 0) � σ(0)

(
1 +

ν

L − 2ν

)
ψ(ξ)

� L − ν

L − 2ν
σ(0)

=
L − ν

L − 2ν
µ

� δ

� u0(r) for r < r0.

Together with (2.42) and (2.45), this proves (2.32). �

Combining the above estimates, we can now derive a lower bound of radial solutions.

Proposition 2.6. Assume that u0 = u0(r) is a continuous and positive function of
r � 0 satisfying

u0(r) � Lr−m − b−r−m−λ1ω(r) for all r > 0

with some b− > 0. Then there exists c > 0 such that the solution u of (2.1) satisfies

u(0, t) � cω−m/λ1(t1/2) for all t > 0. (2.46)

Proof. Let b0 > 0 be the constant provided by Corollary 2.2, and take any µ > 0
satisfying µ < min{1, µ0, µ1, µ2} with µ0, µ1 and µ2 taken from Lemmas 2.3, 2.4 and 2.5,
respectively. Then the function u−

in defined by (2.17) satisfies u−
in � u for r = (t + µ−κ)1/2,

t � 0, by Corollary 2.2 and Lemma 2.4, whereas Lemma 2.5 guarantees that u−
in � u also

https://doi.org/10.1017/S0013091509001497 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509001497


Very slow grow-up 395

at t = 0. Since u−
in is a subsolution of (2.1) by Lemma 2.3, the comparison principle shows

that u−
in � 0 holds for all t � 0 and r � (t + µ−κ)1/2. In particular,

u(0, t) � u−
in(0, t)

= εω−m/λ1((t + µ−κ)1/2)

� εω−m/λ1(t1/2) for all t > 0,

because ω is decreasing. �

3. Upper bound

In this section we give an upper bound for the solution of (2.1) by constructing a suitable
super-solution of (2.1). We first consider an appropriate outer region.

Lemma 3.1. Suppose that

u0(r) � Lr−m for all r > 0 (3.1)

and
u0(r) � Lr−m − b+r−lω(r) for all r � 1 (3.2)

hold with a positive constant b+. Then there exists B > 0 such that the solution u of
(2.1) satisfies

u(r, t) � Lr−m − 1
2b+r−m−λ1ω(r) for all t � 0 and r � B(t + 1)1/2. (3.3)

Proof. We let C > 0 satisfy∣∣∣∣zω′(z)
ω(z)

∣∣∣∣ � C and
∣∣∣∣z2ω′′(z)

ω(z)

∣∣∣∣ � C for all z � 0, (3.4)

which is possible in view of (1.8) and (1.9). We next fix b2 > 0 such that

b2 � 2b+[(m + λ1)|m + λ1 + 2 − N | + |N − 1 − 2m − 2λ1|C + C] (3.5)

and, finally, we take B > 0 so large that

B �
√

2
√

(m + λ1 + 2)|m + λ1 + 4 − N | + |N − 5 − 2m − 2λ1|C + C (3.6)

and

B �
√

2b2

b+
. (3.7)

Then

u+
out(r, t) := min{Lr−m, Lr−m − b+r−m−λ1ω(r) + b2r

−m−λ1−2ω(r)(t + 1)}

satisfies
u+

out(r, 0) � u0(r) for all r � 0 (3.8)
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by (3.1) and (3.2). Moreover, at each point (r, t) where u+
out(r, t) < Lr−m, we have

(u+
out)p < (Lr−m)p and, thus, repeating the computation in (2.7), we find

Pu+
out = b2r

−m−λ1−2ω(r) + (Lr−m)p

+ b1{(m + λ1)(m + λ1 + 2 − N)r−m−λ1−2ω(r)

+ (N − 1 − 2m − 2λ1)r−m−λ1−1ω′(r) + r−m−λ1ω′′(r)}
− b2{(m + λ1 + 2)(m + λ1 + 4 − N)r−m−λ1−4ω(r)

+ (N − 5 − 2m − 2λ1)r−m−λ1−3ω′(r) + r−m−λ1−2ω′′(r)}(t + 1) − (u+
out)

p

> b2r
−m−λ1−2ω(r)

×
{

1 +
b1

b2

[
(m + λ1)(m + λ1 + 2 − N)

+ (N − 1 − 2m − 2λ1)
rω′(r)
ω(r)

+
r2ω′′(r)

ω(r)

]

−
[
(m + λ1 + 2)(m + λ1 + 4 − N)

+ (N − 5 − 2m − 2λ1)
rω′(r)
ω(r)

+
r2ω′′(r)

ω(r)

]
t + 1
r2

}
.

Using (3.4)–(3.6), for all (r, t) satisfying r � B(t + 1)1/2 and u+
out(r, t) < Lr−m, we obtain

Pu+
out > b2r

−m−λ1−2ω(r)

×
{

1 − b1

b2
[(m + λ1)|m + λ1 + 2 − N | + |N − 1 − 2m − 2λ1|C + C]

− [(m + λ1 + 2)|m + λ1 + 4 − N | + |N − 5 − 2m − 2λ1|C + C]
1

B2

}
� b2r

−m−λ1−2ω(r){1 − 1
2 − 1

2}
= 0.

Since (r, t) �→ Lr−m is a solution of (2.1), it follows that u+
out is a super-solution for all

r � 0 and t � 0, and therefore, by (3.8), the comparison principle implies u � u+
out for

all r � 0 and t � 0. In particular, recalling (3.7), we have

u(r, t) � u+
out(r, t)

� Lr−m − b+r−m−λ1ω(r) + 1
2b+B2r−m−λ1−2ω(r)(t + 1)

� Lr−m − 1
2b+r−m−λ1ω(r)

for all t � 0 and r � B(t + 1)1/2, which proves (3.3). �

We also need the following elementary property of ω, which, along with (1.8), is a
simple consequence of its positivity and monotonicity.

Lemma 3.2. For any Λ > 0, there exists zΛ > 0 such that

ω(Λz) � 1
2ω(z) for all z � zΛ.
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Proof. We evidently may assume Λ > 1. We define zΛ as any sufficiently large number
satisfying ∣∣∣∣zω′(z)

ω(z)

∣∣∣∣ � 1
2(Λ − 1)

for all z � zΛ. (3.9)

Then

ω′(z) � − 1
2(Λ − 1)

ω(z)
z

for all z � zΛ (3.10)

and thus

ω(Λz) − ω(z) =
∫ Λz

z

ω′(s) ds

� − 1
2(Λ − 1)

∫ Λz

z

ω(s)
s

ds for all z � zΛ.

Since s �→ ω(s)/s decreases on (0,∞), we obtain

ω(Λz) − ω(z) � − 1
2(Λ − 1)

(Λz − z)
ω(z)

z

= − 1
2ω(z) for all z � zΛ,

which proves the lemma. �

We are now in a position to give an upper bound for radial solutions. The proof closely
follows that of [2, Lemma 4.3], but we include a complete proof here for convenience.

Proposition 3.3. Suppose that u0 satisfies (3.1) and (3.2) and that, for each α >

u0(0), u0 intersects ϕα exactly once in (0,∞). Then there exists C > 0 such that the
solution u of (2.1) satisfies

u(0, t) � Cω−m/λ1(t1/2) for all t > 0. (3.11)

Proof. We let σ(t) := u(0, t) and we may assume that σ is unbounded, since otherwise
(3.11) is trivial. Thus, there exists t0 > 0 such that σ(t0) > σ(0). Then, for each t > t0,
u(·, t) does not intersect ϕσ(t0) because the number of intersections of u(·, t) with the
equilibrium ϕσ(t0) initially equals 1 and drops at time t0. Since σ is unbounded, this
means that u(·, t) > ϕσ(t0) for all t > t0. In particular, σ(t) > σ(0) for all t > t0 and,
hence, we may repeat the above argument with t0 replaced by any t1 � t0 to obtain
u(·, t) > ϕσ(t1) for all t > t1. Taking t ↘ t1, we infer that

u(r, t) � ϕσ(t)(r) for all t � t0 and r � 0.

By (2.12) and evident scaling properties of ϕα, there exists M > 0 such that if α1/mr �
M , then

ϕα(r) = αϕ1(α1/mr)

� α{L(α1/mr)−m − 2a1(α1/mr)−m−λ1}
= Lr−m − 2a1α

−λ1/mr−m−λ1 .
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Thus, if

T :=
(

M

Bσ1/m(0)

)2

− 1

with B as provided by Lemma 3.1, for all t � max{T, t0} and r = B(t + 1)1/2 we have

σ1/m(t)r � σ1/m(0)B(T + 1)1/2 = M

and therefore

u(r, t) � ϕσ(t)(r) � Lr−m − 2a1σ
−λ1/m(t)r−m−λ1 at r = B(t + 1)1/2 (3.12)

for such t. On the other hand, from Lemma 3.1, we see that

u(r, t) � Lr−m − 1
2b+r−m−λ1ω(r) at r = B(t + 1)1/2 for all t � 0. (3.13)

Combining (3.12) with (3.13) and solving with respect to σ(t), we obtain

σ(t) �
(

4a1

b+

)m/λ1

ω−m/λ1(B(t + 1)1/2) for all t � max{T, t0}. (3.14)

Now the observation that
B(t + 1)1/2 �

√
2Bt1/2

in conjunction with Lemma 3.2, applied to Λ :=
√

2B, yields

ω(B(t + 1)1/2) � ω(
√

2Bt1/2) � 1
2ω(t1/2) for all t � z2

Λ,

and (3.14) thereby easily leads to (3.11). �

4. Proof of Theorem 1.1

In this section we complete a proof of Theorem 1.1 by using the upper and lower estimates
of radial solutions.

Given an initial value u0(x) satisfying (1.2) and (1.6), we define radially symmetric
functions by

u
¯0(r) := min{u0(x) : |x| � r}, r � 0,

and
ū0(r) := max{u0(x) : |x| � r}, r � 0.

Then

(i) u
¯0(r) and ū0(r) are continuous and decreasing in r � 0,

(ii) 0 � u
¯0(|x|) � u0(x) � ū0(|x|) � ϕ∞(|x|) for all x ∈ R

N \ {0} and

(iii) u
¯0(|x|) and ū0(|x|) satisfy (1.6).
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Let u
¯
(r, t) and ū(r, t) denote the solutions of (2.1) with the initial values u

¯0(r) and ū0(r),
respectively. Then the solutions exist globally in time and are decreasing in r for all t > 0.
Moreover, by the comparison principle, the solution of (1.1) satisfies

u
¯
(| · |, t)‖L∞ � ‖u(·, t)‖L∞ � ‖ū(| · |, t)‖L∞ , x ∈ R

N ,

for all t > 0. Since u
¯
(r, t) and ū(r, t) are decreasing in r for each t > 0, since

u
¯
(0, t) � cω−m/λ1(t1/2) for all t > 0

by Proposition 2.6, and since

ū(0, t) � Cω−m/λ1(t1/2) for all t > 0

by Proposition 3.3, we obtain the desired estimates of the grow-up rate of the solution
of (1.1).
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