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In a recent investigation of a conjecture on an upper bound for permanents
of (0, l)-matrices (2) we obtained some inequalities involving the function
(r!)1/r which are of interest in themselves. Probably the most interesting of
them, and certainly the hardest to prove, is the inequality

r # - + l ) # ( r ) - ( r - l ) « r ) / f l i - l ) > l , (1)
where <f>(r) = (r!)1/r. In the present paper we prove (1) and other inequalities
involving the function <j)(r).

Theorem 1. If r is a positive integer and <j>(r) = ( r ! ) 1 / r , then

Proof. The lower bound is obtained immediately:

Since log (1 + l/r)> \\r- l/2r2 and log (y/(2nr))>i, it follows that
rlogO + l/O + r"1 log(V(2nr))-l>0.

Therefore
r'1 log (V(27tr)(r/e)0>log (r)-r log (1 + 1/r)

= (r +1) log (r)-r log (r+1),
i.e., (V(2nr)(r/e)

r)1/r>rr+1/(r+l)r-
But /•!>N/(27tr)(r/e)r

and thus (r!)1/ r>rr+1/(r+l)p,

*(r+l) /«r)<

Corollary 1. The functions <j>(r), and r are strictly increasing.
(j>(r) <t>(r)

Corollary 2.

We now proceed to prove inequality (1). The method is to prove that the
function

= x

is strictly concave. The inequality (1) will follow.
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42 H. MINC AND L. SATHRE

Lemma 1. If x> 1, then
0<log (r(x))-{(x-$) log (x)-x+i log (2«)

Proof. We have, by a classical result due to Binet (1) (page 21),
log (r(x)) = (x-i) log (x) -x+i log (2n)+S(x)

where

= f
Joo

It suffices to prove that, for t>0,
0<{ i - r 1 + (e ' - l ) " 1 } r 1 < l (2)

We first show that f(t) = te'+t+2-2e' is positive for t>0. Now,

/'(0= te'-e'+l
and/"(0 = te'>0for />0. Therefore/'(0 >/'(<>) = 0 and thusf(t)>f(p) == 0
for />0. Hence, for />0,

tt-r'+ie'-iy^r1 =f(t)i2t2(e'-\)>o.
In order to prove the upper bound of (2) note that for />0

<(2t2-t+2)e'.
Therefore

t(e'-l) + 2t-2(e'-l)<2t2(e'-l),

{* + («' —I)'1 —r"1}/"1 < 1.
Lemma 2. If x > 1,

< i , w < < i
x F(x) 2x

Proof. We have, by another result due to Binet (1) (page 18),
r'(*)/r(x) = log (*) + £(*) for x>l,where

f
Jo
lo

To prove the lemma we show that for positive t
-Kf'-jl-c-r^-l (3)

Clearly for t> 0 we have (t + l)e~' < 1. Therefore
t-\+e~'<t-te~'

and thus
( l - e - ' r 1 - ' " 1 =(r-l+e-%-te"l)"1<l.

To prove the upper bound of (3) note that for t >0
(t-2)+(t+2)e-'>0;

therefore
2f

and so
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Let \l/(x) = (log (r(x)))' = F(x)/r(x). Then, since
log(r(x+l)) = log(x)+log(r(x)), (4)

wehave ^(x+1) = l/x+i/<x) (5)
Lemma 3. If x> 1, then

Proof. It is known (1) (page 22) that

*'(*)=» E (x+n)"2.
n= 0

Too

Jo
Let fif(x) = v» v-^-r^^ — a n ( j f^ _ Xg(xy y/e prove now that for

Now, £
" = 0

x^6 the function h(x) is concave. The result undoubtedly holds also for
smaller values of x but the assumption x^6 simplifies our proof and the
result is still sufficiently strong to establish our main theorems.

Theorem 2. The function h(x) is strictly concave for x^6.
Proof. We prove that for JC^6 the second derivative of h(x) is negative.

A straightforward, though lengthy, computation using (4) and (5) yields

Differentiating again and simplifying we obtain
h"(x) = g(x){F(x)(l+xF(x

where
F(X) 2 x + 1 i o g ( r ( x + i ) ) -

and
. 4x2 + 3x+l

2 x - l , x - 1 . , _,_„
H , log (x+1).

x+1 (x+1)3 (x+1)3

It remains to prove that F(x)+x(F(x))2 + H(x) is negative. We find suitable
upper bounds for F(x) + H(x) and for x(F(x))2. A simple computation gives
(x+\)3{F(x) + H(x)} = -21og(r(x+l)) + 2 (x+ l )^ (x+ l ) - (x -2 )

-21og(x+l)
log

- ( J C - 2 ) - 2 log (x+1)- (*+ 1)V(*+1),
- log (x+ l ) + x+4-log(27i)-2<5(x+l)
+ 2(x+ l)e(x+ l ) - ( x + l)2«^'(x+1),
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where <5 and e are the functions defined in the proofs of Lemmas 1 and 2.
Applying Lemmas 1, 2 and 3 we obtain

(x+ l)3{F(x) + #(x)}< -log (x+ l) + x+4-log (27t)-l -(x+1).

Therefore
F(x) + tf(x)<(2-log(27i)-log(x+l))/(x+l)3 (6)

We now show that for x^6 the function F(x) takes negative values and find
a lower bound for it. This gives us an upper bound for x(F(x))2.

x2(x+ l)3F(x) = (2x+ l)(x+1) log(r(x+ l))-x(x+ l)2i/<x+1)

-x2(x+l)log(x+l) + x2(x+l).
Therefore

x2(x+l)2F(x) = (2x+ l){(x+i) log (x+1)—(x+ l) + i log (27i) + (5(x+l)}

-x(x+l){log(x+l) + e(x+l)}-x2 log(x+l) + x2,

= (x + i) log (x+ l)-x2 -(3 -log (2n))x + i log (2n)

"""" 1 ~T~ ^^^£ i~ I jO\yC "T* 1 J ~~ XyX ™

Now, by Lemmas 1 and 2,

5(x+l)<l/(x+1) and e(x+l)> — l/(x+l),
and thus

x2(x + l)2F(x)<(x + i) log (x + l ) -x 2 - (3- log (2n))x + i log (2n)

- 1 + = - ^ +x,
x + l

= (x+i) log (x + l ) -x 2 -(2-log (27i))x + i log (2«)+ - ^ - ,
x+ l

<(x + i ) log(x+l)-x2 + 2,
which is negative for x^3 .

In order to obtain a lower bound for F(x) we use again the two lemmas
which state that S>0 and e<0 and obtain

x2(x+ l)2F(x)>(x+i) log (x+1)-x2 -(3-log (27t))x+i log (2a)-1,

> - x 2 - 2 x - l ,

the last inequality holding since (x+i) log (x+1) is positive while

(3-log(27i))x-2x

is negative. We have therefore

and thus
(F(x))2<l/x4 for x^3 (7)

It remains to prove that F(x)+H(x)+x(F(x))2 is negative for x^6. Now,
we have, from (6) and (7),

(x)+x(F(x))2<(2-log (27t)-log (x+ l))/(x+1)3 + 1/x3,

= {x3(3-log(27r)-log(x+l)) + 3x2 + 3x+l}/x3(x+l)3,
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and for x^.6

x3{3 - l og (27t)-log (x+ l)) + 3x2 + 3x+1 gx3(3 - log (I4n)) + 3x2 + 3x+1 < 0.

Hence h"(x)<0 for x^6 and h(x) is strictly concave.

Theorem 3. If r is an integer greater than 1 and <j)(m) = (m!)1/m then

Proof. The function h(x) of Theorem 2 is concave for x~^6. Therefore
h(x+l)+h(x-l)<2h(x) for all x^l. In particular, for an integer r^7 ,

h(r+l) + h(r-\)<2h(r),
and so

/i(r+1) -/j(r)</i(r) -A( r -1 ) ,

In other words, the function

is strictly decreasing for r ^ 7 . But clearly

lim C(r) = 1

and therefore

for all ^
For r<l we obtain (8) by direct computation. The approximate values

of G(2), G(3), C(4), C(5), C(6) are 1156, 1084, 1055, 1036, 1028, respectively.

Theorem 4. If ru ..., rc are integers greater than 1, c^r,, t = 1, ..., c,
and4>(r,) = (r , ! )1^ ,

vv/7/i equality if and only if c = r, = ... = rc.

Proof. We prove that

is a strictly decreasing function of each rt, i.e. that

R =f(ry, ..., r c _ , , r c + l ) / / ( r , , ...,/-

For simplicity, let rc be denoted by r. Then

R = (̂ (r)) X + l/0(r)
0 ( r l ) « ( + l ) K + l / f t l ) '

where X = ^
t =
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Since, by Corollary 1 to Theorem 1, l/$(r) is a strictly decreasing function,
the second fraction in (10) is a proper fraction with a positive numerator and
a positive denominator. Thus, for a fixed r, R increases with K. Now, by
the same corollary,

since r, ̂  c. Therefore
( l ) / « l ) l / « r ) a

by Theorem 3,

= 1.

It follows immediately that f(ru ..., rc) achieves its maximum value when
ru ..., rc have their minimum permissible value, i.e., for c^2, if and only if
ri = ... = rc = c. Then

_ (c-1)! _

and (9) is an equality. If c = 1, then (9) becomes

0 ( ) K)
which is always strict.
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