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ON DECOMPOSABILITY OF COMPACT 
PERTURBATIONS OF NORMAL OPERATORS 

M. RADJABALIPOUR AND H. RADJAVI 

T h e main purpose of this paper is to show tha t a bounded Hilbert-space 
operator whose imaginary par t is in the Schat ten class Cp(l ^ p < oo ) is 
strongly decomposable. This answers affirmatively a question raised by 
Colojoara and Foias [6, Section 5(e) , p. 218]. 

In case 0 ^ T* — T G Ci, it was shown by B. Sz.-Nagy and C. Foias 
[2, p. 442; 25, p. 337] tha t T has many properties analogous to those of a 
decomposable operator and by A. Jafarian [11] t ha t T is strongly decompos­
able. T h e authors of [11] and [24] employ the properties of the characteristic 
function of the contraction operator obtained from the Cayley transform of T; 
their method is not applicable to the general case where T* — T is merely 
an operator of class Cv (1 ^ p < co). 

T h e techniques of the present paper are mainly inspired from the results of 
[12; 13; 17; 20]. We s ta te our results in a rather more general context. All we 
need is t ha t the operators under consideration satisfy the following conditions. 

Condition ( I ) . Let / be a C2 Jordan curve. A Hilbert-space operator T is 
said to satisfy Condition (I) if 

(a) it is the sum of a normal operator with spectrum on / and an operator 
of the Schat ten class Cv (1 ^ p < oo ), and 

(b) <T(T) does not fill the interior of J. 
(The class Cv is the ideal of compact operators T such tha t J^iVnY < °° 

where /-ti, /*2, • • . are the eigenvalues of (T*T)l/2 arranged in decreasing order 
and repeated according to multiplicity for 1 ^ p < oo ; Cœ is the ideal of all 
compact operators.) 

Condition ( I I ) . We say T satisfies Condition ( I I ) if T\M and (T^M^* 
satisfy Condition (I) for all (trivial or non-trivial) hyperinvariant subspaces 
M of T. 

We conjecture t ha t Conditions (I) and (II) are equivalent; Lemma 3 below 
proves this equivalence in some special cases. 

1. M a i n resu l t s . We begin with some lemmas. 

LEMMA 1. If T satisfies Condition (I) then a(T)\J consists of isolated points 
of <T(T). Moreover if X G a(T)\J and C is a sufficiently small circle around X, 
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then the projection 

£(X) = (2iri)~1 I (z - TYldz 
J c 

has a finite dimensional range. 

Proof. Let T = A + B where A is a normal operator, a (A) Ç / , and B G Cp. 
Since (T - z)-1 = [I + (A - z)~lB]~l{A - z)~\ the first assertion follows 
from [7, Lemma VIL 6.13, p. 592]. Since [I + (A - z)-lB]~l = 
I - {A - z)~lB[I + (A - z)~lB]-\ we have 

E(\) = (2iri)~l I (A - z)~lB[I + (A - zy'Br^A - z)~ldz, 
J c 

where Cis a circle excluding X from o-(r)\{X}. Thus E(\) is compact and hence 
has a finite dimensional range. 

Remark 1. If Tsatisfies Condition (I) then <r(T) is nowhere dense and thus T 
has the single valued extension property [9, Lemma XVI. 5.1, p. 2149]. (An 
operator T on a Banach space X is said to have the single valued extension 
property if there exists no non-zero X-valued analytic function / such that 
(z - T)f(z) = 0.) 

Remark 2. Lem ma 1 remains true if p is replaced by oo. 

LEMMA 2. Let A be a normal operator whose spectrum is a proper subset of a C2 

Jordan curve J and let B be an operator of the Schatten class Cp(l S P < °° )• 
Then T = A + B satisfies Condition (I). 

Proof. Since a(T) is bounded, there exists a Jordan curve J\ such that 
a (A) ÇZ Jx and a(T) does not fill the interior of J\. Thus a(T)\Ji is countable 
and hence a(T) does not fill the interior of J. (See the proof of Lemma 1.) 

LEMMA 3. (a) / / T* — T G Cp (1 ^ p < oo ) then T satisfies Condition (II). 
(b) / / T*T — / G Cp (1 ^ £ > < o o ) and a(T) does not fill the unit disc then T 

satisfies Condition (II). 

Proof. The proof of (a) follows from Lemma 2 and the fact that the property 
S* — S Ç Cp is inherited by the restrictions of 5 to arbitrary invariant sub-
spaces. For part (b) assume T*T — I £ Cp (\ ^ p < oo ) and <r(T) does not 
fill the unit disc. Since the image of T in the Calkin algebra is unitary, it 
follows that X — T is a Fredholm operator for |X| ^ 1. Let g(X) = index 
(X - D = dim N(\ - T) - dim i?(X - 7^- for |X| ^ 1. Since g is an 
integer-valued continuous function of X and g(\) = 0 for X G p(T), g(X) = 0 
for |X| ^ 1. In particular dim N(T) = dim i^(r)-1 < oo. Let T = U(T*T)1/2 

where U can be chosen to be a unitary operator, because dim N((T*T)1/2) = 
dim N(T) = dim ^(T)-1 . Now the relation (T*T)l/2 - I = (T*T - I)-
[(T*T)1/2 + I]'1 implies that (T*T)1/2 - I £ Cp. Thus T (and consequently 
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r*) satisfies Condition (I) with J = unit circle. It follows that TT* — I £ Cv\ 
and since the condition S*S — I 6 Cv is inherited by the restrictions of S to 
arbitrary invariant subspaces, we conclude that T satisfies Condition (II). 
(For the material related to index theory we refer the reader to [4, p. 70-71] 
and the references cited there.) 

Notations. Let F be a closed subset of the plane and let T be a (bounded 
linear) operator defined on a Hilbert space 77 We will fix the following nota­
tions throughout the paper. 

(1) NT(F) = Span {x G H : (T — X)nx = 0 for some X £ F and some posi­
tive integer n). 

(2) <TT(X) = C\pT(x) = C \ U { G C C : Gis open and there exists an analytic 
function / : G —> H such that (z — T)f(z) = x} where x G H and T has the 
single valued extension property. 

(3) XT(F) = {x e H : aT(x) C F}. 
(4) G = G~ = the closure of a set G C C. 
(5) For two subspaces M and N of i7 we write i7 = Af © JV if for each 

x G H there exists a unique pair (xi, x2) £ M X N such that x = Xi + x2. 

Definition. A subspace M is called a spectral maximal subspace of an oper­
ator T if 

(a) M is an invariant subspace of T, and 
(b) N C M for all invariant subspaces iV of T such that a(T\N) Q a(T\M). 

It is shown in [6, Theorem 3.8, p. 23] that if T has the single valued extension 
property and XT{F) is closed, then X T(F) is a spectral maximal subspace of T 
and a(T\XT(F)) C 7^P\ o-(T). Moreover every spectral maximal subspace of 
T is also a hyperinvariant subspace of T [6, Theorem 3.2, p. 18]. 

LEMMA 4. 7/ T satisfies Condition (I), /feera <J(V) C\ F Ç^ J where V is the 
operator induced on H/NT(F)( = NT(F)-L) by T. 

Proof. Since NT(F) is a hyperinvariant subspace of T, it follows from [1, 
Lemma 1.3.1] that a(V) Q a(T).Let\ G (F C\ <r(T))\J. Since NT( F) includes 
the range of the projection E(\) of Lemma 1, we have 

I (z - V)~xdz = 0. 
J c 

Thus X £ (T(F) and hence <r(F) H F C 7. 

LEMMA 5. Le£ T satisfy Condition (I). Le/ 7i fre a (non-trivial) closed subarc 
of J such that Jx P\ (a(T)\J)~ = 0. rAen 

Mi = X r ( / i ) and M2 = Z r ( [ a ( r ) V 1 ] - ) 

are closed and 
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(a) a{T\Mi) U E = (<i(T) H Jj) U E, 
(b) <7(riM2) u £ = (<T(r)V!) u E, 
(c) <r(to ç K r j v , ] - , 

^feere £ w /fee se/ 0/ endpoints of J\ and V is the operator induced on H/Mi by T. 

Proof. Let J2 be an open subarc of /containing Ji such that Ji F\ (a(T)\J)~ 
= 0. It follows from [19, Lemma 6.11, p. 104] that for each point a £ Ji and 
each closed bounded line segment L with a as endpoint which is not tangent 
to J and satisfies L C\ J = {a}, there is a constant M such that 

(*) ||(z - T)~l\\ S exp [M\z - a\-'} fors G L\{«}, 

where g is a positive constant independent of a. 
We shall show that Mi is closed; the proof for M\ is similar. Let xn be an 

arbitrary Cauchy sequence in Mi converging to x. Let/W be the analytic func­
tion such that (z — T)fn(z) = xn for z 0: (a(T)\Ji)~. Let a and b be two points 
on Ji both distinct from its endpoints, and let Jab denote the open subarc of 
Ji with endpoints a and b. Let D be a Jordan domain with the following 
properties: (i) D contains Jab and D C\ <r(T) £ Jab, and (ii) in a neighbour­
hood of a (respectively b) the boundary of D consists of two line segments 
starting from a (respectively b) and making positive angles less than ir/2q 
with the tangent to / a t a (respectively b) which points toward b (respectively 
a). 

By [23, Example 2] or [19, proof of Theorem 6.3, p. 97] there exists a func­
tion g analytic in D and continuous on D such that 

s u p { | | g ( s ) ( s - T)-1!! : * € dD\{a,b}} < 00 

and g(z) 9^0 for all z Ç D. (See also the proofs of [17, Lemma 3 and Corollary 
3] in this direction.) Let hn(z) = (z — a)(z — b)g{z)fn{z), z £ D. By a proof 
similar to the proof of [8, Lemma XVI. 5.4, p. 2151] we can show that h(z) — 
\imn(z — a)(z — b)g(z)fn(z) is analytic in D and (z — T){ (z — a) (z — b)g(z)}~1 

h(z) = x, z G D. This shows that aT(x) Ç C\Jab. Letting Jab converge to Ji 
we deduce that aT(x) Ç C\Ji. Thus M2 is closed and hence <r(T\Mi) £ 
[or(r)\/i]~. Now let a and b be the endpoints of J\ and let g, D be as described 
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above. Since g(z) ^ 0 for all z G D, it follows from [18, Remark on Theorem 1] 
that (a(T) H Jx) U E = ( f f(D C\ D) U £ C o-(r|Afi) W £. Thus cr(r|Mi) W 
£ = ( c ( r ) Pi J\) \J E which completes the proof of (a). A similar argument 
finishes the proof of (b). 

For (c) let 5 = T\M1 and let 

p RlMi 
L.0 V]MI\ 

Since M i is a hyperinvariant subspace of T, a(V) Ç o-(r). Thus || (z — F)_ 1 | | < 
||(z — ^0 _ 1 | | for z G p(T) and hence ||(z — V)~l\\ also satisfies the above 
growth condition (*) at all points a G JV 

Therefore Xv(Ji) is closed and er(7|Xy(/i)) U £ = (a(V) C\ Jx) W E. 
Let W = !T|Afi ® -XV(Ji). Since cr(I7) C Jx and Mi is a spectral maximal 
subspace of T, we have XV{J\) = {0} and thus a ( F ) n j i Ç £ . This proves 
(c) and with it the lemma. 

COROLLARY 1. Lemma 5 remains true if Ji is the disjoint union of a finite 
number of (non-trivial) closed subarcs of J. 

Proof. The proof of (a) and (b) follows from the fact that J\ and (J\Ji)~ are 
the intersection of a finite number of closed subarcs of / together with the 
Riesz decomposition theorem; the proof of (c) is exactly the same as in Lemma 
5. 

LEMMA 6. / / T satisfies Condition (II) then <r(T\NT(F)) = L where L = 
{X G F : (T — \)nx = 0 for some x ^ 0 and some positive integer n}~. 

Proof. The inclusion L C <r(T\NT(F)) is obvious. Also if X g L U / it 
follows from the Riesz decomposition theorem and Lemma 1 that H = E(\)H 
® [I - E(\)]H, X G <T(T\[I - E(\)]H), and NT(F) Q [I - E(X)]H. Since 
a(T\NT(F)) Ç o-(T) is nowhere dense, we have X $ a(T\NT(F)) and thus 
(j(r|iV r(E)) = L U A, where A is a subset of X Let 5 = T\NT(F). Since 
NT(F) is a hyperinvariant subspace of T, S satisfies Condition (I). Let Ji be 
an arbitrary closed subarc of J in the complement of L. In view of Lemma 5, 
XsUi) and Xf l([cr(5)Vi]-) are closed. Since NT(F) = A^S(E) Ç 
^ s ( W ^ ) V J ~ ) i it follows again from Lemma 5 that o-(5) Ç [c7(5)\Ji]~. Thus 
a(S) C\ J i is a subset of the endpoints of Ji . This shows that A Ç I which 
completes the proof of the lemma. 

LEMMA 7. Let T satisfy Condition (II). Let G be an open subset of the plane 
such that J C\ dG is a finite set. Then XT(G) is closed and o-(F) C (a(T)\G)~ 
where V is the operator induced on H/XT(G) by T. 

Proof. The case G C\ J = 0 follows from the Riesz decomposition theorem 
and Lemma 4. Assume G P i / ^ 0 . Let Gn be a decreasing sequence of open 
sets converging to G such that Gn P\ / is the disjoint union of a finite number 
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of closed arcs, and Gn 2 Gn+i. Let Sn = T\NT(Gn) and let 

T [ Sn Rn\ 
o vnj 

NT{Gn) 
NT(Gn)\ 

The operator Vn satisfies Condition (I) and, by Lemma 4, <r(Vn) P Gn <2 / . 
Thus , by Corollary 1, XVn{Gn+i) is closed and a (Vn\X Vn(Gn+i)) C 
claim tha t Z r ( G ) = H Hn, where Hn = NT(Gn) 0 Z F n ( G n + i ) (w = 
Let x Ç XT(G). For each w let 

Gn+i . We 

1 , 2 , . . . ) -

r o 
o 

Rln 
Vln 

0 

^ 2 n 

v2n 
vZn_ 

NT{Gn) 

Let yn be the orthogonal projection of x on i J ^ . Obviously (X — Vzn)~~lyn has 
an analytic extension to C \ G . Bu t Corollary 1 implies t ha t <r{Vzn) Ç C \G n + i . 
Therefore (X — V%n)~

lyn has an analytic extension everywhere. Since F 3 n has 
the single valued extension property, it follows t ha t yn = 0 and thus x £ Hn 

for all n. Hence XT(G) Q H Hn. Conversely if x £ C\ Hn and PFn = T\Hn, 
then (X — T)~lx has an analyt ic extension (X — Wn)~

lx to C\G r a and thus 
x G X r ( G n ) for all n. 

(By Lemma 5, a(Wn) = c r ( r | i M G » ) ) U d (F w |X F n (G w + 1 ) ) C Gw.) 

Hence x G O XT(Gn) = XT(G) which proves the equali ty of XT(G) and 
O # w . This shows tha t XT(G) is closed. 

Now let gn be an increasing sequence of open sets converging to G such t h a t 
gn C\ J is the disjoint union of a finite number of closed arcs, and gn C gn+1. 
Let sw = T|iV r(gw + i) and let 

T $n 'n 

iMfo+i)-1-. 

Here again o-(z/n) Pi gn4 x Ç J and vn satisfies Condition ( I ) . Thus , by Corollary 
1, XVn(gn) is closed and <r(vn\XVn(gn)) CI gn. Hence, by Lemma 6, XT(G) 2 
NT(gn+i) © XVn(gn) = Kn, say. Let L„ be the orthogonal complement of Kn 

in X T(G) and let 

Win 

0 
0 

V2n 

0 

VZn 

V 

XVn(gn) 
Ln 

xT(Gy. 
By Corollary 1, the spectrum of the operator 

[*>in ^ 5 n l 

Lo v\ XT(G^ 

is a subset of (<r(vn)\gn)~. Since (<r(vn)\gn)~~ encloses no holes, it follows t ha t 
<r(V) Ç {a{vn)\gn)~ for all w and thus <r(V) Q <T(T)\G. Finally, if possible, 
let X G <T(V) and X $ (a(T)\G)-. Since / H a G i s a finite set, it follows t ha t 
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<r(V) has an isolated point on dG which is impossible (because by applying 
the Riesz decomposition theorem to V we can find an invariant subspace M 
of T such that M D XT(G)y M ^ XT(G), and a(T\M) C G). 

LEMMA 8. Let T satisfy Condition (II). Let Di, D2, . . . , Dn be n open discs 
such that dDf is not tangent to dDj, (dDt) H {dDj) Pi J = 0 for all i ^ j , and 
(dDi) r\ J is a finite set for all i. Then 

XT{Dl VJD2\J ...\JDn) = XriDt) + XT{D2) + . . . + XT{Dn). 

Proof. We proceed by induction on n. The proof for n = 1 is trivial. Assume 
the lemma is true for n = k, we show that it is also true for n = k + 1. Since 
Z>i U D 2 U . . . U Dk and D i U D 2 U . . . U £>*+! satisfy the conditions of 
Lemma 7, the manifold Ht = X T{D\ U . . . U Z)f) is closed and a(T\Hi) Q 
D\\J . . . U Di(i = 1, 2, . . . , k + 1). Also since T\Hk+i satisfies Condition 
(I) and Dk+i C\ (Di W . . . KJ Dk) satisfies the conditions of Lemma 7, it 
follows that the manifold K = XT{Dk+1 C\ [Di\J . . . U Dk]) is closed, 
a{T\K) C 5,+i H ( A \J . . . U 5 , ) , and 

<x(F) C {C\[Dk+1 H ( Â U . . . U £*)]}" 

where F is the operator induced on Hk+i/K (the orthogonal complement of i£ 
in H*+i) by T\Hk+\. Thus c(F) is the disjoint union of two closed sets Ei and 
E2 such that E\ C Z)fc+i and E2 Ç1 Di^J D2\J . . . VJ Dk (see also Lemma 4 
for points off J ) . Hence by the Riesz decomposition theorem Hk+i/K = 
Xv(Ei) © XV{E2). This shows that every x £ ^ + i can be written in a (not 
necessarily unique) form x — x\ + x2 with x, Ç I © Xv{Ej), j — 1,2. Since 
2£ © Xv(Ei) Q XT{Dk+1) and i£ © X y (£ 2 ) C #fc, it follows that Hk+1 = 
i?* + XT(Dk+i) and thus by the induction hypotheses ft+i = XT{Di) + 
XT{D2) + . . . + XT(5 f c + i) . The proof of the lemma is complete. 

For convenience we accept the following definition of a decomposable 
operator [9]. 

Definition. An operator T defined on a Banach space X is called decompos­
able if for every finite open covering d{i = 1, 2, . . . , n) of a{T) there exists 
a set of spectral maximal subspaces Yt{i = 1, 2, . . . , n) of T such that 

(a) a ( r | F f ) Ç G , (i = 1, 2, . . . , »), 
(b) X = Fi + F2 + . . . + Yn. 

Moreover, T is called strongly decomposable if its restriction to an arbitrary 
spectral maximal subspace is again decomposable. 

THEOREM 1. If T satisfies Condition (II), then T is strongly decomposable. 

Proof. Let Gi, G2, . . . , Gn be an arbitrary finite open covering of <r{T). For 
each point X £ <r(T) there exists an open disc D\ with center X such that 
D\ Ç d for some i. Moreover, since a{T)\J consists of isolated points of 
a{T) (Lemma 1), we can assume 5 X H (7(T) = {X} if X G <J{T)\Jand / H dDx 
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has two points if A £ / . Now since <r{T) is compact and a(T) C \J D\, there 
exists a finite collection {Dtj : j = 1, 2, . . . , nu i = 1, 2, . . . , n) of the discs 
DA such that a(T) C ^JUjDij and G* 3 UjDtj, i = 1, 2, . . . , ». Moreover, if 
necessary, by a slight expansion of the discs we can assume the discs Dijf 

j = 1, 2, . . . , tii, i = 1, 2, . . . , n satisfy the conditions of Lemma 8. Thus, 
byLemma8,H=j:iJXT(Dij) = ZiYiwhereYi = j:jXT(Dij)=XT(UJDij) 
and a(T\ Yt) C G2. This shows that T is decomposable. Since a(T) is nowhere 
dense, it follows from [3] that T is strongly decomposable. The theorem is 
proved. 

In view of Lemma 3 we have the following corollary. 

COROLLARY 2. (a) If T* - T £ Cp(l ^ p < oo ) then T is strongly de­
composable. 

(b) If T*T — I G Cp(l S P < °° ) awd o"(2") ^^5 not fill the unit disc then T 
is strongly decomposable. 

2. Examples and open problems. The following example shows that if 
T*T — I Ç Cv and a(T) fills the unit disc then T may not be decomposable. 

Example 1. Let {en : n = 0, ± 1 , ± 2 , . . .} be an orthonormal basis for a 
Hilbert space H, A be the bilateral shift Aen = en+i, and let B be the rank one 
operator defined by Bx = — (x\e0)ei, x G H. Let T = A + B. Obviously 
T*T — I Ç Cp for all p ^ 1. However T is not decomposable because the 
restriction of T to the invariant subspace: span \en : n = 0, — 1, — 2, . . .} does 
not have the single-valued extension property [6, p. 10, 31]. (Note that if an 
operator has the single valued extension property, then so does its restriction 
to any invariant subspace.) 

The next example shows that Corollary 2(a) is not true if p = oo . 
A closed set A is called a spectral set for a Hilbert space operator T if 

11^(^)1! ^ sup {|^(z)| : z G Aj for all rational functions u with poles off A. 
If A is a convex spectral set for T, then (Tx\x) G A for, ||x|| = 1 [21, Lemma 4, 
p. 5]. 

Example 2. Let V : L2(0, 1) -» L2(0, 1) be the Vol terra operator 

Vf(x) = J f(t). 
J o 

Let W = (I + V)~l, </> be the conformai mapping from the unit disc onto 
the set Ai = {reid : 0 ^ r ^ l , 0 ^ 0 ^ TT/4}, 0(1) = 0, and let A = 4>(W) 
[22, proof of Theorem 8, p. 143]. (Note that Wis a non-unitary contraction with 
a(W) = {1} [10, Problem 150] and thus A is a quasinilpotent operator.) Let 
T = A± ® A2 ® . . . on H = L2(0, 1) 0 L2(0, 1) 0 . . . where 4W = gn(A) 
and gn{reie) = r1/nei9/n for re** Ç Ai, « = 1, 2, . . . . It follows from [18, proof of 
Proposition 1] that the set An = {reid : 0 ^ r ^ 1 , 0 ^ 0 ^ 7r/4w} is a spectral 
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set for An, <r(T) — [0, 1], and XT({0}) is not closed. (Actually we showed in 
[18] that 0 6 a(T) C [0, 1]; but since XT({0}) is dense in H and T has spec­
tral radius 1, it follows from the Riesz decomposition theorem that <J(T) cannot 
be disconnected.) In particular T cannot be a decomposable operator. We 
show that Im (T) is compact. Let T be the canonical mapping from the algebra 
B(H) of bounded operators on # o n t o the Calkin algebra B(H)/Cœ. Let pn be 
a sequence of polynomials converging to </> uniformly on the (closed) unit disc. 
We have ir(W) = (*•(/) + Tr(F))-1 = *•(/) and T(A) = ir(*(W0) = 7r(lim 
pn(W)) = lim *(pn(W)) = \im pn(T(W)) = lim/>„(*(/)) = lim pn(l) * (I) = 0 
because the unit disc is a spectral set for the contraction W. Therefore A, and 
by a similar argument An(n — 2, 3, . . .), are compact. Since Im (T) = 
Im (i4i) © Im (A 2) © . . . a n d | | I m (i4w)|| ^ tan (TT/4W), it follows that I m (T) 
is a compact operator. Thus T is a non-decomposable operator with a(T) = 
[0, 1] and T* - T G Cœ. 

It is stated (without proof) in a paper of Macaev [14, p. 975] that there are 
operators T with compact imaginary parts such that a(T\M) = A for all 
invariant subspaces M 9^ {0} of T where A is a closed set having more than 
one point. This is another way to show that Theorem 1 is not true if p — 00. 
(Example 2 is completely different and shows that XT({0}) may not be 
closed.) 

Next we discuss some open problems. 

Problem 1. If T satisfies Condition (I), then must T be decomposable? 
In the following we suggest two methods to attack this problem. 
(a) To show that Conditions (I) and (II) are equivalent. 
(b) To show that \\(z — r |M) _ 1 | | satisfies the growth condition (*) of the 

proof of Lemma 5 along J\ whenever T satisfies Condition (I), M is a hyper-
invariant subspace of T, and J i is a subarc of J such that J i H (a(T)\J)~ = 0. 

As for (a) the following theorem may prove useful. 

THEOREM 2. Conditions (I) and (II) are equivalent if p is replaced by 00. 

Proof. Let T satisfy Condition (I) for p = OD and let M be an arbitrary 
hyperinvariant subspace of T. Let K be the space of all sequences (xn) in H 
such that xn —> 0 weakly, where H is the underlying Hilbert space. Let glim 
be a Banach generalized limit function defined on the space of all bounded 
sequences of complex numbers. Let N = {(xn) £ K : glim \\xn\\ = 0j and let 
HA be the complement of the pre-Hilbert space [5] K/N. Every operator 5 on 
H has a unique well-defined representation 5A on HA determined by SA (xn) = 
(Sxn) for (xn) 6 K/N. The collection of all operators 5A is a C*-algebra iso­
morphic to the Calkin algebra B(H)/Cœ and AA = BA if and only if A — B is 
compact [5]. It is easy to see that MA is an invariant subspace of TA and 
T*\M* = ( r |M) A . Since a(T\M)*) C a(T\N) and TA is normal, it follows 
from the Putnam's inequality for hyponormal operators [16] that | |F*F — 
VV*\\ ^ (1A) area (a(V)) = 0 where V = T*\Mv. Thus ( r |M) A = 
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T*\MA is normal and a((T\M)*) Q <r(T*) Q J. Since <r(T\M) is nowhere 
dense, index (X - T\M) = 0 for ail X g J. Thus by [4, Theorem 11.1, p. 118] 
T\M is the sum of a normal operator with spectrum on / and a compact 
operator. A similar verification for T*\MX completes the proof of the theorem. 

Theorem 2 remains true if / is replaced by an arbitrary closed set of zero 
area. Lemma 3 above gives some special cases where Conditions (I) and (II) 
are equivalent for all 1 ^ p ^ oo. 

To see that (b) works, note that the conclusion of (b) is all we need in 
proving Lemmas 6-8 and Theorem 1. Also it can be seen that if J is a C2-Jordan 
curve, A is an operator satisfying 

sup {[dist (z, J)]n\\{z - A)'l\\ : z d J) < oo 

for some positive integer n, and if B is an operator in CP{1 S P < °° ) such that 
(a(A + B)\J)~ n J is nowhere dense in J, then T = A + B is decomposable. 
The proof follows from the fact that (i) \\(z — r ) _ 1 | | satisfies the growth condi­
tion (*) of the proof of Lemma 5 at each point a of J which is not an accumu­
lation point of a(T)\J [2, proof of Theorem 3.5; 17, proof of Corollary 3], 
and (ii) the discs D\ in the proof of Theorem 1 can be chosen such that 
(<J(T)\J)~ C\ J C\ dD\ = 0. The second assertion allows us to assume in 
Lemmas 6, 7, 8 and their proofs that (a(T)\J)~ C\ J C\ dT = 0 where T 
stands for J\ (Lemma 6), G, Gi, . . . , gu g2, . . . (Lemma 7) and Di, D2, . . . , 
Dn (Lemma 8). For the proof in case v(T) = a (A + B) Ç J see [17, Corol­
lary 3]. 

Corollary 2 gives a new class of concrete examples of decomposable operators 
which are like other known ones strongly decomposable [6, p. 217]. It seems 
that this new class of decomposable operators is the only one in which the 
question of 2I-spectrality is not answered [6, p. 78, 217]. We mention that 
if T satisfies the conditions of part (a) (respectively (b)) of Corollary 2 and 
(j{T) is on the real line (respectively unit circle) then T is an §l-selfadjoint 
(respectively 2l-unitary) operator [6, Theorem 5.2, p. 166]. The following 
problem is a special case of [6, Problem 5 (c), p. 217]. 

Problem 2. If T satisfies Condition (II), then must T be an 3l-spectral 
operator? 

Let us mention that if T satisfies the part (a) of Condition (I) and T is 
reductive, then T is a normal operator [15, Theorem 3.2]. 
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