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Abstract

If m and n are natural numbers satisfying 1 S m < n let ( > denote the least integer k such

that the statement:
'Every (0,1) matrix with n columns, with constant row-sum m, and with at least k distinct
rows, has rank n'

is true. T h e n / " \ = f " ~ 1 ) + 1 for m a 2, n a m2 +2 . Further, / " \ = / " \ for 1 § m < n.
\ml \ m ) \ml \n - m /

1. Introduction

Let m and n be natural numbers satisfying 1 S m < n. With every

non-empty family & of distinct m-element subsets of {1,2,3, ••-,«} can be

associated a homgeneous system of equations in the real unknowns

Xi, X2, X3, ' * ', Xn '.

2 X,- = 0 (A e &).

The coefficient matrix of this system is a (0,1) matrix with n columns, \5F\

distinct rows and constant row-sum m. Which such matrices have rank n?

Equivalently: Which such systems have Xi = x2 = x3 = • • • = xn = 0 as their

only solution? Let ( ) denote the least integer k such that the statement:
\m/

'For every non-empty family & of m -element subsets of {1,2,3, • • - , « }

with at least k distinct elements the system 2 i e AXi = 0 (A G 3F) has

Xi = x2 = x3 = • • • = xn = 0 as its only solution'
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[2] Systems of linear equations 267

is true. Notice that k = ( I has this property and that ( > = n for n S 2.

For each m ^ l , ( ) is evaluated for all but a finite number of n. In
\ml

particular, it is shown that ( ) = ( I + 1 for m g 2, n g m 2 + 2. The
v \ml \ m )

proof uses certain combinatorial inequalities. Also, it is shown that (

) for 1 g m < n. Applications, concerning uniqueness of solution, are

made to more general real systems of linear equations.

2. Main theorem

Let 1 Si m < n. The family (S, consisting of those m -element subsets of

( -I \

I elements and the system

2 ^ = 0 ( A 6 « )
iEA

does not have x, = x2 = x3 = • • • = xn = 0 as its only solution since xn can be

arbitrary. Thus / " \ g (n ~ l)+ 1.

THEOREM 2.1. / n ) = (n ~ l) + 1 for m g 2 and n a m2 + 2.

\ml \ m I '
REMARK. The cancellation law of addition is used in the proof. The

proof is divided into five steps and involves several combinatorial inequalities.
Establishing the validity of these inequalities, although necessary for the
proof, adds nothing to its understanding. The more difficult inequalities are
numbered lx to I4 and are dealt with in the fifth and final step.

PROOF. It suffices to show that if if is a family of m -element subsets of

( i \

I + 1 and Xi, x2, x3, • • •, xn are real num-

bers satisfying S,eAXi = I^BX, (A, B G if) then x, = x2 = x3 = • • • = xn.

Step 1. It is shown that there is a subset 'X of {1,2,3, •••, n} with
| % | = 2m - 3 such that x{ = x, whenever i, j G %c (where %c denotes the
complement of 3"):
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For every (m — l)-element subset S of {1,2,3, •••, n} let qs be the
number of elements of if which contain S. Then

tit

If qs = n - 2 m + 3 we may take 3£ to be <3/c where *& is any subset of
{i: S U {i} £ if} of order n - 2m + 3. Suppose then, that qs § n - 2m + 2 for
every S. There exists S, satisfying

m

Since

f / n - l \ .1 fn-l\m\\ )+ \\ ml I .
1 \ w / K \ m / _(n-

m-\l \m-\

it follows that qSl= n - 2m + 2. Suppose that k distinct (m - l)-element
subsets Si have been found satisfying qSl = n - 2m + 2 and that l g l t S

m l . I + m — 1. Since
\m - 2 /

there js an (w - l)-element subset Sk+1 distinct from Sf (1 § i g fe)such that

m

\m -

It is easy to verify that

m {(n~1)+l}-k(n-2rn+2)
U m '. * - > n - 2 « + l,

\m - 1/

s o qsk+,= n—2m+2. It follows that there are m l . ) + m distinct
\m — II

(m - l)-element subsets S of {1,2,3, • • •, n} satisfying qs = n -2m +2. Let
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cr = m ( - ) + m. By using the cancellation law of addition it follows that

there are a (possibly not distinct) (2m - 2)-element subsets Bp(l S p S cr) of
{1,2,3, ••-,«} such that

(a) i, j £ Bp (some p) implies x> = x;;
(b) From U I S p S o .B p can be chosen a distinct (m — l)-element subsets.

If K = | Ulapa<,Bp | then, by (b), ( m 1 J = <r- Since

it follows that K > 2m - 2. Hence BP1 / BK for some p, distinct from p2. Now
| BP1 fl BK\ % 2m - 3 and (BPl U Bre)

c is non-empty (since n g 4m - 3). If
i0 £ (BPl U B^Y and /' £ (BP1 n B^)' we have x, = xh by (a). The subset % can
be taken to be any (2m - 3)-element subset of {1,2,3, • • •, n} containing
BP1 n BK.

Step 2. It is shown that there is a member A of .#" which is disjoint
from %:

This follows from the inequality:

i - l \ . / n \ _ / n - 2m 4- 3
m / \m / V m

Step 3. It is shown that, given any t distinct elements of {1,2,3, • • •, n}
with l g f ^ 2m - 3 there is an element of if which contains one and only one
of these t elements:

In all, there are t\ . ) m -element subsets of {1,2,3, • • •, n} which
\m — 1/

contain precisely one of the t given elements. The desired result follows from
the inequality:

Step 4. Assume that the combinatorial inequalities J i - / 4 are valid. By
the result of Step 1, JC, = xt whenever j , / E %?c and \3£\ = 2m - 3 . Let the
subset A be as in Step 2. By the result of Step 3, there is an element B of if
which contains precisely one element, rx say, of d£. Since 1,ieBx, = S,€AXp it
follows by cancellation that xr, = xt (jE%":). Thus x, = x; whenever
i,j £ IXC U{r,}. Similarly, by applying the result of Step 3 to the set 2£\{rx] we
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deduce that xn = x, (/G^f'Ufr,}) for some r2 satisfying r2E^\{r,}. Thus
Xi = Xj whenever i, / G 3£c U {ru r2}. Continuing in this way, we finally obtain
the result that Xi = x2= x3= • • • = xn.

Step 5. It remains to establish the validity of inequalities I,-h:

This inequality is easily shown to be equivalent to
m-2J Im(m-l)

The latter is clearly valid for m = 2, n g 6. If m g 3, n g m2 + 2 we have

^ n j - 1 - 0 and C l ^ n - l . Hence,

Clearly, it suffices to show that

ffl — Z

This is equivalent to showing that

sy m -1 m-2 m-2

(m g 3).

Since 2m'l/(m -1)S2™ 2 and m 2 a4m - 7 for m g 3 it follows that

ttl —

(/3): g - (m §2 , n g m2 + 2).

This inequality is easily shown to be equivalent to

rV In - 3m +4+ r\ n - 3 m + 4 _ . 2 „.
II • g l (m g2 , n g mz + 2).
Ki \ n - m + r / m
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Notice that, if m § 2 and n, =§ n2 = m2 + 2 we have

n, — 3m + 4+ r_̂  n2 — 3m + 4 + r .. ..
g lirgm-l).

Hi — m + r n2 — m + r

Therefore, it suffices to show that

^ \ - m + 2 + r / m

If

n( w ^ m + 2 + r j f°r

then

where

(m-l)(m-2)
m - m +3 v 7

/ 2 \m~l

Since bm S 1 we have a m g l l —rl (mS2) . The sequence cm =

2 N"1"'
1 - -——I is monotone non-decreasing for m g 2. Hence am g c4 = j? for

m g 4. Thus,

w 2 - 3 m + 6 ^ m 2 - 3 m + 6 ^ . „ _ _„
am § z^ ^ 1 for m g 30.

m 27m

That am - (m 2 -3m +6)/m g 1 is true for 2 S m S 2 9 is easily checked di-
rectly.

We may suppose m g 3 , « g m 2 + 2 , 2 ^ f g 2 m - 3 . It is easily shown that
this inequality is equivalent to

^ , „ ^ m2
 + 2 , 2 ^ , g 2m - 3).
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If n, g n2 g m2 + 2 and m S 3, 2 g t ^ 2m - 3 we have

rii — m — t - h 2 + r ~ n 2 — m — t + 2 + r '

Therefore, it suffices to show that

,_o \m - m + 4 - f + r) v

Since

'ft / m2 + 3-t + r \ s / m 2 + 3 - f V '

it suffices to show that

m2+3-t
=m 2 - m + 4 - t

or equivalently, that

f+y5r^j -=im 2 -m+4 ( m 5 3 , 2 S ( g 2 m - 3 ) .

Since the function t >-» f7^1 is monotone decreasing it suffices to show that

2m-?> + -—W~J_ . g m 2 - m + 4 (m g 3)
( 2 w — j) 2 m-*— 1

or, that

m -3m +7

Clearly, this is true for m = 3 or 4. If m g 5 and x = 2m - 4 we have to show
that

Now

2x+4 ^ 2 ^ ^
g — for x § 6.JC2 + 2X + 2 0 ~ x

Also, 1 + JC g (1 + (2/JC))* for x g 6. The result follows.
This completes the proof of the theorem.
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3. Extension and application

The number ( ) has been evaluated for m = 1, n g 2 and for m =J 2,

n =S m2 + 2. In fact, ( ) = I I + 1 in these cases. The domain of evalua-

tion of ( ) can be extended by the following observation:

If 1 S m < n we have ( ) = (

\m I \n - m
For, suppose 5̂  is a family of m -element subsets of {1,2,3, • • •, n} with

n ) and take real numbers x,,X2, x3, • • •, xn satisfying ~ZieAXi = 0
n- m I

(A £ iP). If 5 = SlsiSnXi and y, = x> —s/(n —m) we have 'Zi<EA<yi=0

(A £ <f). Hence, by definition of / _" V y> = 0 (1 ̂  i ^ n). Thus x, = 0

(1 g i § n). This shows that ( ) S ( ). The reverse inequality follows
\m I \n - m I M

by symmetry.
„, , r / 6 \ / 6 \ / 5 \ _L 1 11 ^ / n \ / " \ t

T h u s , f o r e x a m p l e , ( ) = ( ) = ( ) + l = l l a n d ( _ ) = ( . > = « f o r
n i = 2 .

/ ft \
The numbers ( ) provide sufficient conditions for the uniqueness of

solution of certain homgeneous real linear systems of equations. We now
show how these conditions can be applied to a more general class of real
linear systems to establish uniqueness of solution.

' n
Let n, m and k be natural numbers satisfying l g m < n and k §

Let E be a real linear system of equations in unknowns Xi, x2, x3, • • •, xn such
that

(I) The system reads "2,"=i a,7x, = b (i = 1,2,3, • • •, fc)"; (That is, b is
the same for all equations of the system).

(II) The matrix (ai;) has precisely m non-zero entries in each row;
(III) The non-zero coefficients of x, are equal;
(IV) No two equations are identical.

THEOREM 3.1. Each system E (as above) has a unique solution,
x, = blajtn (} = 1,2,3, • • •, n) where a, is any non-zero coefficient of x,.

PROOF. Since k § ( ) g I I + 1, every x, has a non-zero coeffi-
\ml \ m } J '
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cient a,. If we put y, = a,x, — b/m the system becomes 2>eA y> = 0
where 5̂  is a family of m-element subsets of {1,2,3, • • •, n} with

(A

. It follows from the definition of
ml \m

Hence xy = fc/a,m 0 = 1,2,3,

EXAMPLE. The system

f 0 0 4 3 2 1

that y, =0 0 = 1,2,

, n) and the theorem is proved.
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has unique solution Xi = h, x2 = 2%, x3 =
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x2

x 4 = I, x5 = 1, x6 = 1-

https://doi.org/10.1017/S1446788700018899 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018899

