SOME INEQUALITIES INVOLVING $(r!)^{1 / r}$

by HENRYK MINC and LEROY SATHRE

(Received 14th October 1963)
In a recent investigation of a conjecture on an upper bound for permanents of (0,1)-matrices (2) we obtained some inequalities involving the function $(r!)^{1 / r}$ which are of interest in themselves. Probably the most interesting of them, and certainly the hardest to prove, is the inequality

$$
\begin{equation*}
r \phi(r+1) / \phi(r)-(r-1) \phi(r) / \phi(r-1)>1 \tag{1}
\end{equation*}
$$

where $\phi(r)=(r!)^{1 / r}$. In the present paper we prove (1) and other inequalities involving the function $\phi(r)$.

Theorem 1. If r is a positive integer and $\phi(r)=(r!)^{1 / r}$, then

$$
1<\phi(r+1) / \phi(r)<(r+1) / r
$$

Proof. The lower bound is obtained immediately:

$$
\phi(r+1) / \phi(r)=\left((r+1)^{r} / r!\right)^{1 / r(r+1)}>1
$$

Since $\log (1+1 / r)>1 / r-1 / 2 r^{2}$ and $\log (\sqrt{ }(2 \pi r))>\frac{1}{2}$, it follows that

$$
r \log (1+1 / r)+r^{-1} \log (\sqrt{ }(2 \pi r))-1>0
$$

Therefore

$$
\begin{aligned}
r^{-1} \log \left(\sqrt{ }(2 \pi r)(r / e)^{r}\right) & >\log (r)-r \log (1+1 / r) \\
& =(r+1) \log (r)-r \log (r+1)
\end{aligned}
$$

i.e.,

But

$$
\left(\sqrt{ }(2 \pi r)(r / e)^{r}\right)^{1 / r}>r^{r+1} /(r+1)^{r}
$$

$$
r!>\sqrt{ }(2 \pi r)(r / e)^{r}
$$

and thus
$(r!)^{1 / r}>r^{r+1} /(r+1)^{r}$,
$r^{r+1}(r+1) /(r!)^{1 / r}<(r+1)^{r+1}$,
$r^{r+1}(r+1)!/(r!)^{(r+1) / r}<(r+1)^{r+1}$,
$r^{r+1}(\phi(r+1) / \phi(r))^{r+1}<(r+1)^{r+1}$,
i.e.,

$$
\phi(r+1) / \phi(r)<(r+1) / r .
$$

Corollary 1. The functions $\phi(r), \frac{r}{\phi(r)}$ and $r \frac{\phi(r+1)}{\phi(r)}$ are strictly increasing.
Corollary 2.

$$
r<r \frac{\phi(r+1)}{\phi(r)}<r+1
$$

We now proceed to prove inequality (1). The method is to prove that the function

$$
h(x)=x \frac{(\Gamma(x+2))^{1 /(x+1)}}{(\Gamma(x+1))^{1 / x}}
$$

is strictly concave. The inequality (1) will follow.

Lemma 1. If $x>1$, then

$$
0<\log (\Gamma(x))-\left\{\left(x-\frac{1}{2}\right) \log (x)-x+\frac{1}{2} \log (2 \pi)\right\}<1 / x<1 .
$$

Proof. We have, by a classical result due to Binet (1) (page 21),

$$
\log (\Gamma(x))=\left(x-\frac{1}{2}\right) \log (x)-x+\frac{1}{2} \log (2 \pi)+\delta(x)
$$

where

$$
\delta(x)=\int_{0}^{\infty}\left\{\frac{1}{2} \cdot t^{-1}+\left(e^{t}-1\right)^{-1}\right\} e^{-t x} t^{-1} d t
$$

It suffices to prove that, for $t>0$,

$$
\begin{equation*}
0<\left\{\frac{1}{2}-t^{-1}+\left(e^{t}-1\right)^{-1}\right\} t^{-1}<1 . \tag{2}
\end{equation*}
$$

We first show that $f(t)=t e^{t}+t+2-2 e^{t}$ is positive for $t>0$. Now,

$$
f^{\prime}(t)=t e^{t}-e^{t}+1
$$

and $f^{\prime \prime}(t)=t e^{t}>0$ for $t>0$. Therefore $f^{\prime}(t)>f^{\prime}(0)=0$ and thus $f(t)>f(0)=0$ for $t>0$. Hence, for $t>0$,

$$
\left\{\frac{1}{2}-t^{-1}+\left(e^{t}-1\right)^{-1}\right\} t^{-1}=f(t) / 2 t^{2}\left(e^{t}-1\right)>0 .
$$

In order to prove the upper bound of (2) note that for $t>0$

Therefore

$$
\begin{aligned}
2 t^{2}+t+2 & <t^{4}+\frac{3}{2} t^{3}+2 t^{2}+t+2 \\
& =\left(2 t^{2}-t+2\right)\left(1+t+\frac{1}{2} t^{2}\right) \\
& <\left(2 t^{2}-t+2\right) e^{t}
\end{aligned}
$$

i.e.,

$$
t\left(e^{t}-1\right)+2 t-2\left(e^{t}-1\right)<2 t^{2}\left(e^{t}-1\right)
$$

$$
\left\{\frac{1}{2}+\left(e^{t}-1\right)^{-1}-t^{-1}\right\} t^{-1}<1 .
$$

Lemma 2. If $x>1$, then

$$
-\frac{1}{x}<\frac{\Gamma^{\prime}(x)}{\Gamma(x)}-\log (x)<-\frac{1}{2 x}<0 .
$$

Proof. We have, by another result due to Binet (1) (page 18),

$$
\Gamma^{\prime}(x) / \Gamma(x)=\log (x)+\varepsilon(x) \text { for } x>1
$$

where

$$
\varepsilon(x)=\int_{0}^{\infty}\left\{t^{-1}-\left(1-e^{-t}\right)^{-1}\right\} e^{-t x} d t
$$

To prove the lemma we show that for positive t

$$
\begin{equation*}
-1<t^{-1}-\left(1-e^{-t}\right)^{-1}<-\frac{1}{2} . \tag{3}
\end{equation*}
$$

Clearly for $t>0$ we have $(t+1) e^{-t}<1$. Therefore

$$
t-1+e^{-t}<t-t e^{-t}
$$

and thus

$$
\left(1-e^{-t}\right)^{-1}-t^{-1}=\left(t-1+e^{-t}\right)\left(t-t e^{-t}\right)^{-1}<1
$$

To prove the upper bound of (3) note that for $t>0$
therefore
and so

$$
(t-2)+(t+2) e^{-t}>0
$$

$$
2 t-2+2 e^{-t}>t-t e^{-t}
$$

$$
\left(1-e^{-t}\right)^{-1}-t^{-1}=\left(t-1+e^{-t}\right)\left(t-t e^{-t}\right)^{-1}>\frac{1}{2}
$$

Let $\psi(x)=(\log (\Gamma(x)))^{\prime}=\Gamma^{\prime}(x) / \Gamma(x)$. Then, since

$$
\begin{equation*}
\log (\Gamma(x+1))=\log (x)+\log (\Gamma(x)) \tag{4}
\end{equation*}
$$

we have

$$
\begin{equation*}
\psi(x+1)=1 / x+\psi(x) \tag{5}
\end{equation*}
$$

Lemma 3. If $x>1$, then

$$
\psi^{\prime}(x)>1 / x .
$$

Proof. It is known (1) (page 22) that

$$
\begin{gathered}
\psi^{\prime}(x)=\sum_{n=0}^{\infty}(x+n)^{-2} \\
\sum_{n=0}^{\infty}(x+n)^{-2}>\int_{0}^{\infty}(x+t)^{-2} d t=1 / x
\end{gathered}
$$

Now,
Let $g(x)=\frac{(\Gamma(x+2))^{1 /(x+1)}}{(\Gamma(x+1))^{1 / x}}$ and $h(x)=x g(x)$. We prove now that for $x \geqq 6$ the function $h(x)$ is concave. The result undoubtedly holds also for smaller values of x but the assumption $x \geqq 6$ simplifies our proof and the result is still sufficiently strong to establish our main theorems.

Theorem 2. The function $h(x)$ is strictly concave for $x \geqq 6$.
Proof. We prove that for $x \geqq 6$ the second derivative of $h(x)$ is negative. A straightforward, though lengthy, computation using (4) and (5) yields

$$
\begin{aligned}
& g^{\prime}(x)=g(x)\left\{\frac{1}{(x+1)^{2}}-\frac{\psi(x+1)}{x(x+1)}+\frac{2 x+1}{x^{2}(x+1)^{2}} \log (\Gamma(x+1))-\frac{\log (x+1)}{(x+1)^{2}}\right\} \\
& h^{\prime}(x)=g(x)+x g^{\prime}(x) \\
& \quad=g(x)\left\{1+\frac{2 x+1}{x(x+1)^{2}} \log (\Gamma(x+1))-\frac{\psi(x+1)}{x+1}+\frac{x}{(x+1)^{2}}-\frac{x \log (x+1)}{(x+1)^{2}}\right\} .
\end{aligned}
$$

Differentiating again and simplifying we obtain

$$
h^{\prime \prime}(x)=g(x)\{F(x)(1+x F(x))+H(x)\}
$$

where

$$
F(x)=\frac{2 x+1}{x^{2}(x+1)^{2}} \log (\Gamma(x+1))-\frac{\psi(x+1)}{x(x+1)}+\frac{1}{(x+1)^{2}}-\frac{\log (x+1)}{(x+1)^{2}}
$$

and

$$
\begin{aligned}
& H(x)=\frac{3 x+1}{x(x+1)^{2}} \psi(x+1)-\frac{4 x^{2}+3 x+1}{x^{2}(x+1)^{3}} \log (\Gamma(x+1)) \\
& \quad-\frac{\psi^{\prime}(x+1)}{x+1}-\frac{2 x-1}{(x+1)^{3}}+\frac{x-1}{(x+1)^{3}} \log (x+1) .
\end{aligned}
$$

It remains to prove that $F(x)+x(F(x))^{2}+H(x)$ is negative. We find suitable upper bounds for $F(x)+H(x)$ and for $x(F(x))^{2}$. A simple computation gives $(x+1)^{3}\{F(x)+H(x)\}=-2 \log (\Gamma(x+1))+2(x+1) \psi(x+1)-(x-2)$

$$
\begin{aligned}
& -2 \log (x+1)-(x+1)^{2} \psi^{\prime}(x+1), \\
= & -2\left\{\left(x+\frac{1}{2}\right) \log (x+1)-(x+1)+\frac{1}{2} \log (2 \pi)+\delta(x+1)\right\} \\
& +2(x+1)\{\log (x+1)+\varepsilon(x+1)\} \\
& -(x-2)-2 \log (x+1)-(x+1)^{2} \psi^{\prime}(x+1), \\
= & -\log (x+1)+x+4-\log (2 \pi)-2 \delta(x+1) \\
& +2(x+1) \varepsilon(x+1)-(x+1)^{2} \psi^{\prime}(x+1),
\end{aligned}
$$

where δ and ε are the functions defined in the proofs of Lemmas 1 and 2. Applying Lemmas 1, 2 and 3 we obtain

$$
(x+1)^{3}\{F(x)+H(x)\}<-\log (x+1)+x+4-\log (2 \pi)-1-(x+1)
$$

Therefore

$$
\begin{equation*}
F(x)+H(x)<(2-\log (2 \pi)-\log (x+1)) /(x+1)^{3} . \tag{6}
\end{equation*}
$$

We now show that for $x \geqq 6$ the function $F(x)$ takes negative values and find a lower bound for it. This gives us an upper bound for $x(F(x))^{2}$.
$x^{2}(x+1)^{3} F(x)=(2 x+1)(x+1) \log (\Gamma(x+1))-x(x+1)^{2} \psi(x+1)$

$$
-\mathrm{x}^{2}(x+1) \log (x+1)+x^{2}(x+1)
$$

Therefore

$$
\begin{aligned}
x^{2}(x+1)^{2} F(x)= & (2 x+1)\left\{\left(x+\frac{1}{2}\right) \log (x+1)-(x+1)+\frac{1}{2} \log (2 \pi)+\delta(x+1)\right\} \\
& -x(x+1)\{\log (x+1)+\varepsilon(x+1)\}-x^{2} \log (x+1)+x^{2} \\
= & \left(x+\frac{1}{2}\right) \log (x+1)-x^{2}-(3-\log (2 \pi)) x+\frac{1}{2} \log (2 \pi) \\
& -1+(2 x+1) \delta(x+1)-x(x+1) \varepsilon(x+1) .
\end{aligned}
$$

Now, by Lemmas 1 and 2,
and thus

$$
\begin{aligned}
& x^{2}(x+1)^{2} F(x)<\left(x+\frac{1}{2}\right) \log (x+1)-x^{2}-(3-\log (2 \pi)) x+\frac{1}{2} \log (2 \pi) \\
&-1+\frac{2 x+1}{x+1}+x
\end{aligned}
$$

$$
\begin{aligned}
& =\left(x+\frac{1}{2}\right) \log (x+1)-x^{2}-(2-\log (2 \pi)) x+\frac{1}{2} \log (2 \pi)+\frac{x}{x+1} \\
& <\left(x+\frac{1}{2}\right) \log (x+1)-x^{2}+2
\end{aligned}
$$

which is negative for $x \geqq 3$.
In order to obtain a lower bound for $F(x)$ we use again the two lemmas which state that $\delta>0$ and $\varepsilon<0$ and obtain

$$
\begin{aligned}
x^{2}(x+1)^{2} F(x) & >\left(x+\frac{1}{2}\right) \log (x+1)-x^{2}-(3-\log (2 \pi)) x+\frac{1}{2} \log (2 \pi)-1, \\
& >-x^{2}-2 x-1,
\end{aligned}
$$

the last inequality holding since $\left(x+\frac{1}{2}\right) \log (x+1)$ is positive while $(3-\log (2 \pi)) x-2 x$
is negative. We have therefore

$$
F(x)>-1 / x^{2}
$$

and thus

$$
\begin{equation*}
(F(x))^{2}<1 / x^{4} \text { for } x \geqq 3 . \tag{7}
\end{equation*}
$$

It remains to prove that $F(x)+H(x)+x(F(x))^{2}$ is negative for $x \geqq 6$. Now, we have, from (6) and (7),

$$
\begin{aligned}
F(x)+H(x)+x(F(x))^{2} & <(2-\log (2 \pi)-\log (x+1)) /(x+1)^{3}+1 / x^{3} \\
& =\left\{x^{3}(3-\log (2 \pi)-\log (x+1))+3 x^{2}+3 x+1\right\} / x^{3}(x+1)^{3}
\end{aligned}
$$

and for $x \geqq 6$

$$
x^{3}(3-\log (2 \pi)-\log (x+1))+3 x^{2}+3 x+1 \leqq x^{3}(3-\log (14 \pi))+3 x^{2}+3 x+1<0
$$

Hence $h^{\prime \prime}(x)<0$ for $x \geqq 6$ and $h(x)$ is strictly concave.
Theorem 3. If r is an integer greater than 1 and $\phi(m)=(m!)^{1 / m}$ then

$$
\begin{equation*}
r \frac{\phi(r+1)}{\phi(r)}-(r-1) \frac{\phi(r)}{\phi(r-1)}>1 \tag{8}
\end{equation*}
$$

Proof. The function $h(x)$ of Theorem 2 is concave for $x \geqq 6$. Therefore $h(x+1)+h(x-1)<2 h(x)$ for all $x \geqq 7$. In particular, for an integer $r \geqq 7$,

$$
h(r+1)+h(r-1)<2 h(r)
$$

and so

$$
h(r+1)-h(r)<h(r)-h(r-1)
$$

i.e.,

$$
(r+1) \frac{\phi(r+2)}{\phi(r+1)}-r \frac{\phi(r+1)}{\phi(r)}<r \frac{\phi(r+1)}{\phi(r)}-(r-1) \frac{\phi(r)}{\phi(r-1)}
$$

In other words, the function

$$
G(r)=r \frac{\phi(r+1)}{\phi(r)}-(r-1) \frac{\phi(r)}{\phi(r-1)}
$$

is strictly decreasing for $r \geqq 7$. But clearly

$$
\lim _{r \rightarrow \infty} G(r)=1
$$

and therefore

$$
G(r)>1
$$

for all $r \geqq 7$.
For $r<7$ we obtain (8) by direct computation. The approximate values of $G(2), G(3), G(4), G(5), G(6)$ are $1 \cdot 156,1 \cdot 084,1 \cdot 055,1 \cdot 036,1 \cdot 028$, respectively.

Theorem 4. If r_{1}, \ldots, r_{c} are integers greater than $1, c \leqq r_{t}, t=1, \ldots, c$, and $\phi\left(r_{t}\right)=\left(r_{t}!\right)^{1 / r_{t}, \text { then }}$

$$
\begin{equation*}
\sum_{t=1}^{c} \frac{1}{\phi\left(r_{t}-1\right)} \leqq \prod_{t=1}^{c} \frac{\phi\left(r_{t}\right)}{\phi\left(r_{t}-1\right)} \tag{9}
\end{equation*}
$$

with equality if and only if $c=r_{1}=\ldots=r_{c}$.
Proof. We prove that

$$
f\left(r_{1}, \ldots, r_{c}\right)=\sum_{t=1}^{c} \frac{1}{\phi\left(r_{t}-1\right)} \prod_{j=1}^{c} \frac{\phi\left(r_{j}-1\right)}{\phi\left(r_{j}\right)}
$$

is a strictly decreasing function of each r_{i}, i.e. that

$$
R=f\left(r_{1}, \ldots, r_{c-1}, r_{c}+1\right) / f\left(r_{1}, \ldots, r_{c-1}, r_{c}\right)<1
$$

For simplicity, let r_{c} be denoted by r. Then

$$
\begin{equation*}
R=\frac{(\phi(r))^{2}}{\phi(r-1) \phi(r+1)} \frac{K+1 / \phi(r)}{K+1 / \phi(r-1)}, \cdots \tag{10}
\end{equation*}
$$

where $K=\sum_{t=1}^{c-1} 1 / \phi\left(r_{t}-1\right)$.

Since, by Corollary 1 to Theorem $1,1 / \phi(r)$ is a strictly decreasing function, the second fraction in (10) is a proper fraction with a positive numerator and a positive denominator. Thus, for a fixed r, R increases with K. Now, by the same corollary,

$$
K \leqq \frac{c-1}{\phi(c-1)} \leqq \frac{r-1}{\phi(r-1)}
$$

since $r_{t} \geqq c$. Therefore

$$
\begin{aligned}
R & \leqq \frac{(r-1) / \phi(r-1)+1 / \phi(r)}{r \phi(r+1)}(\phi(r))^{2}, \\
& =\frac{\phi(r)}{r \phi(r+1)}\left\{1+(r-1) \frac{\phi(r)}{\phi(r-1)}\right\}, \\
& <\frac{\phi(r)}{r \phi(r+1)} \frac{r \phi(r+1)}{\phi(r)}, \text { by Theorem } 3, \\
& =1 .
\end{aligned}
$$

It follows immediately that $f\left(r_{1}, \ldots, r_{c}\right)$ achieves its maximum value when r_{1}, \ldots, r_{c} have their minimum permissible value, i.e., for $c \geqq 2$, if and only if $r_{1}=\ldots=r_{c}=c$. Then

$$
f\left(r_{1}, \ldots, r_{c}\right)=\frac{c}{\phi(c-1)}\left(\frac{\phi(c-1)}{\phi(c)}\right)^{c}=c \frac{(\phi(c-1))^{c-1}}{(\phi(c))^{c}}=c \frac{(c-1)!}{c!}=1
$$

and (9) is an equality. If $c=1$, then (9) becomes

$$
\frac{1}{\phi(r-1)} \leqq \frac{\phi(r)}{\phi(r-1)}
$$

which is always strict.
This research was supported by the United States Air Force Office of Scientific Research.

REFERENCES

(1) A. Erdélyı et al., Higher Transcendental Functions, 1 (New York, 1953).
(2) Henryk Minc, Upper bounds for permanents of (0,1)-matrices, Bull. Amer. Math. Soc., 69 (1963), 789-791.

University of California, Santa Barbara
AND
University of Florida, Gainesville

