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Cubic Base Change for GL(2)

Zhengyu Mao and Stephen Rallis

Abstract. We prove a relative trace formula that establishes the cubic base change for GL(2). One also gets a
classification of the image of base change. The case when the field extension is nonnormal gives an example
where a trace formula is used to prove lifting which is not endoscopic.

1 Introduction

Let F be a number field. Let E be a cubic extension of F, not necessarily Galois. Let AF

and AE be their Adele rings. Let G ′ be the group GL(2), G be the group ResE
F G ′. Then

G(F) = GL(2, E) and G ′(F) = GL(2, F). In this paper, we study the base change from
the set of cuspidal representations of GL(2, F) to the set of automorphic representations of
GL(2, E). The automorphic representations are assumed implicitly to be irreducible.

An automorphic representation π =
⊗
πv of GL(2, E) is a base change of a cuspidal

representation π ′ =
⊗
π ′v of GL(2, F), if the central character of π ′ is λ and the central

character of π is λ ◦ N where N is the norm map from E to F, and if for almost all finite
places v, π ′v is the principal series of GL(2, Fv) associated to an unramified character χ, and
πv is the principal series of GL(2, Ev) associated to the character χ◦N . With this definition,
the base change of π ′ is unique by the strong multiplicity one theorem for GL(2).

The following Theorem is proved in the work of [J-PS-S]:

Theorem 1 Any cuspidal representation of GL(2, F) has a base change to an automorphic
representation of GL(2, E). A cuspidal representation has a cuspidal base change, unless when
E/F is nonnormal, and π ′ is of the form π

(
I(ξ)
)
⊗ ν.

Here ξ is an idele class character on A×K associated to KE, where KE is the splitting field
of E; π

(
I(ξ)
)

is the cuspidal representation associated to ξ, and ν is a character on A×F .
The corresponding result for the Galois extension case is proven by Langlands [L]. His

result and that of Jacquet-Piatetski-Shapiro-Shalika [J-PS-S] for the nonnormal extension
are used in the proof of the modularity of some Artin L-functions, which implies some
cases of Artin’s conjecture [L], [T]; the modularity result is also used in Wiles’ proof of
FLT [Wi].

Langlands uses the twisted trace formula method to prove his result, while the method
in [J-PS-S] is the Converse Theorem. From the trace formula, one get a characterization of
the image of base change. Namely, when E/F is Galois, let σ be the generator of the Galois
group. Then a cuspidal representation π of GL(2, E) is a base change from GL(2, F) if and
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Cubic Base Change for GL(2) 173

only if π ∼= πσ . In the nonnormal case, the method of Converse Theorem does not give a
characterization of the image.

We will give another proof of the Theorem use a version of relative trace formula. Our
method applies to both the Galois and nonnormal case, and one gets a characterization of
the image of base change in both cases. Fix a nontrivial additive character ψ on AF/F. In
Section 2, we define a F-group L and a ‘Theta function’ on L(AF) denoted Θφψ , associated

to a Schwartz function φ on A×F ⊕ AF ⊕ AE. There is a homomorphism G→ L while L(F)
is generated by F× and the image of G(F). Denote the image of g ∈ G by g again. Define

Θφψ,λ(g) =

∫
A×F /F×

Θφψ(zg)λ(z) d×z, g ∈ GL(2,AE).(1)

We prove:

Theorem 2 Let π be a cuspidal representation of GL(2, E). It is a base change from a cuspidal
representation of GL(2, F) if and only if it satisfies the condition (*): its central character is of
the form λ ◦ N, and there exists ϕ ∈ π and φ as above, such that

Pψ(ϕ, φ) =

∫
A×E GL(2,E)\GL(2,AE)

ϕ(g)Θφψ,λ(g) dg �= 0.(2)

Compare with Langlands’ result in the Galois extension case, one gets

Theorem 3 When E is a cubic cyclic extension of F, the condition (*) for a cuspidal represen-
tation π of GL(2, E) is equivalent to π ∼= πσ .

The relative trace formula we use is of the type introduced in [M-R1]. Let f ∈
C∞c
(
GL(2,AE), λ ◦ N

)
, i.e., f is smooth of compact support modulo center, and f (zg) =

λ−1
(
N(z)
)

f (g). Define the kernel function

K f (x, y) =
∑

ξ∈GL(2,E)

f (x−1ξy).(3)

Define the distribution I( f , φ) on GL(2,AE) to be∫∫
K f

(
g, n(x)

)
Θφψ(g)ψ

(
T(−x)

)
dx dg(4)

where the integrations are over A×E GL(2, E) \ GL(2,AE) and AE/E, n(x) =
[

1 x
1

]
; T(x) is

the trace of x.
For a function f ′ ∈ C∞c

(
GL(2,AF), λ

)
, we define similarly the kernel function

K f ′(x, y). Define the distribution J( f ′) on GL(2,AF) to be∫∫
K f ′
(
n(y1), n(y2)

)
ψ(−y1 + y2) dy1 dy2.(5)

Here the integrations are taken over (AF/F)2.
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For matching functions ( f , φ) and f ′, (see Section 4 for a definition of matching), we
have I( f , φ) = J( f ′). From this identity, and its spectral decomposition, we derive the
Theorems. Moreover, when a cuspidal representation π is a base change from π ′ with
central character λ, when ( f , φ) and f ′ match, we have∑

ϕi

Pψ
(
π( f )ϕi, φ

)
W̄ ψ

ϕi
(e) =

∑
ϕ ′i

W ψ−1

ϕ ′i
(e)W̄ ψ−1

ϕi
(e)(6)

where ϕi and ϕ ′i are the orthonormal bases of π and π ′, and

W ψ
ϕ (e) =

∫
ϕ
(
n(x)
)
ψ(x) dx(7)

where the integral is taken over AE/E or AF/F.
We note that the case at hand is not an endoscopic lifting. This is one example that a

relative trace formula can be used to treat lifting where the Arthur-Selberg trace formula
can not.

The construction of the Theta function Θφψ(g) uses the idea of Kazhdan [K] which we
summarize in Section 2. In Section 3, we study the distributions I( f , φ) and J( f ′) and their
spectral decompositions. Here we follow the argument in [M-R]. The spectral decomposi-
tion for I( f , φ) has different forms in the Galois extension and nonnormal extension cases.
It is for this reason that in nonnormal extension case, some cuspidal representations have
base change which is not cuspidal. In Section 4, we define the matching between ( f , φ) and
f ′, and prove the existence of matching functions. Here we can use the known results for
quadratic base change [J-Y], [J-Y2]. In Sections 5–7, we prove the fundamental lemma,
which shows the matching of Hecke functions. In the proof one uses an identity of Kloost-
erman sum over finite field (identity (53)), and an argument used in [M-R2], where one
applies the property of Theta representation to prove the fundamental lemma. We establish
the base change in Section 8.

We thank H. Jacquet for many helpful discussions. We thank the Math Research Insti-
tute in Ohio State University for their support. The first author thanks the IAS for their
hospitality during his visit.

2 The Theta Function

We recall some results in [K]. In this section, unless specified, F is a local field of charac-
teristic 0; E is a 3-dimensional commutative semisimple algebra over F. Let [a, b] be the
Hilbert symbol on F. Let N,T be the norm and trace maps E → F. We denote by BE the
bilinear form (e1, e2)→ T(e1e2) on E, and by δE/F ∈ F×/F×2 the discriminant of BE.

For e ∈ E, define θ(e) as in [K, Section 2]. When e is invertible, we have θ(e) = N(e)
e . Let

Λ = F ⊕ E, define a quadratic form on Λ by

Qt (x0, x) = N(t)x2
0 + x0T

(
θ(t)x

)
+ T
(
tθ(x)

)
.

From Lemma 2.1 in [K], we see

x0Qt (x0, x) = N(x + x0t)− N(x).(8)

https://doi.org/10.4153/CJM-2000-008-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-008-9


Cubic Base Change for GL(2) 175

Let Λ ′ = HomF(Λ, F) be the dual space of Λ. Let V = Λ ⊕ Λ ′. In [K], Kazhdan
constructed a homomorphism ι from G(F) to GSp(V ). (Recall that G(F) = GL(2, E).) Let
L ′(F) be the image of the homomorphism. Clearly F× is the center of GSp(V ). Let L(F) be
the group F×L ′(F). When g ∈ GL(2, E), we will denote the element ι(g) in L(F) by g.

The main result from [K] we use is the following:

Lemma 1 There exists a representation σψ of L(F), acting on the space of Schwartz functions
S(F× ⊕ Λ), with:

σψ
(
n(t)
)
φ(y, x0, x) = ψ

(
y−1Qt (x0, x)

)
φ(y, x0, x + x0t)(9)

σψ(z)φ(y, x0, x) = [z, δE/F]|z|3Fφ(z2 y, zx0, zx)(10)

σψ(da)φ(y, x0, x) = |N(a)|2Fφ
(
N(a)y,N(a)x0, a

−1N(a)x
)

(11)

σψ(w)φ(y, x0, x) = ζ|y|−2
F

∫
F×E

φ(y, x̃0, x̃)ψ
(

y−1
(
x0x̃0 + T(xx̃)

))
dx̃0 dx̃(12)

where da = [ a
1 ], a ∈ E is invertible, z ∈ F×, w =

[
1

−1

]
.

For the exact value of ζ , see [K, Lemma 3.4]. The above representation is the Weil
representation σψ defined for the metaplectic group G̃Sp4(F) restricting to L.

We need some knowledge of the discriminant δE/F.

Lemma 2 If E is a cubic Galois extension of F or if E = F3, then δE/F is the identity. If
E = F ⊕ K, where K = F(

√
τ ) a quadratic extension of F, then δE/F = τ .

Assume F is a number field, E is a cubic nonnormal extension of F. Let L = EK be the
splitting field of E, where K = F(

√
τ ) is a quadratic extension of F, then δE/F = τ .

Proof The cases E = F ⊕ K and E = F3 are clear. Now assume E is a cubic field extension
of F. Let E = F(γ) with γ satisfying the irreducible equation 4x3 − ax − b = 0. From
the definition, δE/F = (a3 − 27b2)F×2. Let γ1, γ2 be the two other solutions of the cubic
equation, then δE/F = [(γ − γ1)(γ1 − γ2)(γ2 − γ)]2F×2. Denote the number inside the
bracket α.

If E/F is Galois, let σ be the generator of Gal(E/F). Then σ(α) = α, thus α ∈ F, and
δE/F equals identity.

If E/F is nonnormal, then L = E(
√
τ ). Let σ be the generator of Gal(L/E). Then

σ(α) = −α, thus δE/F = τE×2. Since δE/F and τ lie in F, we have δE/F = τF×2.

Let F be a number field and E a cubic extension of F. Then one can define the group
L(F) as before. The representation σψ for the group L(AF) is given by Lemma 1. The Theta
function used in the introduction is defined as follows:

Θφψ(g) =
∑

(y,x0,x)∈F×⊕F⊕E

σψ(g)φ(y, x0, x), g ∈ L(AF).(13)

We remark that the representation σψ is the usual global theta representation of G̃Sp4 re-
stricted to L. In particular, we do not need to use the minimal representation of D4 con-
structed in [K]. From the definition of Θφψ , it is easy to check that it satisfies the moderate
growth condition.
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3 The Distributions I( f , φ) and J( f ′)

In this section, F is a number field, E a cubic extension of F. We use v to denote a place of
F, Ev = E⊗F Fv. We fix the measures over Ev or Fv as in [W1, p. 10]. Let∆E and∆F be the
discriminants of the fields E and F respectively. We will identify F× with the center of L(F).

3.1 Local Orbital Integrals

We express I( f , φ) in terms of local orbital integrals. We will use the notation fv∗φv(y, x0, x)
to denote the expression ∫

GL(2,Ev)/E×v

fv(g−1)σψ(g)φv(y, x0, x) dg.(14)

Then

Proposition 1 Let f and φ be given as in the introduction,

I( f , φ) =
∑

y∈F×

∏
v

Iv(yv, fv ∗ φv) + |∆E|
1/2
∏

v

Is
v( fv ∗ φv)(15)

where

Iv(y, fv ∗ φv) =

∫
Ev

∫
F×v

σψ(z)λv(z) fv ∗ φv(y, 1, t)ψ
(

y−1N(t)− T(t)
)

dt d×z(16)

Is
v( fv ∗ φv) =

∫
F×v

[z, δEv/Fv
]|z|3Fv

fv ∗ φv(z2, 0, z)λv(z) d×z.(17)

Proof We unwind the integral (4) formally. The computation is similar to that in
[M-R] and the necessary convergence follows from the argument of Proposition 1 in
[M-R]. The integral (4) is∫

A×F /F×

∫
AE/E

∫
A×E GL(2,E)\GL(2,AE)

∑
γ∈GL(2,E)

f
(
g−1γn(x)

)
Θφψ(zg)λ(z)ψ

(
−T(t)

)
dg dt d×z.

Unwind the integral and make a change of variable g → n(x)g:∫
A×F /F×

∫
AE/E

∫
A×E \GL(2,AE)

f (g−1)Θφψ
(
zn(x)g

)
λ(z)ψ

(
−T(t)

)
dg dt d×z.

Using the formula in Lemma 1 and the notation (14), we get:∫
A×F /F×

∫
AE/E

∑
(y,x0,x)

[z, δE/F]|z|3F f ∗ φ
(
z2 y, zx0, z(x + x0t)

)
· ψ
(

y−1Qt (x0, x)
)
λ(z)ψ

(
−T(t)

)
dt d×z.
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The sum is over F× ⊕ F ⊕ E. Consider the contribution Is from the part x0 = 0; the
integration over t is nonzero only when θ(x) = y in which case it equals |∆E|1/2. The
condition θ(x) = y implies x ∈ F× and x2 = y. Thus

Is = |∆E|
1/2

∫
A×F /F×

∑
x∈F×

[z, δE/F]|z|3F f ∗ φ(z2x2, 0, zx)λ(z) d×z.

Unwind the integral we get the expression |∆E|1/2
∏

v Is
v( fv ∗φv). For the contribution from

the part x0 �= 0, make changes of variables t → t − x
x0

, z → zx−1
0 , y → yx2

0 and using the

formulas in Lemma 1, we get the sum over y ∈ F× as in the Proposition.

3.2 Spectral Decomposition of I( f , φ)

We now consider the spectral decomposition of I( f , φ). We follow closely the discussion
in [M-R].

At each finite place v, let REv be the ring of integers in Ev. Set Kv = GL(2,REv ). At an
infinite place v, let Kv be the unitary group in GL(2). Let K =

∏
Kv. Let I2 be the identity

matrix. For each idele class character χ, let V (χ) be the space of functions ϕ on K such
that:

ϕ
(
zdan(x)k

)
= λ
(
N(z)
)
χ(a)ϕ(k), zI2 ∈ K, k ∈ K, dan(x) ∈ K.

For each s ∈ C, one may identify V (χ) with a space of functions on GL(2,AE) by extending
a ϕ ∈ V (χ) to a function ϕ(g, s) on GL(2,AE), with:

ϕ
(
zdan(x)k, s

)
= λ
(
N(z)
)
χ(a)|a|s+1/2

E ϕ(k), z ∈ A×E , k ∈ K.

The group GL(2,AE) acts on V (χ) by right shift. We get a representation denoted as ρs(χ).
It is well known that

K f (x, y) =
∑
π

Kπ, f (x, y) +
∑
χ

Kχ, f (x, y)(18)

where π is either a cuspidal representation with central character λ or a one dimensional
representation, χ is an idele class character; and

Kπ, f (x, y) =
∑
ϕi

π( f )ϕi(x)ϕ̄i(y)(19)

Kχ, f (x, y) =
1

4πi

∫ +i∞

−i∞

∑
ϕi

E
(

x, ρs(χ)( f )ϕi, s
)
Ē(y, ϕi , s) ds.(20)

The sum is taken over the orthonormal basis of π or V (χ). The function E(x, ϕ, s) is the
Eisenstein series:

E(g, ϕ, s) =
∑

γ∈P(E)\GL(2,E)

ϕ(γg, s).
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Here P = TN is the parabolic subgroup. The Eisenstein series is defined for Re s large and
extended meromorphically to the whole complex plane.

Assume f is a K−finite function for the moment. As in [M-R], the integration in (4)
and the sum in (18) are interchangeable:

I( f , φ) =
∑
π

Iπ( f , φ) +
∑
χ

Iχ( f , φ)(21)

with the distributions:

Iπ( f , φ) =

∫
AE/E

∫
A×E GL(2,E)\GL(2,AE)

Kπ, f

(
g, n(x)

)
ψ
(

T(−x)
)
Θφψ,λ(g) dg dx(22)

Iχ( f , φ) =

∫
AE/E

∫
A×E GL(2,E)\GL(2,AE)

Kχ, f

(
g, n(x)

)
ψ
(
T(−x)

)
Θφψ,λ(g) dg dx.(23)

Moreover, the sum (21) is absolutely convergent.
One easily verifies Iπ( f , φ) ≡ 0 if π is a one dimensional representation. For π being

any cuspidal representation, with the notations in the introduction,

Iπ( f , φ) =
∑
ϕi

Pψ
(
π( f )ϕi, φ

)
W̄ ψ

ϕi
(e)(24)

where

W ψ
ϕ (g) =

∫
AE/E

ϕ
(
n(x)g

)
ψ
(
T(x)
)

dx.

We now consider Iχ( f , φ). One uses the truncation operator. As in [M-R], denote by ϕ ′i
the function ρs(χ)( f )ϕi , we get Iχ( f , φ) equals:

lim
T→∞

1

4πi

∫ +i∞

−i∞

∑
ϕi

W̄ (e, ϕi, s)

∫
A×E GL(2,E)\GL(2,AE)

∧TE(g, ϕ ′i , s)Θ
φ
ψ,λ(g) dg ds(25)

where

W (g, ϕ, s) =

∫
AE/E

E
(

n(x)g, ϕ, s
)
ψ
(
T(x)
)

dx.

Note that W̄ (e, ϕi , s) extends to a meromorphic function, with no poles on the half plane
Re s < 0, and for any c > 0, there is σ(c) > 0 sufficiently small, such that the function has
no poles in the region {s | Re(s) < σ(c), | Im(s)| < c}.

We claim that (25) equals

1

4πi

∫ +i∞

−i∞
Iχ,s( f , φ) ds + δ(χ)I ′χ( f , φ)(26)
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where Iχ,s and I ′χ are some distributions, δ(χ) = 1 when E/F is nonnormal, and χ2 =

λζ ◦N , where ζ is the quadratic character on A×F associated to the unique quadratic exten-
sion K of F such that EK is the splitting field of E; δ(χ) is 0 otherwise; the integral in (26)
is absolutely convergent.

Proof of the claim The integral (25) has the form:

lim
T→∞

∫ +i∞

−i∞

1

4πi
H(s,T) ds

where

H(s,T) =
∑
ϕi

W̄ (e, ϕi, s)

∫
A×E GL(2,E)\GL(2,AE)

∧TE(g, ϕ ′i , s)Θ
φ
ψ,λ(g) dg.

In the notation of H(s,T), we implicitly have the dependence on f , φ and χ. As in [M-R],
H(s,T) is meromorphic in s, holomorphic on the imaginary line and the above integral is
absolutely convergent. Use the following Lemma, we can separate H(s,T) into a sum of
four functions as in [M-R].

Lemma 3∫
AE/E
Θφψ,λ
(
n(x)g

)
dx = σψ(g)Φ(0, 0) +

∑
ξ∈F×

∫
AE

σψ(g)Φ(ξ, t)ψ

(
N(t)

ξ

)
dt

where

Φ(x0, x) =

∫
A×E /E×

∑
y∈F×

σψ(z)φ(y, x0 y−1, x)λ(z) d×z.

The Lemma follows from the computation in [G-R-S]. Note that σψ(z)Φ(x0, x) =
λ(z)−1Φ(x0, x).

Let M(s, χ) be the intertwining operator from V (χ) to V (λ◦N ·χ−1). From the Lemma
and the explicit expression for ∧TE(g, ϕ ′i , s), as in [M-R], we get H(s,T) = H1(s,T) +
H2(s,T) + H3(s,T) + H4(s,T), where:

H1(s,T) =
∑
ϕi

W̄ (e, ϕi, s)

∫ T

0

∫
K(AE)

as−1/2ϕ ′i (k)σψ(dak)Φ(0, 0) dk d×a

H2(s,T) =
∑
ϕi

W̄ (e, ϕi, s)

∫ T

0

∫
K(AE)

as−1/2ϕ ′i (k)

×
∑
ξ∈F×

∫
AE

σψ(dak)Φ(ξ, t)ψ

(
N(t)

ξ

)
dt dk d×a

https://doi.org/10.4153/CJM-2000-008-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-008-9


180 Zhengyu Mao and Stephen Rallis

H3(s,T) = −
∑
ϕi

W̄ (e, ϕi, s)

∫ ∞
T

∫
K(AE)

a−s−1/2[M(s, χ)ϕ ′i ](k)σψ(dak)Φ(0, 0) dk d×a

H4(s,T) = −
∑
ϕi

W̄ (e, ϕi, s)

∫ ∞
T

∫
K(AE)

a−s−1[M(s, χ)ϕ ′i ](k)

×
∑
ξ∈F×

∫
A
σψ(dak)Φ(ξ, t)ψ

(
N(t)

ξ

)
dt dk d×a.

We will use the following estimate for the L2-norm of ϕ ′i as a function on K. There exists a
positive constant L, dependent only on f , such that

‖ρs(χ)( f )ϕi‖ ≤ eL| Re(s)|(27)

and ‖ρs(χ)( f )ϕi‖ is rapidly decreasing on any vertical line Re(s) = σ.
As in [M-R], we do not need to evaluate H2(s,T) and H4(s,T). The function H4(s,T) is

homomorphic and rapidly decreasing on the imaginary line; the integral
∫ +i∞
−i∞ |H4(s,T)| ds

converges, and is bounded by a constant independent of T. Meanwhile we can separate
H2(s,T) into a sum of H2,2(s,T0,T) and H2,1(s,T0), where H2,2(s,T0,T) is the part of
H2(s,T) coming from the integration of a over the interval [T0,T], while H2,1(s,T0) is the
contribution of the integration over (0,T0). Then H2,2(s,T0,T) satisfies above mentioned
analytic properties for H4(s,T). The analytic property of H2,1(s,T0) will follow from these
of H(s,T), H1(s,T) and H3(s,T). In particular H2,1(s,T0) may be not holomorphic on the
imaginary line, as will be shown below.

We now consider H1(s,T). Note by our notation, ϕ ′i (k) = ρs(χ)( f )ϕi(k). For a ∈ R+,
write a = b2 with b ∈ R+. Thus H1(s,T) equals

∑
ϕi

W̄ (e, ϕi, s)ρs(χ)( f )ϕi ∗K Φ(0, 0)

∫ √t

0
2b2s−1b d×b

where

ϕ ∗K Φ(x0, x) =

∫
K
ϕ(k)σψ(k)Φ(x0, x) dk.(28)

As in [M-R], we consider the integral

∫
A1

E

ϕ ′i (dak)σψ(dak)Φ(0, 0) d×a(29)

where A1
E is the set of ideles with norm 1.

Lemma 4 The expression (29) is nonzero only when (1) E/F is nonnormal, and χ2 =
(ζλ) ◦ N on A1

E; or (2) E/F is Galois, χ2 = λ ◦ N on A1
E.

https://doi.org/10.4153/CJM-2000-008-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-008-9


Cubic Base Change for GL(2) 181

Proof Make a change of variable a→ ab2, b ∈ A1
E in the integral. Observe thatϕ ′i (dab2 k) =

χ2(b)ϕ ′i (dzk). From Lemma 1, one finds

σψ(dab2 k)Φ(0, 0) = λ−1
(

N(b)
)
[N(b), δE/F]σψ(dak)Φ(0, 0).

Thus the integral is nonzero only when χ2(b) = λ
(
N(b)

)
[N(b), δE/F]. This translates into

the condition in the Lemma.

Ifχ is not as described in the Lemma, then ρs(χ)( f )ϕi∗KΦ(0, 0) = 0, thus H1(s,T) = 0.
If χ is given as in the above Lemma, then H1(s,T) equals:

∑
ϕi

W̄ (e, ϕi, s)
Ts

s
ρs(χ)( f )ϕi ∗K Φ(0, 0).

Similarly, H3(s,T) is nonzero only when χ is as above, when it equals:

∑
ϕi

W̄ (e, ϕi, s)
T−s

−s
[M(s, χ)ρs(χ)( f )ϕi] ∗K Φ(0, 0).

Thus H1(s,T) + H3(s,T) is meromorphic in s, it equals 0 unless χ is as in Lemma 4. If
H1(s,T) + H3(s,T) have a pole at s = 0, then so will H2,1(s,T0). To compensate for the
possible pole, we define:

H ′(s) =
∑
ϕi

W̄ (e, ϕi, s)
1

s
ρs(χ)( f )ϕi ∗K Φ(0, 0)esM

where M is any positive number that is larger than L in (27). Let H0(s,T) = H1(s,T) +
H3(s,T) − 2H ′(s), then H0(s,T) is a holomorphic function on the imaginary line, (here
we need the fact that when χ2 = λ ◦ N on A1

E, M(0, χ) acts as −1 on V (χ) [J-Lai]).
Since H(s,T) is holomorphic on the imaginary line, from the above discussion, we see
H2,1(s,T0) + 2H ′(s) is holomorphic on the imaginary line, and clearly is a function inde-
pendent of T. As in [M-R], we get

∫ +i∞

−i∞
|H(s,T)−H0(s,T)| ds =

∫ +i∞

−i∞
|H4(s,T) + H2,2(s,T) + [H2,1(s,T0) + 2H ′(s)]| ds

is bounded by a constant independent of T. By Fatou’s Lemma, we see

lim
T→∞

∫ +i∞

−i∞
[H(s,T)−H0(s,T)] ds =

∫ +i∞

−i∞
Iχ,s( f , φ) ds

where

Iχ,s( f , φ) = lim
T→∞

H4(s,T) + H2,2(s,T) + [H2,1(s,T0) + 2H ′(s)].
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The above integral is absolutely convergent. We are left to consider the integral, (for a χ in
Lemma 4):

I ′χ( f , φ) =
1

4πi
lim

T→∞

∫ +i∞

−i∞
H0(s,T) ds

Recall H0(s,T) = [H1(s,T)−H ′(s)]+[H3(s,T)−H ′(s)]. For the integration of H1(s,T)−
H ′(s), we shift the contour to the left, for the integration of H3(s,T) − H ′(s), shift the
contour to the right; then

I ′χ( f , φ) =
1

4πi
lim

T→∞

[∫
C

(
H1(s,T)−H ′(s)

)
ds +

∫
C ′

(
H3(s,T)−H ′(s)

)
ds

]

where C is the line Re(s) = a < 0, and C ′ lies in the right half plane such that the left of C ′

has no poles of the functions W̄ (e, ϕi, s). Take the limit we get:

I ′χ( f , φ) =
1

4πi

[∫
C

(
−H ′(s)

)
ds +

∫
C ′

(
−H ′(s)

)
ds

]
.

Using the residue theorem, we get

I ′χ( f , φ) = −
1

2πi

∫ a+i∞

a−i∞
H ′(s) ds +

1

2

∑
ϕi

W̄ (e, ϕi, 0)ρ0(χ)( f )ϕi ∗K Φ(0, 0).

As H ′(s) is holomorphic on the half plane Re(s) < 0, we can let a tend to −∞; using the
estimate (27), we see the integral equals 0. Thus

I ′χ( f , φ) =
1

2

∑
ϕi

W̄ (e, ϕi , 0)ρ0(χ)( f )ϕi ∗K Φ(0, 0).

When E/F is Galois, λ ◦ N = χ2 on A1
E, it is well known that W̄ (e, ϕi, 0) = 0 for all ϕi .

Thus I ′χ( f , φ) is always 0. When E/F is nonnormal, χ−2λ ◦N is a quadratic character, and
I ′χ( f , φ) is a nontrivial distribution.

We remark that when χ satisfies Lemma 4,

Iχ,s( f , φ) = lim
T→∞

H(s,T).

We have now obtained the spectral decomposition for I( f , φ).

Proposition 2 With above notations, for f ∈ C∞c
(
GL(2,AE), λ ◦ N

)
, when E/F is Galois,

I( f , φ) =
∑
π

Iπ( f , φ) +
∑
χ

∫ +i∞

−i∞

1

4πi
Is,χ( f , φ) ds.(30)

https://doi.org/10.4153/CJM-2000-008-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-008-9


Cubic Base Change for GL(2) 183

When E/F is nonnormal,

I( f , φ) =
∑
π

Iπ( f , φ) +
∑
χ

∫ +i∞

−i∞

1

4πi
Is,χ( f , φ) ds +

∑
µ2=ζλ◦N|A1

E

I ′µ( f , φ).(31)

The sum of π is over all cuspidal representations, the sum of χ is over all idele class characters.
The sum and integral in (30) and (31) are absolutely convergent.

The proof of the Proposition is as in [M-R]. We note that the only discrete terms in the
sum (30) are from the cuspidal representations. That will imply in the cubic Galois exten-
sion case, all cuspidal representations of GL(2, F) base changes to a cuspidal representation
of GL(2, E).

3.3 The Distribution J( f ′)

We now consider the distribution J( f ′). It is a Kuznietsov trace. The unwinding and the
spectral decomposition of J( f ′) is well known. We will only state the results.

Recall

K f ′(x, y) =
∑
π

Kπ, f ′(x, y) +
∑
χ

Kχ, f ′(x, y)

where π is either a cuspidal representation or one dimensional, and χ is an idele class
character on A×F . Also

Kχ, f ′(x, y) =

∫ +i∞

−i∞
Kχ,s, f ′(x, y) ds.

Define Jπ ′( f ′) and Jχ ′,s( f ′) by replacing K f ′ with the corresponding Kπ ′, f ′(x, y) or
Kχ ′,s, f ′(x, y) in the expression (5). Using the estimates in [A], we see

J( f ′) =
∑
π ′

Jπ ′( f ′) +
∑
χ

∫ +i∞

−i∞
Jχ,s( f ′) ds.

The sum and integral converge absolutely. We remark that when π ′ is cuspidal with central
character λ, Jπ ′( f ′) is given by the right hand side of (6). It is a nontrivial distribution as
π ′ has a nontrivial Whittaker model. When π ′ is one dimensional, Jπ ′( f ′) = 0.

Similar to Proposition 1, we can write J( f ′) in terms of orbital integrals. We have

J( f ′) =
∑

a∈F×

∏
Jv(av, f ′v ) + |∆F|

1/2
∏

Js
v( f ′v )(32)

where

Jv(a, f ′v ) =

∫
(Fv)2

f ′v
(
n(x)w−1dan(y)

)
ψ(x + y) dx dy(33)

and

Js
v( f ′v ) =

∫
Fv

f ′v
(
n(x)
)
ψ(x) dx.(34)
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4 Local Integrals

Fix a local field Fv, we study the space of functions on F×v : Îv = {Iv(a, fv ∗ φv)} and Ĵv =
{ Jv(a, f ′v )}. We will drop the reference to the local place v when no confusion occurs. We
will show a matching between these two spaces of functions.

First fix some notations. Recall the Hilbert symbol [a, b] takes value 1 if z2 = ax2 + by2

has a nonzero solution, and−1 otherwise [Se]. Recall also the Weil’s formula [J1]

φ̂(x)ψ

(
1

2
ax2

)
dx = |a|−1/2γ(a, ψ)

∫
φ(x)ψ

(
−

1

2a
x2

)
dx

here φ̂ is the Fourier transform of φ and γ(a, ψ) is the Weil constant. Define

µ(a, ψ) =
γ(a, ψ)

γ(1, ψ)
[−1, a].

Let∆E/F denote the discriminant of RE as a RF-module if F is a nonarchimedean field, and
1 if F is archimedean. Then |∆F| = |∆E|

∏
v |∆Ev/Fv

|Fv . From now on, we use ‖ to denote
‖Fv .

We say the pair of functions ( f , φ) match the function f ′ if

I(a−1, f ∗ φ) = [2a, δE/F]|a|λ(a)µ(δE/F, ψ) J(a, f ′)(35)

and Is( f ∗ φ) = |∆E/F|
1/2 Js( f ′). The main result of this section is:

Theorem 4 Given f ′, there is a matching pair ( f , φ). Given ( f , φ), there is a matching
function f ′.

Proof Since Ev = E⊗F Fv, there are three possibilities to consider: Ev is a field, Ev = Fv⊕Kv

where Kv is a quadratic extension of Fv, and Ev = F3
v . When E/F is Galois, the second

possibility does not appear. Note that instead of working with a pair ( f , φ), we can just
consider I(a−1, φ) and Is(φ).

First consider the last two cases. We will denote by Kv either a quadratic extension of Fv

or F2
v . Then Λv = Fv ⊕ Fv ⊕Kv. We write an element in Λv as (x0, t, t ′) with t ′ ∈ Kv. From

the definition, I(a−1, φ) equals:∫∫
φ(a−1z2, z, zt, zt ′)ψ(att ′t̄ ′ − t − t ′ − t̄ ′)|z|3[z, δEv/Fv

]λ(z) d×z dt dt ′

where x→ x̄ is the nontrivial Fv-automorphism on Kv. This is

∫∫
φ̂

(
a−1z2, z,

at ′t̄ ′ − 1

z
, zt ′
)
ψ(−t ′ − t̄ ′)|z|2[z, δEv/Fv

]λ(z) d×z dt ′

where φ̂ is the Fourier transform of φ with respect to the third variable. Such an integral
is an orbital integral considered in [J-Y] and [J-Y2], where the quadratic base change is
studied. (The paper [J-Y2] considers the case of GL(3), however it is easy to extract from
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there the corresponding results in the GL(2) case. The results we use can also be found in an
unpublished note [J2].) Similarly Is(φ) are the singular orbital integrals considered there.
The comparison with J(a, f ′) and Js( f ′) is given in [J-Y] and [J-Y2]. The existence of
matching follows from the results there, and the fact that δE/F is a square when Kv = Fv⊕Fv

and is a nonsquare over Fv if Kv is a field (by Lemma 2). We will skip the details for these
two cases.

In the case Ev is a field, it must be a non-archimedean field and δE/F is a square. Here
I(a−1, φ) equals: ∫∫

Ev

φ(a−1z2, z, zt)ψ
(

aN(t)− T(t)
)
|z|3λ(z) d×z dt.(36)

We need to know the asymptotic behavior of this integral as |a| → 0, then compare with
the known asymptotic behavior of J(a, f ′) [J-Y2].

Drop the reference of v. Let PE be the prime ideal of E. Assume E is generated over F
by a root ν of 4x3 − αx − β = 0. Let u be a representative of E×/E×2, we consider the
behavior of I(u−1v−2, φ) as |v| → 0.

Make changes of variables t → tv−1 and z → av in (36), we get:∫∫
φ(u−1z2, zv, zt)ψ

(
uN(t)− T(t)

v

)
|z|3λ(vz) d×z dt

which is ∫∫
σψ(z)φ(u−1, v, t)ψ

(
uN(t)− T(t)

v

)
λ(vz) d×z dt.(37)

One can apply the stationary phase to the integral over t . Write t ∈ E as b + cν + dν2. The
function h(t) = uN(t)− T(t) is a cubic polynomial in (b, c, d). It has a critical point only
when u is a square. Thus when u is not a square, I(u−1v−2, φ) = 0 for |v| sufficiently small.

From now on, we consider the case u = 1. The critical points of h(t) are (±1, 0, 0) and
they are regular critical points (Hessian is nonsingular at the critical point). When |v| → 0,
the theory of stationary phase says the above integral equals:

∑
C

∫∫
PE

σψ(z)φ(1, 0,C)ψ

(
hC (C + V )

v

)
λ(vz) d×z dV

where the sum is over the critical points C = ±1, and hC is the degree 2 Taylor polynomial
of h around C ; hC (C + V ) = −2C + T

(
θ(V )
)
. For V = b + cν + dν2, the quadratic form

T
(
θ(V )
)

is:

3b2 −
α

4
c2 +

α2

16
d2 −

3β

4
cd + αbd.

If α �= 0, then the quadratic form becomes:

3

(
b +

αd

6

)2

−
α

4

(
c +

3βd

2α

)2

+
−α3 + 27β2

48α
d2.
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One can then use the Weil’s formula to evaluate the integral. Note that α3 − 27β2 is the
discriminant of the equation 4x3 − αx − β = 0. We get:

∫ ∑
C=±1

σψ(z)φ(1, 0,C)ψ

(
−

2C

v

)[
γ(−C

v

6
, ψ)γ(C

2v

α
, ψ)γ(C

24αv

α3 − 27β2
, ψ)

]−1

|∆E/F|
−1/2

∣∣∣∣v3

2

∣∣∣∣
1/2

λ(vz) d×z.

By the proof of Lemma 2, we have α3 − 27β2 is a square. One can use this fact and the
formulas (27)–(31) in [J1] to simplify the above product of Weil constants. We skip the
computation, the product equals

γ(1, ψ)3µ(−2vC, ψ)[α,−3][−1,−1].

Again use the fact α3 − 27β2 is a square, we see that by definition, [α,−3] = 1. In conclu-
sion, when |v| → 0, I(v−2, φ) equals:

∫ ∑
C=±1

σψ(z)φ(1, 0,C)ψ

(
−

2C

v

)
|∆E/F|

−1/2

∣∣∣∣v3

2

∣∣∣∣
1/2

γ(1, ψ)−3

· µ(−2vC, ψ)−1[−1,−1]λ(vz) d×z

which is

Is(φ)|∆E/F|
−1/2[−1,−1]λ(v)

∣∣∣∣v3

2

∣∣∣∣
1/2

γ(1, ψ)−3
∑

C=±1

ψ

(
−

2C

v

)
µ(−2vC, ψ)−1λ(C).

(38)

When α = 0, the quadratic form T
(
θ(V )
)

is 3b2 − 3β
4 cd. Let c ′ = c+d

2 and d ′ = c−d
2 , then

it becomes 3b2 − 3β
4 (c

′2 − d
′2). We can use Weil’s formula to integrate over b, c ′, d ′. We

arrive at the same result, noting that−3 is a square in this case.
Meanwhile, using a computation as in [J-Y2], we see when a = uv2 and |v| → 0, J(a, f ′)

equals 0 when u is not a square, and when u = 1, J(v2, f ′) equals:

Js( f ′)λ−1(v)|2v|−1/2γ(1, ψ)−3[−1,−1]
∑

C=±1

ψ

(
−

2C

v

)
µ(−2vC, ψ)−1λ(C).

Our assertion follows then from the standard argument in [J-Y2].

5 Local Integral: Unramified Case—Cubic Extension

In the next three sections, we assume F is a local nonarchimedean field, with odd residue
characteristic q. Assume ψ is an additive character of F of order 0, and λ is unramified. We
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will consider the cases when the extension over F is unramified. With these assumptions,
the matching condition in Section 4 becomes:

I(a−1, f ∗ φ) = [a, δE/F]|a|λ(a) J(a, f ′)

and Is( f ∗ φ) = Js( f ′).
In this section, we assume E is an unramified cubic extension of F. Let φ0 be the char-

acteristic function of the lattice R×F ⊕ RF ⊕ RE. We prove that if f ′ is the image of f under
the Hecke algebra homomorphism between GL(2, E) and GL(2, F), then the pair ( f , φ0)
match the function f ′.

5.1 Homomorphism Between Hecke Algebras

Let KF , KE be the maximal compact subgroups GL(2,RF) and GL(2,RE). The Hecke alge-
bra H

(
GL(2, F)//KF, λ

)
of GL(2, F) consist of the smooth functions of compact support

modulo center that are biinvariant under KF , and satisfy f (zg) = λ−1(z) f (g). The Hecke
algebra H

(
GL(2, E)//KE, λ ◦ N

)
is defined similarly.

Denote by ρ(χ) the representation of GL(2, F) induced by the character:

z

[
a x
0 1

]
→ λ(z)χ(a).

If χ = | · |s is unramified, ρ(χ) contains a vector fixed under KF . Call such a vector v0. Then
for f ′ ∈ H

(
GL(2, F)//KF, λ

)
,

ρ(χ)( f ′)v0 = f
′∧(s)v0.

The map f ′ → f
′∧(s) is an algebra homomorphism from H

(
GL(2, F)//KF , λ

)
to C×.

Let Sm be the set {g ∈ GL(2, F) | | det(g)| = qm, ‖g‖ ≤ qm}. Here ‖g‖ = max{|gi j |}
where gi j are the entries of g. Define f ′m the Hecke function by:

f ′m(zg) = λ(z)−1, g ∈ Sm; otherwise f ′m(zg) = 0.

Then f ′m, m = 0, 1 . . . is a basis of H
(

GL(2, F)//KF, λ
)
. Similarly, we define fm as above

a basis of H
(
GL(2, E)//KE, λ ◦ N

)
. The algebra homomorphism fm → f ∧m (s) is defined

similarly with χ replaced by χ ◦ N .
Let � be the uniformizer of PF . Let f−1 = f−2 = f ′−1 = f ′−2 ≡ 0. Then

Proposition 3 For any s a complex number, any m > 0,(
fm − q3λ(�−3) fm−2

)∧
(s) =

(
f ′3m − qλ(�−1) f ′3m−2

)∧
(s).(39)

The map

fm − q3λ(�−3) fm−2 → f ′3m − qλ(�−1) f ′3m−2

determines an injective homomorphism from H
(
GL(2, E)//KE, λ ◦ N

)
to

H
(
GL(2, F)//KF, λ

)
.
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Proof It follows from the formula

f ∧m (s) =
m∑

i=0

q3(2i−m)sq3m/2λ(�3(i−m)).

We show that if f and f ′ correspond under the above homomorphism, then ( f , φ0) and
f ′ match in the sense of Section 4.

5.2 Computation of I
(

a−1,
(

fm − q3λ(�−3) fm−2

)
∗ φ0

)
Let Φi(x) be the characteristic function of the set {x ∈ F : |x| = qi}. Define

Im(a) =

∫
t∈E,|t|≤q3m

ψ
(
aN(t)− T(t)

)
dt.(40)

Recall from Section 4 (36) that I(a−1, fm ∗ φ0) equals∫∫∫
GL(2,E)/E×

fm(g−1)σψ(zg)φ0(a−1, 1, t)ψ
(
aN(t)− T(t)

)
dtλ(z) d×z dg.(41)

Lemma 5 When m ≥ 0,

I(a−1, fm ∗ φ0) =
∞∑
j=0

Φ3m−2 j(a)I j−m(a)q6m−3 jλ(� j−3m).(42)

Proof Note that φ0 is fixed under the action of k ∈ KE. From the Iwasawa decomposition,
we see Sm is the disjoint union:

m⋃
i=0

⋃
w∈P−m+i

E /P2i−m
E

KE

[
�−i

�i−m

] [
1 w

1

]
.(43)

From the equivariance of f under center, and Lemma 1, I(a−1, fm ∗ φ0) equals∫
g∈Sm

σψ
(
n(t)zg−1

)
φ0(a−1, 1, 0)ψ

(
−T(t)

)
λ(z) dg d×z dt.(44)

We can separate the domain for g according to (43). Let i be as in (43), the contribution
to (44) from the subset with index i gives

q6i−3m

∫∫∫
|w|≤q3(m−i)

σψ

(
n(t)zn(w)

[
�i

�m−i

])
φ0(a−1, 1, 0)ψ

(
−T(t)

)
λ(z) d×z dt dw.

If i �= m, a change of variable t → t − w shows the above integral is 0. When i = m,
integrating over w, we get:

q3m

∫∫
σψ

(
n(t)z

[
�m

1

])
φ0(a−1, 1, 0)ψ

(
−T(t)

)
λ(z) d×z dt.(45)
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The formulas in Lemma 1 then gives the expression

q6mλ(�−3m)

∫∫
φ0(a−1z2�−3m, z, z�−mt)ψ

(
aN(t)− T(t)

)
λ(z)|z|3 d×z dt.

It is clear this is the expression in the Lemma.

Lemma 6 When m ≥ 1:

I
(

a,
(

fm − q3λ(�−3) fm−2

)
∗ φ0

)
=

2∑
j=0

q6m−3 jλ(� j−3m)Φ3m−2 j(a)I j−m(a).

Proof From Lemma 5, we only need to show that Φ3m−2 j(a)[I j−m(a) − I j−m−1(a)] = 0
when j ≥ 3. Since I j−m(a)− I j−m−1(a) equals:

∫
|t|=q3 j−3m

ψ
(
aN(t)− T(t)

)
dt

= q3

∫
|v|≤q−3

∫
|t|=q3 j−3m

ψ
(
aN[t(1 + v)]− T(t)− T(tv)

)
dt dv.

It is easy to check when |a| = q3m−2 j , the above integral over v equals 0 for j ≥ 2.

Lemma 7 When m ≥ 1,

I
(

a,
(

fm − q3λ(�3) fm−2

)
∗ φ0

)
=




q3mλ(�−3m) |a| = q3m

(−q3m−1 − q3m−2)λ(�1−3m) |a| = q3m−2

q3m−3λ(�2−3m) |a| = q3m−4.

It equals 0 in other cases.

Proof We only need to compute I j−m(a) for |a| = q3m−2 j and j = 0, 1, 2. When |a| = q3m,
ψ
(
aN(t)− T(t)

)
= 1 when |t| ≤ q−3m, thus I−m(a) = q−3m.

When |a| = q3m−4, the argument in Lemma 6 shows the integration in I2−m(a) over
|t| = q6−3m gives 0, and the integration over |t| ≤ q3−3m gives q3−3m.

When |a| = q3m−2, the integral in I1−m(a) reduces to a finite field situation; it equals:

q−3m
∑
t∈Fq3

ψ
(
N(t)
)
.

As for r ∈ F×q , there are q2 + q + 1 solutions to N(t) = r, and N(t) = 0 has one solution,
the above sum equals−q−3m+1 − q−3m+2.
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5.3 Computation of J(a, f ′m)

Recall

J(a, f ′) =

∫
f ′
([

1 x
1

] [
−1

a

] [
1 y

1

])
ψ(x + y) dx dy.

Lemma 8 When m ≥ 1,

J(a, f ′m) = Φm(a)− Φm−2(a)λ(�−1).(46)

Proof By definition of f ′m, J(a, f ′m) equals

∫
|ab|,|abx|,|aby|,|abxy−b|≤qm ,|ab2|=qm

ψ(x + y)λ(b) d×b dx dy.

First consider the contribution from the part with |ab| = qm, then |b| = 1, above integral
is Φm(a)

∫
x,y∈RF

1 dx dy, which equals Φm(a). Over the subset |ab| < qm, then the subset

|abx| < qm contributes 0, (as the integration over y will then equal 0). Thus we may impose
a condition |abx| = qm, the integral becomes:

∫
|ab|<qm,|ab2|=qm,|abx|=qm

ψ(x + a−1x−1)λ(b) d×b dx.

By a change of variable, it becomes

∫
|ab|<qm,|ab2|=qm,|abx|=qm

ψ(x)λ(b) d×b dx.

Clearly the above integral equals −Φm−2(a)λ(�−1).

5.4 Comparison in the case m ≥ 1

Compare the Lemmas 7 and 8, we see

Proposition 4 When m ≥ 1,

I
(

a,
(

fm − q3λ(�−3) fm−2

)
∗ φ0

)
= |a|λ(a) J

(
a, f ′3m − qλ(�−1) f ′3m−2

)
.(47)

Since δE/F is a square in the case at hand, this is the equation stated at the beginning of
the section.
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5.5 Comparison of I(a, f0 ∗ φ0) and J(a, f ′0 )

It is clear that I(a, f0 ∗ φ0) = I(a, φ0). Thus

I(a, f0 ∗ φ0) =

∫∫
|z|3φ0(a−1z2, z, zt)ψ

(
aN(t)− T(t)

)
dtλ(z) d×z.(48)

This integral is compared with the Kloosterman integral:

J(a, f ′0 ) =

∫
|ab|≤1,|ab2|=1,|abx|≤1,|aby|≤1,|abxy−b|≤1

ψ(x + y)λ(b) d×b dx dy.(49)

Proposition 5

I(a, f0 ∗ φ0) = |a|λ(a) J(a, f ′0 ).(50)

Proof Assume |a| = ql. If l is odd, then both sides equal 0. Assume l = 2n, the I(a, f0 ∗φ0)
equals:

λ(�−n)q−3n

∫
|a|≤1,|t|≤q3n

ψ
(
aN(t)− T(t)

)
dt(51)

while J(a, f ′0 ) equals:

λ(�−n)

∫
|a|≤1,|x|≤q−n,|y|≤q−n,|axy−1|≤qn

ψ(x + y) dx dy.(52)

The identity is trivial when n > 0 as both sides equal 0, and when n = 0 as both sides
equal 1. When |a| = q−2, we get the finite field case. We need to show for b ∈ F×q :

∑
t∈Fq3

ψ
(
b−1N(t)− T(t)

)
= q
∑

x∈F×q

ψ(bx + x−1).(53)

This follows from the identities:

∑
b∈F×q

∑
t∈Fq3

ψ
(
b−1N(t)− T(t)

)
χ(b) = q

∑
b∈F×q

∑
x∈F×q

ψ(bx + x−1)χ(b)(54)

for all χ characters of F×q . To prove (54), change b → bN(t) on the left and b → bx−1 on
the right. Then both sides of (54) are given by products of Gaussian sums. The identity
follows from the Hasse-Davenport relation. We have shown (50) in this case.

When |a| < q−2, we use the argument in the proof of Theorem 4. Here |a| is small
enough so that the stationary arguments used in Theorem 4 work. We get the equation (50)
in this case as well.
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5.6 Singular Orbits

It is easy to compute Is( fm ∗ φ0) and Js( f ′m). Using the argument in Lemma 5, we see
Is( fm ∗ φ0) = q3nλ(�−3n) if m = 2n, and 0 if m is odd. Meanwhile Js( f ′m) = 0 unless
m = 0 where Js( f ′0 ) = 1. This implies

Is
((

fm − q3λ(�−3) fm−2

)
∗ φ0

)
= Js
(

f ′3m − qλ(�−1) f ′3m−2

)
, m ≥ 0.

5.7 Conclusion

We have proved that when E is an unramified cubic extension of F, if f → f ′ is the Hecke
algebra homomorphism defined in Proposition 3, then ( f , φ0) and f ′ match.

6 Local Integral: Unramified Case—Split Case

In this section, we assume E = F⊕F⊕F. Let φ0 be the characteristic function of the lattice
R×F ⊕ R4

F . We prove that if f ′ is the image of f under the Hecke algebra homomorphism
between GL(2, E) and GL(2, F), then the pair ( f , φ0) match the function f ′.

In this case, f is a linear combination of functions f1 ⊗ f2 ⊗ f3, where f1, f2, f3 ∈
H
(

GL(2, F)//KF, λ
)
. The homomorphism between the Hecke algebras is given by f1 ⊗

f2 ⊗ f3 → f1 ∗ ′ f2 ∗ ′ f3 [L], here ∗ ′ is just the usual convolution. We prove:

Proposition 6 For all f1, f2, f3 ∈ H
(

GL(2, F)//KF, λ
)
,

I(a−1, f1 ⊗ f2 ⊗ f3 ∗ φ0) = J(a, f1 ∗
′ f2 ∗

′ f3)|a|λ(a)(55)

and Is( f1 ⊗ f2 ⊗ f3 ∗ φ0) = Js( f1 ∗ ′ f2 ∗ ′ f3).

Proof Denote by 1F the unit element of H
(
GL(2, F)//KF , λ

)
. We use a method in [M-R2].

Lemma 9 If f is a Hecke function on GL(2, F), we have

∫
F×\GL(2,F)

f (h−1)1F

(
n(x)gh

)
ψ(−x) dx dh(56)

=

∫
F×\GL(2,F)

∫
f (h−1)σψ

(
zι(g, h)

)
φ0(1, 0,−1,−1,−1)λ(z) d×z dh.(57)

where ι(g, h) is either gh⊗ 1⊗ 1, or g ⊗ h⊗ 1 or g ⊗ 1⊗ h.

Proof of the Lemma Let F1(g) and F2(g) be the expressions (56) and (57) respectively.
Clearly

Fi

(
n(t)zgk

)
= ψ(t)λ−1(z)Fi(g), k ∈ KF, i = 1, 2.(58)

Thus one only needs to show that F1(da) = F2(da).
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Case 1: ι(g, h) = gh ⊗ 1 ⊗ 1. In this case, we only need to show the identity for the case
f (h) = 1F(h). It is clear then F1(da) = F2(da) = Φ0(a).

Case 2: ι(g, h) = g ⊗ h ⊗ 1. Let f = fm. Use the decomposition given in (43), we can
compute F2(da). Only the coset with i = m in (43) gives a nonzero contribution to F2(da).
We get F2(da) equals:

qm

∫
σψ(z)σψ(da ⊗ d�m ⊗ 1)φ0(1, 0,−1,−1,−1)λ(z) d×z.(59)

This expression equals λ(�−m)Φ−m(a). On the other hand F1(da) equals:

∫
|az|,|z|,|zx|≤qm

ψ(x)λ(z) d×z dx(60)

which equals λ(�−m)Φ−m(a). We have proved the lemma in this case.

Case 3: ι(g, h) = g ⊗ 1⊗ h. Proved in the same way as in Case 2.

With the Lemma, we have J(a, f1 ∗ ′ f2 ∗ ′ f3) equals

∫
f1(h−1

1 ) f2(h−1
2 ) f3(h−1

3 )σψ(z)

σψ
(
wdan(y)h1h2h3 ⊗ 1⊗ 1

)
φ0(1, 0,−1,−1,−1)ψ(−y)λ(z) d×z dh1 dh2 dh3 dy.

(Here we change ψ in the orbital integral to ψ−1, which does not affect the value of the or-
bital integral.) Use the equality in Lemma 9 between different ι(g, h), the above integration
becomes:

∫
σψ
(
zwdan(y)

)
f1 ⊗ f2 ⊗ f3 ∗ φ0(1, 0,−1,−1,−1)ψ(−y)λ(z) d×z dy.(61)

Use the formula for the representation of G̃Sp4(F), the above integral equals

∫
f1 ⊗ f2 ⊗ f3∗φ0(az2, az, azy, azt2, azt3)

· ψ(ayt2t3 − y − t2 − t3)|a2z3|λ(z) d×z dy dt2 dt3.

Compare with (16), a change of variable z → a−1z gives the identity (55).
A similar argument works for the singular orbit integral Js( f1 ∗ ′ f2 ∗ ′ f3). We will skip

the proof.
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7 Local Integrals: Unramified Case—Quadratic Case

In this section, we assume E = F ⊕ K, where K is a quadratic extension of F. Let φ0 be
the characteristic function of the lattice R×F ⊕ R2

F ⊕ RK . We prove that if f ′ is the image of
f under the Hecke algebra homomorphism between GL(2, E) and GL(2, F), then the pair
( f , φ0) match the function f ′.

In this case, f is a linear combination of functions f1 ⊗ f2, where f1 ∈
H
(

GL(2, F)//KF, λ
)

and f2 ∈ H
(
GL(2,K)//KK , λ ◦ NK/F

)
. The homomorphism be-

tween the Hecke algebras is given by f1 ⊗ f2 → f1 ∗ ′ ν( f2), where f2 → ν( f2) is the Hecke
algebra homomorphism corresponding to the quadratic base change [J-Y]. Explicitly, let
f ′ ′m be the basis of Hecke algebra of GL(2,K) as defined in Section 5, the map ν is defined
by

ν
(

f ′ ′m − q2λ(�−2) f ′ ′m−2

)
= f ′2m − qλ(�−1) f ′2m−2.(62)

We proceed as in Section 6:

Lemma 10 With above notations,∫
F×\GL(2,F)

f1(h−1)1F

(
n(x)gh

)
ψ(−x) dx dh(63)

=

∫
F×\GL(2,F)

f1(h−1)σψ(gh⊗ 1)φ0(1, 0,−1,−1)λ(z) d×z dh(64)

=

∫
K×\GL(2,K)

f2(h−1)σψ(g ⊗ h)φ0(1, 0,−1,−1)λ(z) d×z dh(65)

where f1 = ν( f2).

Proof The first equality follows in the same way as the case 1 of Lemma 9. To show the
second equality, we again compute F2(da) where F2 is the expression (65). When f2 = f ′ ′m ,
we get F2(da) equal to:

q2m

∫
σψ(z)σψ(da ⊗ d�m )φ0(1, 0,−1,−1)λ(z) d×z

which is

q2m

∫
ζ(z)|z3a2�4m|φ0(a�2mz2, 0,−z�2m,−za�m)λ(z) d×z.(66)

Recall ζ(z) is the quadratic character on F× associated to K. The expression (66) equals∑m
j=0(−1)m+ jΦ−2 jqm− jλ(�−m− j). Thus if f2 = f ′ ′m − q2λ(�−2) f ′ ′m−2, we get

F2(da) = Φ−2mλ(�−2m)− qΦ2−2mλ(�1−2m).

The formula for the expression (63) evaluated at f1 = ν( f2) and g = da can be found easily
as in Lemma 9. The comparison gives the equality in the Lemma.

From Lemma 10 and the argument in the proof of Proposition 6, we get:
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Proposition 7 Let f1, f2 be Hecke functions of GL(2, F) and GL(2,K) respectively, then

I(a−1, f1 ⊗ f2 ∗ φ) = ζ(a) J
(
a, f1 ∗

′ ν( f2)
)
|a|λ(a)(67)

and Is( f1 ⊗ f2 ∗ φ) = Js
(

f1 ∗ ′ ν( f2)
)

.

8 The Comparison

From Sections 5, 6 and 7, we get (under the assumption at the beginning of Section 5):

Theorem 5 If f and f ′ are Hecke functions of GL(2, E) and GL(2, F), and f ∧(s) = f
′∧(s),

then f and ( f , φ0) match.

Back to the global situation. From the local results in Theorems 4, 5, we get

Theorem 6 Let f =
⊗

fv, φ =
⊗
φv and f ′ =

⊗
f ′v be functions smooth of compact

support modulo center. If for any v, ( fv, φv) and f ′v match, then

I( f , φ) = J( f ′).(68)

For any f ′ as above there exists ( f , φ) that matches f ′ over all places, and the converse holds
also. Moreover, at almost all finite place v, if f ′v is the image of fv under the Hecke algebra
homomorphism, let φv be the characteristic function of R×v ⊕ Λ(Rv), then ( fv, φv) and f ′v
match.

Proof The first assertion follows from Proposition 1 and (32), the matching condition and
the fact

∏
µ(δEv/Fv

, ψ) = 1,
∏
|a|v = 1 and

∏
[2av, δEv/Fv

]λ(a) = 1 when a ∈ F×. The
other assertions are given by Theorems 4 and 5.

From Theorem 6, we can apply the standard arguments (see [M-R]) to prove the Theo-
rems 1, 2 stated in the introduction. We can apply the strong multiplicity one theorem for
GL(2). One gets when ( f , φ) and f ′ match, for each cuspidal representation π ′ of GL(2, F)
with central character λ, either

Jπ ′( f ′) = I ′µ( f , φ)(69)

for a unique µ with µ2 = ζλ ◦ N on A1
E, or

Jπ ′( f ′) = Iπ( f , φ)(70)

for a unique cuspidal representation π. In the first case, E/F is nonnormal, the cuspidal
representation π ′ has a base change that is not cuspidal. Its local components are of the
form π

(
I(ξ)
)
⊗ ν for almost all places, thus π ′ must be of the form π

(
I(ξ)
)
⊗ ν. The

conclusions in Theorems 1, 2 follow immediately from the equation (70) and the fact that
all cuspidal representations of GL(2) have nontrivial Whittaker models.
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