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1. Introduction

Since the publication of the landmark paper [16], numerous papers have been written
about generalized elliptic integrals, modular functions and their inequalities (see, for
example, [2,3,10–15,19,20,25,29–32]). Modular equations have a long history, which
goes back to the works of Legendre, Gauss, Jacobi and Ramanujan on number theory.
Modular equations also occur in geometric function theory, as shown in [3,21–23,28]
and in numerical computations of moduli of quadrilaterals [18]. For recent surveys of
this topic from the point of view of geometric function theory, see [6,7,9,28]. The study
of these functions is motivated by potential applications to geometric function theory
and to number theory. Special functions have an important role in geometric function
theory [4,5,21,22,27].

Given complex numbers a, b and c with c �= 0,−1,−2, . . . , the Gaussian hypergeometric
function is the analytic continuation to the slit place C \ [1,∞) of the series

F (a, b; c; z) = 2F1(a, b; c; z) =
∞∑

n=0

(a, n)(b, n)
(c, n)

zn

n!
, |z| < 1.

Here (a, 0) = 1 for a �= 0, and (a, n) is the shifted factorial function or the Appell symbol

(a, n) = a(a + 1)(a + 2) · · · (a + n − 1)

for n ∈ Z+.
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For later use we define the classical gamma function Γ (x) and beta function B(x, y).
For Re x > 0, Re y > 0, these functions are defined by

Γ (x) =
∫ ∞

0
e−ttx−1 dt, B(x, y) =

Γ (x)Γ (y)
Γ (x + y)

,

respectively. By [1, 6.1.8] we see that B( 1
2 , 1

2 ) = π.
For the formulation of our main results and for later use we introduce some basic

notation. The decreasing homeomorphism µa : (0, 1) → (0,∞) is defined by

µa(r) =
π

2 sin(πa)
F (a, 1 − a; 1; r′2)
F (a, 1 − a; 1; r2)

=
π

2 sin(πa)
Ka(r′)
Ka(r)

for r ∈ (0, 1) and r′ =
√

1 − r2. A generalized modular equation with signature 1/a and
order (or degree) p is

µa(s) = pµa(r), 0 < r < 1. (1.1)

We define

s = ϕa
K(r) ≡ µ−1

a

(
µa(r)

K

)
, K ∈ (0,∞), p =

1
K

, (1.2)

which is the solution of (1.1).
For a ∈ (0, 1

2 ], K ∈ (0,∞), r ∈ (0, 1), we have, by [3, Lemma 6.1] and [8, Theorem 10.5],

ϕa
K(r)2 + ϕa

1/K(r′)2 = 1. (1.3)

For a ∈ (0, 1
2 ], r ∈ (0, 1) and r′ =

√
1 − r2, the generalized elliptic integrals are defined

by

Ka(r) = 1
2πF (a, 1 − a; 1; r2), Ea(r) = 1

2πF (a − 1, 1 − a; 1; r2),

K′
a(r) = Ka(r′), E ′

a(r) = Ea(r′),

Ka(0) = 1
2π, Ea(0) = 1

2π,

Ka(1) = ∞, Ea(1) =
sin(πa)
2(1 − a)

.

In this paper we study the modular function ϕa
K(r) for general a ∈ (0, 1

2 ], as well as
related functions µa, Ka, ηa

K , λa and their dependency on r and K, where

ηa
K(x) =

(
s

s′

)2

, s = ϕa
K(r), r =

√
x

1 + x
for x, K ∈ (0,∞),

and

λa(K) =
( ϕa

K( 1√
2
)

ϕa
1/K( 1√

2
)

)2

=
(

µ−1
a (π/(2K sin(πa)))

µ−1
a (πK/(2 sin(πa)))

)2

= ηa
K(1). (1.4)

Motivated by [17,24], we define, for p > 1 and r ∈ (0, 1),

artanhp(x) =
∫ x

0
(1 − tp)−1 dt = xF

(
1,

1
p
; 1 +

1
p
; xp

)
.

Then artanh2(x) is the usual inverse hyperbolic tangent (artanh) function.
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Figure 1. Comparison of upper bounds given in Theorem 1.2 (black line)
and in (1.5) (dark grey dashed line) for K(r) (light grey dot-dashed line).

We give some of the main results of this paper next.

Theorem 1.1. For a, b, c > 0 and r ∈ (0, 1), the function g(p) = F (a, b; c; rp)1/p is
decreasing in p ∈ (0,∞). In particular, for p � 1,

(i) F (a, b; c; rp)1/p � F (a, b; c; r) � F (a, b; c; r1/p)p,

(ii) (1
2π)1−1/pKa(rp)1/p � Ka(r) � ( 1

2π)1−pKa(r1/p)p,

(iii) (1
2π)1−pEa(r1/p)p � Ea(r) � ( 1

2π)1−1/pEa(rp)1/p.

Alzer and Qiu gave the following bounds for K = K1/2 in [2, Theorem 18]:

π

2

(
artanh(r)

r

)3/4

< K(r) <
π

2

(
artanh(r)

r

)
. (1.5)

In the following theorem we generalize their result to the case of Ka, and for the par-
ticular case a = 1

2 our upper bound is better than their bound in (1.5). For a graphical
comparison of the bounds see Figure 1.

Theorem 1.2. For p � 2 and r ∈ (0, 1), we have

π

2

(
artanhp(r)

r

)1/2

<
π

2

(
1 − p − 1

p2 log(1 − r2)
)

< Ka(r)

<
π

2

(
1 − 2

pπp
log(1 − r2)

)
,

where a = 1/p and πp = 2π/(p sin(π/p)).
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In [3, Theorem 5.6] (see also [10, Theorem 1.5, 1.8]) it was proved that for a ∈ (0, 1
2 ]

we have

µa

(
rs

1 + r′s′

)
� µa(r) + µa(s) � 2µa

( √
2rs√

1 + rs + r′s′

)

for all r, s ∈ (0, 1). This inequality will be generalized in Theorem 4.3. In the next theorem
we give a similar result for the function Ka.

Theorem 1.3. The function f(x) = 1/Ka(1/cosh(x)) is increasing and concave from
(0,∞) onto (0, 2/π). In particular,

Ka(r)Ka(s)
Ka(rs/(1 + r′s′))

� Ka(r) + Ka(s) � 2Ka(r)Ka(s)
Ka(

√
rs/(1 + rs + r′s′))

� 2Ka(r)Ka(s)
Ka(rs)

,

for all r, s ∈ (0, 1), with equality in the third inequality if and only if r = s.

There are several bounds for the function µa(r) when a = 1
2 in [8, Chapter 5]. In the

next theorem we give a two-sided bound for µa(r).

Theorem 1.4. For p � 2 and r ∈ (0, 1), let

lp(r) =
(

πp

2

)2(
p2 − (p − 1) log r2

pπp − 2 log r′2

)
and up(r) =

(
p

2

)2(
pπp − 2 log r2

p2 − (p − 1) log r′2

)
.

(i) The following inequalities hold:

lp(r) < µa(r) < up(r),

where a = 1/p.

(ii) For p = 2 we have

u2(r) <
4
π

l2(r).

2. Proofs of Theorems 1.1–1.4

For easy reference, we record the next two lemmas from [8], which have found many
applications. Some of the applications are reviewed in [7]. The first result is sometimes
called the monotone l’Hôpital rule.

Lemma 2.1 (Anderson et al . [8, Theorem 1.25]). For −∞ < a < b < ∞, let
f, g : [a, b] → R be continuous on [a, b], and be differentiable on (a, b). Let g′(x) �= 0 on
(a, b). If f ′(x)/g′(x) is increasing (decreasing) on (a, b), then so are

f(x) − f(a)
g(x) − g(a)

and
f(x) − f(b)
g(x) − g(b)

.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.
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Lemma 2.2 (Anderson et al . [8, Lemma 1.24]). For p ∈ (0,∞], let I = [0, p) and
suppose that f, g : I → [0,∞) are functions such that f(x)/g(x) is decreasing on I \ {0}
and g(0) = 0 and g(x) > 0 for x > 0. Then

f(x + y)(g(x) + g(y)) � g(x + y)(f(x) + f(y))

for x, y, x + y ∈ I. Moreover, if the monotonicity of f(x)/g(x) is strict, then the above
inequality is also strict on I \ {0}.

For easy reference we recall the following lemmas from [3].

Lemma 2.3. For a ∈ (0, 1
2 ], K ∈ (1,∞), r ∈ (0, 1) and s = ϕa

K(r), we have the
following.

(i) f(r) = s′Ka(s)2/(r′Ka(r)2) is decreasing from (0, 1) onto (0, 1).

(ii) g(r) = sK′
a(s)2/(rK′

a(r)2) is decreasing from (0, 1) onto (1,∞).

(iii) The function r′cKa(r) is decreasing if and only if c � 2a(1 − a), in which case
r′cKa(r) is decreasing from (0, 1) onto (0, 1

2π). Moreover,
√

r′Ka(r) is decreasing
for all a ∈ (0, 1

2 ].

Lemma 2.4. The following formulae hold for a ∈ (0, 1
2 ], r ∈ (0, 1) and x, y, K ∈ (0,∞):

dF

dr
=

lm

n
F (1 + l, 1 + m; 1 + n; r), F = F (l, m; n; r), (2.1)

dKa(r)
dr

=
2(1 − a)(Ea(r) − r′2Ka(r))

rr′2 , (2.2)

dEa(r)
dr

=
2(a − 1)(Ka(r) − Ea(r))

r
, (2.3)

dµa(r)
dr

=
−π2

4rr′2Ka(r)2
, (2.4)

dϕa
K(r)
dr

=
ss′2Ka(s)2

Krr′2Ka(r)2
=

ss′2Ka(s)K′
a(s)

rr′2Ka(r)K′
a(r)

= K
ss′2K′

a(s)2

rr′2K′
a(r)2

, (2.5)

dϕa
K(r)
dK

=
4ss′2Ka(s)2µa(r)

π2K2 , where s = ϕa
K(r), (2.6)

dηa
K(x)
dx

=
1
K

(
r′sKa(s)
rs′Ka(r)

)2

= K

(
r′sK′

a(s)
rs′K′

a(r)

)2

=
(

r′s

rs′

)2 Ka(s)K′
a(s)

Ka(r)K′
a(r)

, (2.7)

dηa
K(x)
dK

=
8ηa

K(x)µa(r)Ka(s)2

π2K2 . (2.8)

In (2.7), (2.8), r =
√

x/(1 + x) and s = ϕa
K(r).

Lemma 2.5 (Anderson et al . [8, Theorem 1.52(1)]). For a, b > 0, the function

f(x) =
F (a, b; a + b; x) − 1

log(1/(1 − x))

is strictly increasing from (0, 1) onto (ab/(a + b), 1/B(a, b)).
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Proof of Theorem 1.1. With G(r) = F (a, b; c; rp) and g as in Theorem 1.1 we get,
by (2.1),

g′(p) = − (G(r))1/p−1

cp2

(
cG(r) log(G(r)) + abprpF (a + 1, b + 1; c + 1; rp) log

(
1
r

))
,

which is negative. Hence, this implies (i), and (ii) follows from (i). For (iii), write F (r) =
F (−a, b; c; rp). We define h(p) = F (r)1/p and obtain

h′(p) =
(F (r))1/p−1

cp2

(
cF (r) log(1/F (r)) + abprpF (a + 1, b + 1; c + 1; rp) log

(
1
r

))
,

which is positive because F (r) ∈ (0, 1). Hence, h is increasing in p, and (iii) follows
easily. �

Proof of Theorem 1.2. By the definition of artanhp, Lemma 2.5 and the Bernoulli
inequality, we obtain (

artanhp(r)
r

)1/2

=
(

F

(
1,

1
p
; 1 +

1
p
; rp

))1/2

<

(
1 − 1

p
log(1 − rp)

)1/2

� 1 +
1
2p

log
(

1
1 − rp

)

� 1 +
p − 1
p2 log

(
1

1 − rp

)

� 1 − p − 1
p2 log(1 − r2)

= ξ.

Again, by Lemma 2.5 and [1, 6.1.17] we obtain

ξ < F

(
1
p
, 1 − 1

p
; 1; r2

)

=
2
π

K1/p(r)

< 1 − 1
B(1/p, 1 − 1/p)

log(1 − r2)

= 1 − 2
pπp

log(1 − r2),

and this completes the proof. �

Proof of Theorem 1.3. Setting r = 1/cosh(x), we have

dr

dx
= − sinhx

cosh2 x
= −rr′
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and

f ′(x) = −K′
a(r)

K2
a(r)

dr

dx

= −2(1 − a)
K2

a(r)
Ea(r) − r′2Ka(r)

rr′2 (−rr′)

= 2(1 − a)
Ea(r) − r′2Ka(r)

r′Ka(r)2
,

which is positive and increasing in r by Lemma 2.3 (iii) and therefore f ′(x) is decreasing
in x and f is concave. Hence,

1
2 (f(x) + f(y)) � f

(
x + y

2

)

⇐⇒ 1
2

(
1

Ka(1/cosh(x))
+

1
Ka(1/cosh(y))

)
� 1

Ka(1/cosh( 1
2 (x + y)))

⇐⇒ Ka(r) + Ka(s) � 2Ka(r)Ka(s)
K(

√
rs/(1 + rs + r′s′))

,

using cosh2( 1
2 (x + y)) = (1 + rs + r′s′)/rs and setting s = 1/cosh(y). Clearly,

(r − s)2 � 0 ⇐⇒ 1 − 2rs + r2s2 � 1 − r2 − s2 + r2s2

⇐⇒ 1 − rs � r′s′

⇐⇒ 2 � 1 + rs + r′s′

⇐⇒ 2rs

1 + rs + r′s′ � rs,

and the third inequality follows. Obviously, f(0+) = 0, and f ′(x) is decreasing in x. Then
f(x)/x is decreasing and f(x + y) � f(x) + f(y) by Lemmas 2.1 and 2.2, respectively.
This implies the first inequality. �

Proof of Theorem 1.4. By Lemma 2.5 we obtain

(a) 1 − p − 1
p2 log r2 < F

(
1
p
, 1 − 1

p
; 1; 1 − r2

)
< 1 − 2

pπp
log r2,

(b) 1 − p − 1
p2 log(1 − r2) < F

(
1
p
, 1 − 1

p
; 1; r2

)
< 1 − 2

pπp
log(1 − r2).

By using (a), (b) and the definition of µa, we get (i). The claim (ii) is equivalent to

2(π − log(r2))
4 − log(1 − r2)

<
4
π

(
π

2

)2 4 − log(r2)
π − log(1 − r2)

⇐⇒ 4(π − log(r2))(π − log(1 − r2)) − (4 − log(r2))(4 − log(1 − r2)) < 0

⇐⇒ (π − 4)(4π − log(r2) log(1 − r2)) < (π − 4)(4π − (log(2))2) < 0.
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For the penultimate inequality we define w(x) = log(x) log(1 − x) and we get

w′(x) =
(1 − x) log(1 − x) − x log(x)

x(1 − x)
=

−g(x)
x(1 − x)

.

We also see that g(x) = x log(x) − (1 − x) log(1 − x) is convex on (0, 1
2 ) and concave on

( 1
2 , 1). This implies that g(x) < 0 for x ∈ (0, 1

2 ) and g(x) > 0 for x ∈ ( 1
2 , 1). Therefore,

w is increasing in (0, 1
2 ) and decreasing in (1

2 , 1). Hence, the function w has a global
maximum at x = 1

2 and this completes the proof. �

One can obtain the following inequalities by using the proof of Theorem 1.4:

pπp

2π

Ka(r)
(1 − (2/(pπp)) log r2)

� µa(r′) � pπp

2π

Ka(r)
(1 − ((p − 1)/p) log r2)

,

with a = 1/p and p � 2.

Lemma 2.6. The following inequalities hold for all r, s ∈ (0, 1) and a ∈ (0, 1
2 ]:

(i) Ka(rs) �
√

Ka(r2)Ka(s2) � 2
π Ka(r)Ka(s),

(ii)
2
π

Ea(r)Ea(s) �
√

Ea(r2)Ea(s2) � Ea(rs).

Proof. Define f(x) = log(Ka(e−x)), x > 0. We get, by (2.2),

f ′(x) = −2(1 − a)
Ea(r) − r′2Ka(r)

r′2Ka(r)
, r = e−x,

and this is negative by the fact that h(r) = Ea(r) − r′2Ka(r) > 0 and decreasing in r

by [3, Lemma 5.4 (1)] and the fact that h is increasing (h′(r) = 2arKa(r) > 0). Therefore,
f ′(x) is increasing in x; hence, f is convex, and this implies the first inequality of part (i).
The second inequality follows from Theorem 1.1 (ii).

The first inequality of (ii) follows from Theorem 1.1 (iii); for the second inequality we
define g(x) = log(Ea(z)), z = e−x, x > 0, and get, by (2.3),

g′(x) = 2(1 − a)
Ka(z) − Ea(z)

Ea(z)
,

which is positive and increasing in z by [3, Theorem 4.1 (3), Lemma 5.2 (3)]; hence, g′(x)
is decreasing in x, and therefore g is increasing and concave. This implies that

log(Ea(e−(x+y)/2)) � 1
2 (log(Ea(e−x)) + log(Ea(e−y))),

and the second inequality follows if we set r = e−x/2 and s = e−y/2. �
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3. A few remarks on special functions

In this section we generalize some results from [8, Chapter 10].

Theorem 3.1. The function µ−1
a (y) has exactly one inflection point and it is log-

concave from (0,∞) onto (0, 1). In particular,

(µ−1
a (x))p(µ−1

a (y))q � µ−1
a (px + qy)

for p, q, x, y > 0 with p + q = 1.

Proof. Letting s = µ−1
a (y) we see that µa(s) = y. By (2.4), we obtain

ds

dy
= − 4

π2 ss′2Ka(s)2,

and

d2s

dy2 = −ds

dy

4
π2 (s′2Ka(s)2 − 2s2Ka(s)2 + 2Ka(s)2(Ea(s) − s′2Ka(s)))

=
16
π4 ss′2Ka(s)3(2Ea(s) − (1 + s2)Ka(s)).

We see that 2Ea(s)−(1+s2)Ka(s) is increasing from (0,∞) onto (−∞, 1
2π) as a function

of y. Hence, d(µ−1
a (y0))/dy2 = 0 for y0 ∈ (0,∞), and µ−1

a has exactly one inflection point.
Let f(y) = log(µ−1

a (y)) = log s. Then

f ′(y) = − 4
π2 s′2Ka(s)2,

which is decreasing as a function of y, by Lemma 2.3 (iii); hence µ−1
a is log-concave. This

completes the proof. �

Corollary 3.2.

(i) For K � 1, the function f(r) = (log ϕa
K(r))/ log r is strictly decreasing from (0, 1)

onto (0, 1/K).

(ii) For K � 1, r ∈ (0, 1), the function g(p) = ϕa
K(rp)1/p is decreasing from (0,∞) onto

(r1/K , 1). In particular,

rp/K � ϕa
K(rp) � ϕa

K(r)p, p � 1,

and

ϕa
K(rp) � ϕa

K(r)p, 0 < p � 1.

Proof. Let s = ϕa
K(r). By (2.5) we get

f ′(r) =
rss′2

srr′2
Ka(s)K′

a(s)
Ka(r)K′

a(r)
log r − log s,
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and this is equivalent to

r(log r)2f ′(r) = s′2Ka(s)K′
a(s)

(
log r

r′2Ka(r)K′
a(r)

− log s

s′2Ka(s)K′
a(s)

)
,

which is negative by Lemma 2.3 (iii). The limiting values follow from l’Hôpital’s rule and
Lemma 2.3 (i). We observe that

log g(p) =
(

log ϕa
K(rp)

log(rp)

)
log r,

and (ii) follows from (i). �

Lemma 3.3. For 0 < a � 1
2 , K, p � 1 and r, s ∈ (0, 1), the following inequalities hold:

p
√

ϕa
K(rp) + p

√
ϕa

K(sp)
1 + p

√
ϕa

K(rp)ϕa
K(sp)

� ϕa
K(r) + ϕa

K(s)
1 + ϕa

K(r)ϕa
K(s)

� ϕa
K( p

√
r)p + ϕa

K( p
√

s)p

1 + (ϕa
K( p

√
r)ϕa

K( p
√

s))p
.

Proof. It follows from Corollary 3.2 (ii) that

ϕa
K(rp)1/p � ϕa

K(r).

From the fact that artanh is increasing, we conclude that

artanh(ϕa
K(rp)1/p) + artanh(ϕa

K(sp)1/p) � artanh(ϕa
K(r)) + artanh(ϕa

K(s)).

This is equivalent to

artanh
(

ϕa
K(rp)1/p + ϕa

K(sp)1/p

1 + (ϕa
K(rp) + ϕa

K(sp))1/p

)
� artanh

(
ϕa

K(r) + ϕa
K(s)

1 + (ϕa
K(r) + ϕa

K(s))

)
,

and the first inequality holds. Similarly, the second inequality follows from ϕa
K(r) �

ϕa
K(r1/p)p. �

For 0 < a � 1, K � 1 and r, s ∈ (0, 1), the inequality

ϕa
K

(
r + s

1 + rs

)
� ϕa

K(r) + ϕa
K(s)

1 + ϕa
K(r)ϕa

K(s)
(3.1)

is given in [3, Remark 6.17]. For a graphical comparison of (3.1) and the first inequality
of Lemma 3.3, see Figure 2.

Theorem 3.4. For r, s ∈ (0, 1), we have

|ϕa
K(r) − ϕa

K(s)| � ϕa
K(|r − s|) � e(1−1/K)R(a)/2|r − s|1/K , K � 1. (3.2)

Here R(a) is as in [3, Theorem 6.7] and

|ϕa
K(r) − ϕa

K(s)| � ϕa
K(|r − s|) � e(1−1/K)R(a)/2|r − s|1/K , 0 < K � 1. (3.3)
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Figure 2. Let g(a, K, p, r, s) = ((ϕa
K(rp))1/p + (ϕa

K(sp))1/p)/(1 + (ϕa
K(rp)ϕa

K(sp))1/p) and
h(a, K, r, s) = ϕa

K((r + s)/(1 + rs)) be the lower bounds in Lemma 3.3 (black line) and in
(3.1) (grey line), respectively. For a = 0.2, K = 1.5, p = 1.3 and s = 0.5 the functions g and h

are plotted. We see that for r ∈ (0.2, 1) the first lower bound is better.

Proof. It follows from [3, Theorem 6.7] that r−1ϕa
K(r) is decreasing on (0, 1) if K > 1,

and by Lemma 2.2 we obtain

ϕa
K(x + y) � ϕa

K(x) + ϕa
K(y), x, y ∈ (0, 1).

Now the first inequality in (3.2) follows if we take r = x + y and s = y; the second one
follows from [3, Theorem 6.7]. Next, (3.3) follows from (3.2) and the fact that

ϕa
AB(r) = ϕa

A(ϕa
B(r)), A, B > 0, r ∈ (0, 1),

when we replace K, r and s by 1/K, ϕa
1/K(r) and ϕa

1/K(s), respectively. �

Theorem 3.5. For a ∈ (0, 1
2 ], c, r ∈ (0, 1) and K, L ∈ (0,∞) we have the following.

(i) f(K) = log(ϕa
K(r)) is increasing and concave from (0,∞) onto (−∞, 0).

(ii) g(K) = artanh(ϕa
K(r)) is increasing and convex from (0,∞) onto (0,∞).

(iii) We have

ϕa
K(r)cϕa

L(r)1−c � ϕa
cK+(1−c)L(r) � tanh(c artanh(ϕa

K(r))+(1−c) artanh(ϕa
L(r))).

(iv) We have√
ϕa

K(r)ϕa
L(r) � ϕa

(K+L)/2(r) � ϕa
K(r) + ϕa

L(r)
1 + ϕa

K(r)ϕa
L(r) + ϕa

1/K(r′)ϕa
1/L(r′)

.

Proof. For (i), by (2.6) we get

f ′(K) =
4s′2Ka(s)2µa(r)

π2K
,
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which is positive and decreasing by Lemma 2.3 (iii). For (ii), we get

f ′(K) =
4sKa(s)2µa(r)

π2K2 =
sK′

a(s)2

µa(r)

by (2.6), which is positive and increasing by Lemma 2.3 (iii). By (i) and (ii) we get

c log(ϕa
K(r)) + (1 − c) log(ϕa

L(r)) � log(ϕa
cK+(1−a)L(r))

and

artanh(ϕa
cK+(1−c)K(r)) � a artanh(ϕa

K(r)) + (1 − c) artanh(ϕa
L(r)),

respectively, and (iii) follows. Also

1
2 (log(ϕa

K(r)) + log(ϕa
L(r))) � log(ϕa

(K+L)/2(r))

and
artanh(ϕa

(K+L)/2(r)) � 1
2 (artanh(ϕa

K(r)) + artanh(ϕa
L))

follow from (i) and (ii), and hence (iv) holds. �

Theorem 3.6. For K � 1 and 0 < m < n, the following inequalities hold:

ηa
K(mn) �

√
ηa

K(m2)ηa
K(n2), (3.4)(

n

m

)1/K

<
ηa

K(n)
ηa

K(m)
<

(
n

m

)K

, (3.5)

ηa
K(m)ηa

K(n) <

(
ηa

K

(
m + n

2

))2

, (3.6)

2
ηa

K(m)ηa
K(n)

ηa
K(m) + ηa

K(n)
< ηa

K(
√

mn) <
√

ηa
K(m)ηa

K(n). (3.7)

Proof. We define a function g(x) = log ηa
K(ex) on R. By [3, Theorem 1.16], g is

increasing, convex and satisfies 1/K � g′(x) � K. Then

log ηa
K(e(x+y)/2) = g

(
x + y

2

)
� g(x) + g(y)

2

= 1
2 log(ηa

K(ex)) + 1
2 log(ηa

K(ey)),

and this is equivalent to

log ηa
K(ex/2ey/2) � log(ηa

K(ex/2)ηa
K(ey/2)).

Hence, (3.4) follows if we set ex/2 = m and ey/2 = n. For (3.5), let x > y. Then, by the
inequality 1/K � g′(x) � K and the Mean-Value Theorem, we get

x − y

K
� g(x) − g(y) � K(x − y),
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and this is equivalent to

log(ex) − log(ey)
K

� log(ηa
K(ex)) − log(ηa

K(ey)) � K(log(ex) − log(ey)).

By setting ex/2 = m and ey/2 = n, we get the desired inequality. For (3.6), let f(x) =
log(ηa

K(x)), r =
√

x/(1 + x) and s = ϕa
K(r). Then by (2.7) we get

f ′(x) =
1
K

(
s′

s

)2(
sr′Ka(s)
rs′Ka(r)

)2

=
1
K

(
r′

r

)2(Ka(s)
Ka(r)

)2

=
1
K

(
r′

s

)2(
sKa(s)
rKa(r)

)2

,

which is positive and decreasing by Lemma 2.3 (ii). Hence, 1
2 (f(x)+f(y)) � f( 1

2 (x+y)),
and the inequality follows.

For (3.7), letting h(x) = 1/ηa
K(ex), we see that this is log-concave by (3.4), and we get

log
(

1
ηa

K(ex)

)
+ log

(
1

ηa
K(ey)

)
< 2 log

(
1

ηa
K(e(x+y)/2)

)
,

Setting ex = m and ey = n, we get the second inequality. We observe that h(x) = (s′/s),
s = ϕa

K(r), r =
√

ex/(ex + 1). We get

−f ′(x) =
1
K

(
r′

s

)(
s′Ka(s)
r′Ka(r)

)2

,

which is positive and decreasing by Lemma 2.3 (i); hence h is convex, and the first
inequality follows easily. �

Theorem 3.7. For x ∈ (0,∞), the function f : (0,∞) → (0,∞) defined by f(K) =
ηa

K(x) is increasing, convex and log-concave. In particular,

ηa
K(x)cηa

L(x)1−c � ηa
cK+(1−c)L(x) � cηa

K(x) + (1 − c)ηa
L(x)

for K, L, x ∈ (0,∞) and c ∈ (0, 1), with equality if and only if K = L.

Proof. We observe that f(K) = (s/s′)2, where s = ϕa
K(r) and r =

√
x/(x + 1). We

get by (2.8)

f ′(K) =
8s2Ka(s)2

π2s′2K2 µa(r) =
4

π sin(πa)
Ka(r)
K′

a(r)

(
sK′

a(s)
s′

)2

,

which is positive and increasing by Lemma 2.3 (iii); hence, f is increasing and convex.
For log-concavity, let g(K) = log(ηa

K(x)). By (2.8), we get

g′(K) =
8Ka(s)2

π2K2 µa(r) =
4

π sin(πa)
Ka(r)
K′

a(r)
K′

a(s)2,

which is decreasing; hence, f is log-concave. �

https://doi.org/10.1017/S0013091511000356 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091511000356


604 B. A. Bhayo and M. Vuorinen

Theorem 3.8. The function

f(K) =
log ηa

K(x) − log(x)
K − 1

is decreasing from (1,∞) onto(
πKa(r)

sin(πa)K′
a(r)

,
4Ka(r)K′

a(r)
π sin(πa)

)
,

and the function

g(K) =
ηa

K(x) − (x)
K − 1

is increasing from (1,∞) onto

(4r2 sin(πa)Ka(r)K′
a(r)/(πr′2),∞),

where r =
√

x/(x + 1).

Proof. It follows from Theorem 3.7 and Lemma 2.1 that f is monotone. Let s =
ϕa

K(r); by (2.6), l’Hôpital’s rule and definition of µa, we get

lim
K→1

f(K) = lim
K→1

2
K − 1

log
(

sr′

s′r

)

= lim
K→1

8Ka(s)2µa(r)
K2π2

=
8
π2 Ka(r)2µa(r)

=
4Ka(r)K′

a(r)
π sin(πa)

.

By using the fact that K = µa(r)/µa(s) and l’Hôpital’s rule, we get

lim
K→∞

f(K) = lim
K→∞

8µa(s)2Ka(s)2

π2µa(r)

= lim
K→∞

2K′
a(s)2

sin2(πa)µa(r)

=
2Ka(0)2

sin2(πa)µa(r)

=
πKa(r)

sin(πa)K′
a(r)

.

Next, let g(K) = G(K)/H(K), where G(K) = (s/s′)2 − (r/r′)2 and H(K) = K − 1. We
see that G(1) = H(1) = 0 and G(∞) = H(∞) = ∞. We see that

G′(K)
H ′(K)

=
2(sK′

a(s))2

s′2µa(r)
,

and it follows from Lemmas 2.3 (iii) and 2.1 that g(K) is increasing and the required
limiting values follow from ϕa

K(r) = µ−1
a (µa(r)/K). �

https://doi.org/10.1017/S0013091511000356 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091511000356


On generalized complete elliptic integrals and modular functions 605

Remark 3.9. If we take x = 1 in Theorem 3.8, then with t = 4Ka( 1√
2
)2/(π sin(πa))

we have the following:

1. log(λa(K))/(K − 1) is strictly decreasing from (1,∞) onto (π/sin(πa), t);

2. (λa(K) − 1)/(K − 1) is increasing from (1,∞) onto (t sin2(πa),∞).

In particular,

exp
(

π(K − 1)
sin(πa)

)
< λa(K) < exp(t(K − 1))

and

1 + t(K − 1) sin2(πa) < λa(K) < ∞,

respectively, and we get

max
{

exp
(

π(K − 1)
sin(πa)

)
, 1 + t(K − 1) sin2(πa)

}
< λa(K) < et(K−1).

Lemma 3.10. For c ∈ [−3, 0), the function f(r) = Ka(r)c + K′
a(r)c is strictly increas-

ing from (0, 1√
2
) onto (( 1

2π)c, 2Ka( 1√
2
)c).

Proof. By (2.2), we get

f ′(r) =
2(1 − a)cKa(r)c−1(Ea(r) − r′2Ka(r))

rr′ − 2(1 − a)cK′
a(r)c−1(E ′

a(r) − r2K′
a(r))

rr′

=
2(1 − a)c(Ka(r)K′

a(r))c−1

rr′ (h(r) − h(r′)),

and here

h(r) =
r2K′

a(r)1−c

r2 (Ea(r) − r′2Ka(r)),

which is increasing on (0, 1) by [8, Theorem 3.21(1)] and Lemma 2.3 (iii). Hence, f ′(r) < 0
on (0, 1√

2
), and the limiting values are clear. �

Theorem 3.11.

(i) For K > 1, the function log(λa(K))/(K − 1/K) is strictly increasing from (1,∞)
onto (2Ka( 1√

2
)/(π sin(πa)), π/sin(πa)).

(ii) The function log(λa(K) + 1) is convex on (0,∞), and log(λa(K)) is concave.

(iii) The function g(K) = (log(λa(K)))/ log K is strictly increasing on (1,∞). In par-
ticular, for c ∈ (0, 1),

λa(Kc) < (λa(K))c.
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Proof. For (i), let

r = µ−1
a

(
πK

2 sin(πa)

)
, 0 � r � 1√

2
.

Then, by (1.3),

r′ =

√
1 −

(
µ−1

a

(
πK

2 sin(πa)

))2

=

√
1 −

(
µ−1

a

(
Kµa

(
1√
2

)))2

= µ−1
a

(
π

2K sin(πa)

)
,

we also observe that K = K′
a(r)/Ka(r). Now it is enough to prove that the function

f(r) =
2 log(r′/r)

K′
a(r)/Ka(r) − Ka(r)K′

a(r)
=

π log(r′/r)
sin(πa)(µa(r) + µa(r′))

,

is strictly decreasing on (0, 1√
2
). Set f(r) = G(r)/H(r). Clearly, G( 1√

2
) = H( 1√

2
) = 0.

By (2.4), we get
G′(K)
H ′(K)

=
4

π sin(πa)(Ka(r)−2 − Ka(r′)−2)
,

which is strictly decreasing from (0, 1√
2
) onto (2Ka( 1√

2
)/(π sin(πa)), π/sin(πa)) by

Lemma 3.10. Now the proof of (i) follows from Lemma 2.1.

For (ii), it follows from Theorem 3.7 that log(λa(K)) is concave. Letting f(K) =
λa(K) + 1, we have

f(K) =
(

µ−1
a

(
πK

2 sin(πa)

))−2

,

by (1.4) and (1.3). Now we have log f(K) = −2 log y, where µa(y) = πK/(2 sin(πa)). By
(2.4) we get

f ′(K)
f(K)

= −2
y

dy

dK
=

4
π

(y′Ka(y)),

which is decreasing in y by Lemma 2.3 (iii), and increasing in K. Hence, log f(K) is
convex.

For (iii), K > 1, let h(K) = (K − 1/K)/ log K. We get

h′(K) =
(1 + K2) log K − (K2 − 1)

(K log K)2
,

which is positive because

log K >
2(K − 1)
K + 1

>
K2 − 1
K2 + 1
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by [8, § 1.58(4)a]; hence, h is strictly increasing. Also

g(K) = h(K)
log(λa(K))
K − 1/K

=
log(λa(K))

log K

is strictly increasing by (i). This implies that

log(λa(Kc))
c log K

<
log(λa(K))

log K
,

and hence (iii) follows. �

Corollary 3.12. For 0 < r < 1√
2

and t = π2/(2Ka( 1√
2
)2), we have the following.

(i) The function

f(r) =
µa(r) − µa(r′)

log(r′/r)

is increasing from (0, 1√
2
) onto (1, t). In particular,

log(r′/r) < µa(r) − µa(r′) <
π2

2Ka( 1√
2
)2

log(r′/r).

(ii) For g(r) = log(r′/r),

g(r) +
√

(π/sin(πa))2 + g(r)2 < 2µa(r) < tg(r) +
√

(π/sin(πa))2 + t2g(r)2.

Proof. It follows from the proof of Theorem 3.11 (i) that f(r) is increasing, and
limiting values follow easily by l’Hôpital’s rule. For (ii), from the definition of µa we get
µa(r′) = π2/(2 sin(πa))2µa(r); substituting this into (i), we obtain

1 <
µa(r)2 − π2/(2 sin(πa))2

µa(r) log(r′/r)
< t =

π2

2Ka(1
√

2)2
.

This implies that

µa(r)2 − µa(r) log(r′/r) >
π2

(2 sin(πa))2
(3.8)

and

µa(r)2 − tµa(r) log(r′/r) <
π2

(2 sin(πa))2
. (3.9)

We get the left and right inequalities in (ii) by solving (3.8) and (3.9) for µa(r), respec-
tively. �
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4. Three-parameter complete elliptic integrals

The results in this section have counterparts in [3]. For a, b, c > 0, a+b � c, the decreasing
homeomorphism µa,b,c : (0, 1) → (0,∞) is defined by

µa,b,c(r) =
B(a, b)

2
F (a, b; c; r′2)
F (a, b; c; r2)

, r ∈ (0, 1),

where B is the beta function. The (a, b, c)-modular function is defined by

ϕa,b,c
K (r) = µ−1

a,b,c

(
µa,b,c(r)

K

)
.

We define, in the case a < c,

µa,c(r) = µa,c−a,c(r) and ϕa,c
K (r) = ϕa,c−a,c

K (r).

We define the three-parameter complete elliptic integrals of the first and second kinds
for 0 < a < min{c, 1} and 0 < b < c � a + b by

Ka,b,c(r) = 1
2B(a, b)F (a, b; c; r2),

Ea,b,c(r) = 1
2B(a, b)F (a − 1, b; c; r2),

and set
Ka,c(r) = Ka,c−a,c(r) and Ea,c(r) = Ea,c−a,c(r).

Lemma 4.1 (Heikkala et al . [19, Theorem 3.6]). For 0 < a < c � 1, the function
f(r) = µa,c(r) artanh r is strictly increasing from (0, 1) onto (0, ( 1

2B)2).

Lemma 4.2 (Heikkala et al . [19, Lemma 4.1]). Let a < c � 1, K ∈ (1,∞), r ∈
(0, 1), and let s = ϕa,c

K (r) and t = ϕa,c
1/K(r). Then

(i) f1(r) = Ka,c(s)/Ka,c(r) is increasing from (0, 1) onto (1, K),

(ii) f2(r) = s′Ka,c(s)2/(r′Ka,c(r)2) is decreasing from (0, 1) onto (0, 1),

(iii) f3(r) = sK′
a,c(s)

2/(rK′
a,c(r)

2) is decreasing from (0, 1) onto (1,∞),

(iv) g1(r) = Ka,c(t)/Ka,c(r) is decreasing from (0, 1) onto (1/K, 1),

(v) g2(r) = t′Ka,c(t)2/(r′Ka,c(r)2) is increasing from (0, 1) onto (1,∞),

(vi) g3(r) = tK′
a,c(t)

2/(rK′
a,c(r)

2) is increasing from (0, 1) onto (0, 1),

(vii) g4(r) = s/r is decreasing from (0, 1) onto (1,∞),

(viii) g5(r) = t/r is increasing from (0, 1) onto (0, 1).
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Theorem 4.3. For 0 < a < c � 1, the function f(x) = µa,c(1/cosh(x)) is increasing
and concave from (0,∞) onto (0,∞). In particular,

µa,c

(
rs

1 + r′s′

)
� µa,c(r) + µa,c(s) � 2µa,c

(√
2rs

1 + rs + r′s′

)

for all r, s ∈ (0, 1). The second inequality becomes an equality if and only if r = s.

Proof. Let r = 1/cosh(x) and (see [19])

M(r2) =
(

2
B(a, b)

)2

b(Ka,c(r)E ′
a,c(r) + K′

a,c(r)Ea,c(r) − Ka,c(r)K′
a,c(r)).

We get

f ′(x) =
B(a, b)

2
M(r2)

r′2K(r)2
,

which is positive and increasing in r by [19, Lemma 3.4 (1), Theorem 3.12 (2)], and f is
decreasing in x. Hence, f is concave. This implies that

1
2

(
µa,c

(
1

cosh(x)

)
+ µa,c

(
1

cosh(y)

))
� µa,c

(
1

cosh( 1
2 (x + y))

)
,

and we get the second inequality by using the formula(
cosh

(
x + y

2

))2

=
1 + rs + r′s′

2rs

and setting s = 1/cosh(y). Next, f ′(x) is decreasing in x, and f(0) = 0. Then f(x)/x is
decreasing on (0,∞) and f(x + y) � f(x) + f(y) by Lemmas 2.1 and 2.2, respectively.
Hence, the first inequality follows. �

Lemma 4.4. For 0 < a < c � 1, we have

µa,c(r) + µa,c(s) � 2µa,c(
√

rs),

for all r, s ∈ (0, 1), with equality if and only if r = s.

Proof. Clearly,

(r − s)2 � 0 ⇐⇒ 1 + r2s2 � 1 − (r − s)2 + r2s2

⇐⇒ (1 − rs)2 � 1 − r2 − s2 + r2s2

⇐⇒ 1 − rs � r′s′

⇐⇒ 2 � 1 + rs + r′s′

⇐⇒ 1/(rs) � (1 + rs + r′s′)/(2rs).

By using the fact that µa,c is decreasing, we get

µa,c

(√
2rs

1 + rs + r′s′

)
� µa,c(

√
rs),

and the result follows from Theorem 4.3. �
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Theorem 4.5. For K > 1, 0 < a < c and r, s ∈ (0, 1),

tanh(K artanh r) < ϕa,c
K (r).

The inequality is reversed if we replace K by 1/K.

Proof. Let s = ϕa,c
K (r). Then s > r, and by the equality ϕa,c

K (r) = µ−1
a,c(µa,c(r)/K)

and Lemma 4.1 we get

1
K

µa,c(r) artanh s = µa,c(s) artanh s > µa,c(r) artanh r,

which is equivalent to the required inequality. For the case 1/K let x = ϕa,c
1/K(r). Then

x < r, and similarly we get

Kµa,c(r) artanhx = µa,c(x) artanhx < µa,c(r) artanh r,

and this is equivalent to tanh((artanh r)/K) > ϕa,c
1/K(r). �
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Heinonen, T. Kilpeläinen and P. Koskela), Report 83, pp. 5–26 (University of Jyväskylä,
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13. Á. Baricz, Turán type inequalities for generalized complete elliptic integrals, Math. Z.
256 (2007), 895–911.
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