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SMALL REYNOLDS NUMBER FLOW BETWEEN ECCENTRIC
ROTATING CYLINDERS WITH A PERMEABLE SLEEVE
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Abstract

Two eccentric rotating cylinders together with a permeable membrane surrounding the inner
cylinder are used to model the flow around a modified viscometer. A perturbation method
is used to solve for the flow between the membrane and the outer cylinder; the flow between
the inner rotor and the membrane is assumed to be governed by Stoke's equation, and the
two flow regimes are coupled by the through-flow across the membrane. For moderate
values of Reynolds number and eccentricity, the permeability of the membrane plays a
negligible role, and the flow through the membrane is found to be eccentricity dependent.
High eccentricities result in the formation of eddies which, upon increasing the Reynolds
number, move in a direction opposite to that of the rotation of the outer bowl.

1. Introduction

The problem outlined in this paper arises from an attempt to model the fluid flow
around a modified viscometer used for slurries that have a tendency to settle. Briefly,
the viscometer consists of a rotor surrounded by a fixed cylinder or sleeve. The sleeve
is either slotted or perforated allowing fluid to flow through from the outside. The
assembly is lowered into an outer bowl, whose rotation ensures the slurry is mixed
continuously, and the slotted or perforated sleeve facilitates the entrainment of the well
mixed slurry onto the surface of the rotor. The rotational speed of the rotor can be
set independently so that the fluids shear rate can be varied continuously from zero to
some chosen maximum whilst the shear stress on the rotor is measured. The plot of the
shear stress against the shear rate produces a rheogram from which the constitutive
relation of the fluid may be deduced. Although this technique appears to offer an
effective means of estimating the rheological properties of settling slurries, there are
still questions regarding the accuracy of the results when parameters (such as rates of
rotation, distribution of perforations on the sleeve, etc) are changed or when vorticies
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are present within the bowl (Overend et al. [4]). The properties of some slurries
(for example, clay slurries) may be approximated by a Bingham fluid, but numerical
techniques appear to be the only effective way to study this problem. The present
paper does not attempt to give any quantitative answers to the problem; however,
as a first step, we propose to consider the simpler case of a Newtonian fluid, since,
apart from experimental observations, little is known about the flow pattern around
the viscometer. The actual problem is three dimensional; nevertheless, if we assume
that the bowl is large enough and the viscometer is constructed so that end effects
are minimized then a two dimensional model can be considered and a perturbation
scheme used.

FIGURE 1. Geometry and coordinate systems.

We concentrate, therefore, on the steady flow of a viscous homogeneous fluid in a
cylinder of radius b, rotating with angular velocity SI [see Figure 1]. A viscometer
consisting of a rotor of radius c rotating with angular velocity co and surrounded by
a sleeve (a stationary concentric cylinder of radius a) is situated with centre a small
distance from the centre of the rotating outer cylinder. The actual sleeve has a small,
but finite thickness, and its small perforations will restrict any tangential component
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[3] Small Reynolds number flow with a permeable sleeve 257

of velocity in the fluid flowing through it. In order to make the problem amenable
to analytical techniques we make two assumptions: firstly, the distance between the
two centres ae say, is assumed to be small; however, this assumption will be relaxed
later, as explained in Section 4; secondly, the perforated or slotted sleeve is replaced
by a non-deformable permeable membrane (of zero thickness) over which a no-slip
condition is applied. The problem can, therefore, be divided into an outer problem
involving the flow between the membrane and the outer cylinder and an inner problem
between the rotor and the membrane. Furthermore, if we assume that the flux across
the membrane is proportional to the pressure difference across it, which has been
shown by Woods [8] to be an adequate model for the flow across a perforated surface
whose perforations are small and uniformly distributed, then the two regimes could
be coupled by this condition.

2. The outer problem

Here, we are concerned with the flow of a viscous fluid between eccentric cylinders
where the outer cylinder is rotating. This problem has been studied by various authors
in different context. Wood [7] used an asymptotic technique to study the flow in
the limit of large Reynolds numbers, and DiPrima and Stuart [3] considered the low
Reynolds number limit for the flow in journal bearings. While many other works deal
with the case of two eccentric cylinders, the addition of a permeable surface makes
the problem unique.

We use the conformal transformation outlined by Wood [7] to map the two cylinders
for the outer problem onto the concentric cylinders with radii given by p = 1 and
p = fi where /5 > 1. The defining equations are

2 , 2 ref; w pe, ( 2 . D
1 + yw

where
Y = -2e [(fe/a)2 - 1 - e2 + V(fc2/a2 - 1 - e2)2 - 4e2] , (2.2)

and

(This simple relation for £ is equivalent to that given by Wood.)
A stream function, \j/, may be defined in terms of the non-dimensional velocity

components given by

y/1 dxlr rdx]/
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where the Jacobian of the transformation is

+2ypcos<j> + y2

J =
(1 - Y1)

[4]

(2.5)

Taking a as the length scale (which is implied by (2.1)), bSl as a unit of velocity and
eliminating the pressure from the equations of motion, we obtain

pd(j>,4>) R
(2.6)

where

V2 = Id Id2

dp2

Here, £ is the axial component of vorticity and R = abSl/v is the Reynolds number
with kinematic viscosity v. Since e is small, y as given by (2.2) is also a small
parameter. In the limit as e -> 0, y ->• 0, J -» 1 and the outer problem becomes
the solution, which is known to be independent of the Reynolds number, given by
that of axi-symmetric flow between concentric cylinders. In this limit, we expect no
interaction between the two flow regimes. At the permeable membrane, the normal
flux is assumed to be driven by the variation of the pressure difference, and the
conservation of mass requires that the total flow across it is zero. Thus, if /(</>; y)
denotes the normal velocity distribution at p = 1 then it has a period of 2n in 0 and
must satisfy

(2.7)/W;yW/d>0)# = o.

The boundary conditions for the outer problem become

\j/{P, <p) = constant,

dp

(2.8)

2.1. A perturbation scheme Following Wood [7] we look at a perturbation scheme
for xjr and £ given by

niP, </>; R ) ,
n=\

n=l

(2.9)
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The axi-symmetric zeroth order solution can be written down at once, being

if0(p) = --Ap2-

259

(2.10)

where A, B and K are constants. For flows between concentric cylinders, the constant
K is immaterial and is normally equated to zero; however, for the present problem it
can be determined only from a knowledge of the solution to the inner problem since
its value depends on the relative flow between the boundaries of the two regimes. As
expected, this solution does not contribute to the flux across the permeable membrane.
In view of this, the velocity distribution, given by (2.7), may be written as

fi.fr y) = vM4>) + y2/2(«/>) + • • • • (2.11)

Expanding the boundary conditions given in (2.8) in powers of y, we obtain

3, 0) = - 1 , fo{B, <p) = constant, (2.12)

for the zeroth order term. Equations (2.10) and (2.12) now yield

_ 1 2 _

2

The corresponding boundary conditions for the first order terms are

= B/(B2-l). (2.13)

d(p

dp

dp
= 0,

(2.14)

and from (2.6) we have

•r 1

= -V20/fi - Ap2cos(j>). (2.15)

The governing equations and the boundary conditions for the second order terms are

+

= 4p cos 0£i + -

p dp d(/) R

p [ dp d(f> d{p, R *"
+ 2 Ap4 cos2 0),

(2.16)

and

dq> = M4>) -

^-(B,cf>) = l + B2-4B2 cos2

dp

- ^ ( 1 , 0 ) = O ,

dp

MB, 0) = 0.

(2.17)
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The equations for the higher order terms are easily generated if required. Equation
(2.16) does not contain any coefficients of large magnitude, as can be verified once
the form of \jf\ (p, (p) is known; hence, for small values of \y | we expect the zero and
first order solutions to give a good description of the flow pattern.

2.1.1. The first order solution We now assume that /i(</>) may be expressed as a
Fourier series of the form

= ^an cosn<j> + bn sinn<j). (2.18)
n=\

In practice, f\ (0) is approximated to a high degree of accuracy by a finite number of
terms. This, and (2.15), suggests that we can let

R) = Ap3 cos</> + SR (2.19)

and

n=l

where 5t denotes the real part of the expression. If

(2.20)

then (2.15) yields

where the prime denotes differentiation with respect to p, and

(2.21)

(2.23)

(When n = 1, we have the set of equations used by Wood.) The boundary conditions
in (2.14) are now replaced by

= -enA--^-j M<t>)e-ir">dcj>, x'n{\) =-
(2.24)
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[7] Small Reynolds number flow with a permeable sleeve 261

where ex = 1, and en = 0 for n ^ 1. Writing //„ = y/n2 — inAR and kn = s/i
the solution to (2.22) is

Hn{p) = Cn /„. (K p) + Dn /_„. (A, p), (2.25)

where Cn and Dn are arbitrary constants to be determined and /±Mn are the modified
Bessel functions. We note that

which may in turn be written in terms of the Thomson functions (ber^ and bei^J.
When n is large the Bessel function /Mn (e'3n/4*/nA~R) may be approximated by use of
Meissel's formula (see [6, p. 227]). Substituting (2.25) into (2.23) and solving leads
to

Xn(p) = Anp" + % - CnJ?«\p) - DnJ?™(p), (2.26)

where An and Bn are arbitrary constants, and

and

By construction, J^(1)(l) = 0 = J^(1)'(l) and J ,̂(2)(/S) = 0 = J^'OS). An, Bn, Cn

and Dn can now be determined using (2.24). Writing

An = 082- -

+ ntf2" + D ^ J ^ ' J ' ^ ^ d ) - ^B
(I)O8)J^>'(1)}, (2.27)

we have

AnCn = ^ V ^ d K - 2«^£n^n
( 2 ) '(l), (2.28)

^ (2.29)

An = -20/O32 - Dc. + £n/2 + (£>n/2){^2>(l) + ^ n
( 2 ) ' ( l ) } , (2.30)

Bn = P/W2 - l)€n + EJ2 + (DJ2){J?f\l) - -^(2) '(1)}, (2.31)
n
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En = - — f fA<p)e-inU<t> = -(ic + bn)/n. (2.32)

From the Navier Stokes equation, and assuming the expansion schemes

n=0

71 = 1

oo

n=0

(2.33)

for the pressure Tl(p, </>) and the velocity components up(p, </>) and u^{p, 4>), the first
two terms for the pressure distribution are given by

d<p
= 0,

and

3FIi p 3£[

R dpaq> dp oq>

On the permeable membrane, use of (2.15) and (2.21) leads to

(2.34)

(2.35)

kn=l

(2.36)

where KQ and Kx are arbitrary constants.

3. The inner problem

This involves the concentric region between the rotor and the permeable membrane.
The length scale of the motion is typified by the annular gap a — c, which in general
is small compared to a, while u> is O(Q). In our viscometer, the ratio (a — c)/a is a
small parameter of (9(10"') say. Equation (2.6) is replaced by

r 8(r,0)
i ) = J_
0) R ' *

https://doi.org/10.1017/S0334270000000643 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000643


[9] Small Reynolds number flow with a permeable sleeve 263

where/?, = (a — c)/(a)(cco)/(bQ)R is theeffective Reynolds number and cylindrical
polar coordinates are used. Since c <JC b, to a first approximation, the inner regime is
described by the biharmonic equation

V 4 * = 0. (3.1)

We propose to use the same non-dimensionalization scheme as for the outer regime
so that it is easier to match the boundary conditions on the permeable membrane. The
biharmonic equation remains unchanged and holds in the region c* < r < 1 where
c* = c/a. We will drop the asterisk on c from now on.

If the membrane is impermeable there would be no interaction between the two
regimes and the inner solution would be purely axi-symmetric. The permeability of
the membrane will cause the solution to deviate from axi-symmetry, and we assume
that this deviation is adequately modelled by considering the first order terms in
y from the outer problem. Since the inner and outer solutions use two different
coordinate systems, some care needs to be taken regarding the boundary conditions
on the interface at r = 1 = p, where

) - £ - ( 1 , 0 ) = K , ( 1 , 0 ) = — ( 1 , 0 ) .
dq> 30

(3.2)

hi the conversion of <p in terms of 9, (2.1) gives the following Fourier decomposition

- yVfl

21 (3.3)

\n—3 0 - Yz)[(n - «(/i - 2) - 2{nl -

Ay*

Applying (3.3) gives

cos0 + a2 coslO /32 s in20 -\ (3.4)

where

cto = b\y — b2y /2 + b$y /3 -+• • • •

«i = (1 - Y2){—b\ + yb2 — y2b2 H )

a2 = (1 — y2)(—yfci — (1 — 3y2)b2/2 + y(l — 2y2)&3 + • • •)

Pi = (1 - y2)(a, - ya2 + y2a3 H )

ft - (1 - y2)(yai + (1 - 3y2)a2/2 - y(l - 2y2)a3 + • • •) J

(3.5)
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with obvious extensions to higher harmonics. From (2.19), (2.24) and (2.32) we have

Vr,(i, </>) = Acos0 + m

= 91

n=]

- bn cos(n(j>)]/n.
n=\

This is consistent with neglect of terms of O(y2) in the outer problem. We now
assume for the inner problem that the stream function on r = 1 is completely given
by vl/(l, 6) = ^o(l) + y iMl , 0), hence

(3.6)

(3.7)

(3.8)

4/(1, 9) = -A/2 + K + ya0 + y 2_J.an cos/20 + 0n sinnd].

The other boundary conditions consist of a no-slip condition,

dr ' ~ '
and on the rotor

, 9) = 0,

where U = cco/(bQ). Equations (3.6) - (3.8) together with (3.1) completely specify
the inner problem and y is now simply a predetermined constant. Since r = c is a
streamline, we have arbitrarily put ty(c, 9) = 0.

It is obvious, from the boundary conditions, that <I* may be decomposed into a
component that is axi-symmetric and one that is non-symmetric. We, therefore, let

where %(/•) satisfies

-,0)

= 0,

(3.9)

(3.10)

where A"2 = —A/2 + K + ya0, and the non-symmetric component satisfies

l, 6) = y J^ (<*n cosn9 + pn sinn9),
n=l

c, G) = 0 =
3 * ,

1
dr

(3.11)
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[11] Small Reynolds number flow with a permeable sleeve 265

The axi-symmetric component is the solution for viscosity dominated Couette flow
between rotating cylinders and has solution given by

and
1 -. cU
2 \-c

which determines K, also. Equation (3.11) suggests that *i is, in general, part of a
Fourier decomposition in 9. Hence, it is sufficient to seek a solution of the form

' ) (3.13)

satisfying

T«(l) = ycn, cn=an-ifin,

Tn(r) satisfies

r4T™ + 2r3T,,, _ {2n2 + 1 ) r2T« + (2/ |2

which has solution sets {r, r lnr, r"1, r3} and [r", r~", rn+1, r~n+2} when n = 1 and
n ^ 1, respectively. The solutions for the first two harmonics are

Ti (r) = KC, (J7,r + r/2r In r + ^3/r + jj4r
3)

and

T2(r) = yc2(r?5/-
2 + r?6/r

2 + ^7r
4 + i?8)

where

»?i = J[(3 - c2)(l - c2) + 2(3 - c4) lnc]/d,, ^

773 = -^c2[3(l - c2) + 2c2lnc]M, JJ4 = J ( l - c2 - 2\nc)/du

r,5 = 2(1 + c2 + c*)/d2, T}6 = 2c4/d2,

ni = - ( 1 + c2)/d2, m = -c2(4 + c2 + c4)/d2,
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and
dx = ( l - c 2 ) [ l - c 2 + (l + c2)lnc], d2 = (l-c2)3.

Alternatively, we have

^lfo $) = y('7ir + r)2r\nr + r)3/r + ?j4r
3)(ai cos# + fa sin9)

+ yimr2 + ns/r1 + r]^ + jjg)(a2 cos 29 + fa sin26),
(3.14)

for terms up to the second harmonic in 9 only. As expected, *, (r, 9) -> 0 if y is
allowed to tend to zero.

As is well known for viscosity dominated flow, the pressure and vorticity are
conjugate harmonic functions; thus, using

~d9=~R~d?' £ = - v * .

the pressure distribution for terms up to the first and second harmonics is given by

P(r,9) = -̂  ( — -Srr]A (a, sin# - fa cos9)
(3.15)

+ -^)(a2 sin 29 - fa cos 29) + K3,^ J
where K3 is a constant. The torque (per unit length) exerted on the inner cylinder about
its centre is given by c2 f0" rrg(c,6)d9 where rr6(c, 9) is the non-dirhensionalized
shear stress on r = c . Since no contribution is made by *, (r, 9), the non-dimensional
torque is given by

Setting 8 = (1 — c)/c as the clearance ratio, (3.16) yields

in the limit as <5 -> 0, which agrees with [3] (equation (78)) for the concentric case.

4. A solution for small Xn

We consider briefly some of the parameters of the problem. In practical terms, the
annular gap between the rotor and the slotted sleeve is of the order of a centimetre.
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[13] Small Reynolds number flow with a permeable sleeve 267

Typically, the sleeve may have an internal radius of 25 millimetres; this may be
varied in order to see the effects on the flow through the sleeve. In MKS units we
have based our analysis on a rotor of radius 0.019 metres, and 0.03 and 0.15 metres,
respectively, for the sleeve and the rotating outer cylinder. For these values, \y\
increases monotonically with the eccentricity, which is denned as e = ae/(Jb — a),
but remains less than 0.15 for 0 < e < 5/8 so that the perturbation analysis may still
be used when e is not much less than 1 (for example, in Figure 3 where e = 1/2,
\y\ = 0.101). We note that the radius of the outer cylinder is chosen so that the
formation of eddies is seen.

The closed form of the outer solution given by VI (p > <t>) does not convey much
information about the flow pattern, but if s/AR is small, the Bessel functions may be
approximated by their power series representation and in this limit we can get an idea
of the flow field. Thus, we have that

or more precisely, for n = 1 or 2,

where 8 = «JiAR and

on(p) = P/2,

O\z(p, 8) •

(klp)
(A2p)

(X2p)

4

= CT13(p)S + a14(p,<5)<$3 -

= 02l(p)^ +Or22(P»^)6

= CT23(p) + CT24(p, 8)82 +

4- O(85),

+ O(86),

0(8'),

(1 - yi + p2/4 - log(p<5/2)),

(4.1)

•P/2,

>, 8) = l-p~' + i ( l / p + p/2)[y/ + log(p5/2)] + p3/16,

, 8) = ip2[3/4 - y//2 + p2/6 - X- Iog(p5/V2)],

= 1/2 + ^ - y i - p2/4.

(4.2)

In an, <r14, a22 and <J24 the log 8 terms have not been separated out and yi denotes
Euler's constant.
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We are now in a position to obtain the constants An, Bn, Cn and Dn of (2.25) and
(2.26) for n — 1 or 2 in powers of 8. The expansions are obtained using the symbolic
algebraic package Maple (version V Release 2). For a description of the package see
Char et al. [2]. Briefly, in the outer regime, we write Maple codes to obtain expansions
for the Bessel functions and integrals contained in (2.25) and (2.26), as well as to store
the expansions for the stream function and pressure. Using the codes as input files to
Maple, the output files so obtained contain all the information required to write out
the form of the remaining expressions in this section. Thus, the constant A ̂ , which
is complex, is first expanded as An + S2Al2, where Al2 contains log 5 terms as well.
Denoting the real and imaginary parts by using a third suffix r and i respectively, and
substituting for S in terms of AR, we obtain A\ = [AUr — AR A]2i]+i[AUi+AR A12r]
with neglect of terms of O(R2 log/?, R2), and A12r and A\2i still contain log R terms.
The other constants are decomposed in a similar manner. Next, the substitution of
S = ^/iAR into O\2, ai4, a22 and o24 leads to the complex quantities a]2r + io\2i,
<7\4r + ici*, o22r + ia22i and o24r + ia24i respectively. Thus, the first two terms in the
summation in (2.19) are given by

Xn(p)eir"> = cos n<p[p"AnU - ARp" An2i+ p~nBnXr - ARp'" Bn2i -conl(p)Cnlr

- coni(p)Dnlr + AR{a)nl(p)Cn2i + con2i(p)Cnir + (x)n2r{p)CnU

+ con3(p)Dn2i + con4i(p)Dnlr + a)n4r(p)Dnii}]

+ sinn(p[-pnAnU -ARp"An2r -p~nBnU - ARp"1Bn2r +conl(p)Cnli

+ a)n3(p)DnU + AR{coni(p)Cn2r + (i>n2r{p)Cn\r - con2i(p)Cnli

+ con3(p)Dn2r + con4r(p)Dnlr - con4i(p)Dnli}], (4.3)

for n = 1 or 2. In general,

a>nk. = i - [" (-^ - — ) ank.(s)ds, n = \ , 2 , k = \ , 2 , (4.4)

and

1 f / p" s
n+x\

onk. = — / - ^ - ank.(s) ds, n = 1, 2, k = 1, 2,

1 f" /s"+i p" \

2« Jp V P s J

r.n + 1 nn

s, n = 1,2, £ = 3,4. (4.5)
iP \ P" *"~V

The last two equations hold with or without a third suffix for &>„*. and ank.. The inner
regime is similarly solved using a set of Maple codes.

The flux condition on the membrane implies

f(<p; y) = —k[Tl(l, <f>) — P{\, 9)], (4.6)

where k depends on the porosity of the membrane and is assumed known, and the
pressure distributions are given by (2.36) and (3.15). If fi(<t>) is given by (2.18) up
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[15] Small Reynolds number flow with a permeable sleeve 269

to the Nth harmonic in 0, there are 2N unknowns. Expressing P(l , 9) in terms of 0
and collecting the coefficients of the first N harmonics in (4.6) allows us to determine
an, bn for n = 1 , . . . , N. The actual solution for these constants, as well as the contour
plots in the next section, are done using Maple routines. Ten significant digits are
kept in all the numerical computations. The output expressions for the inner and outer
stream functions satisfy all the boundary conditions imposed with a maximum error
of O(10"6). For the case e = 7/16, R = 3.75, k = 0.8 and 0 = 1.25, we display the
expressions for ^ ( p ) + Y$\ (P> 0) and *I>(r, 0) below, but only four significant digits
are retained here.

VKp, 0) = 0.2422 log p - 0.121 lp2 - 0.08735

+ y [(0.4016p3 + 2.625p - 3.027/p - 6.856p log p) cos 0

+ (0.02544p3 + p(0.9299 - 0.9615 log p) + 0.04470/p) (a, sin</>-£, cos<j>)

+ (0.001716p4 - 0.06536p2 + 0.6256 - 0.06193/p2) (a2 sin2</> - b2 cos 2<p)

+ R {(-0.001608p5 + p3(0.22691ogp - 0.4451) + p(0.2673 + 1.029 log p

+ 0.4152(logp)2) + 0.1794/p) sin<p

+ (0.0002567p5 + p3 (0.06167 - 0.03219 log p) - p (0.04181 + 0.1324 log p

+ 0.05822(logp)2) - 0.02011/p) (ft, sin0 + a, costf>)

+ (0.00002598p6 - p4 (0.0002078 log p + 0.002083)

+ p2(0.07576logp - 0.08683) + 0.075761ogp + 0.1042 - 0.01527/p2)

x (b2 sin 20 + a2 cos 20)}], 1 < p < 4.883 (4.7)

and

vl>(r, 6») = 0.6609r2 - 0.2651 - 1.322 log(1.579r)

+ (-15.37r2 + 10.54r + 41.40r logr + 5.830/r)

x (0.005925 cos 0 - 0.002475 sin 6)

+ (-6.523r4 - 8.519 + 14.54/-2 + 1.498/r2)

x (-0.0008862 cos 29 + 0.0003569 sin 26), 0.6333 < r < 1, (4.8)

where a, = 0.02991, a2 = -0.003580, bx = 0.07168, and b2 = -0.009338 and
terms with numerical coefficients smaller than 10~8 have been neglected. To this
approximation, terms of O (R log R) in \ff\ (p, 0) do not contribute to the outer solution.

5. Results and discussion

Since we have required AR to be small, we are restricted to highly viscous fluids.
Some common fluids permissible are 100% glycerol (by weight) and sucrose solutions
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at 20°C, or glucose at 21°C. For the contour plots given below, the contour interval
is approximately 0.2. The magnitudes in the outer regime being about one order of
magnitude greater than those in the inner regime.

As a no-slip condition is imposed along the membrane, the flow through the
membrane is given by the radial velocity alone; however, the profile plots obtained
can be used to identify the salient features of the flow. Figure 2 represents the profile
plots generated from the following sets of parameters:

1. e = 3/16, R = 3.75, k = 0.3;
2. e = 3/16, rt = 3.75,* = 0.8;
3. 6 = 7/16, fl = 1.00,* = 0.8; and
4. € = 7/16, R = 3.75, * = 0.8.

0.006-•

0.004- •

0.002- •

-0.002-•

- 0 . 0 0 4 - •

-0.006-

FIGURE 2. Profile plots for various radial velocities (ul, e = 3/16, R = 3.75, k = 0.3; v2, e = 3/16,
R = 3.75, k = 0.8; u3, e = 7/16, fl = 1.00, k = 0.8; u4, e = 7/\6,R = 3.75, A: = 0.8).

The profile plots clearly indicate that the regions of entry and exit are subdivided
into two (unequal) regions along the membrane. While plots vl and v2 show that
varying the porosity of the membrane does not enhance greatly the flow through the
membrane, v2 and v4 demonstrate that positioning the viscometer close to the outer
bowl has the greatest influence on the through-flow, as one would expect. Furthermore,
Figure 2 illustrates a phase shift in the velocity distribution as the Reynolds number
is increased (cf. v3,t>4). This gradual phase shift to the left, together with a slight
increase in the speed of the through-flow, is found to be independent of eccentricity.
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Numerous trials have found that as e is increased the flow through the membrane is
predominantly along the side closest to the outer bowl; however, Figure 3 illustrates
that this dominance is retarded by increasing the speed of the inner rotor.

FIGURE 3. Streamlines through the annular region for (a) 0 = 0.25, (b) U = 0.75 (c) 0 = 2.0 with
e = 1/2, R = 3.75, k = 0.5.

Figure 4 illustrates an eddy formation as U is increased when e = 3/8. While
the presence of an eddy is found to be eccentricity dependent, the Reynolds number
influences its location. This is exemplified in Figure 5 by noting that as the Reynolds
number is increased, the eddies move in the direction opposite to that of the rotation
of the outer bowl. Although no direct comparison can be made, we note that the
displacement of the eddy centre with increasing Reynolds number has been observed
in studies involving flows between eccentric cylinders (see [1, 5]).

FIGURE 4. An eddy formation with e = 3/8, R = 3.75, k = 0.5 for (a) 0 = 1.20 (b) 0 = 1.23 (c)
U = 1.25.

6. Conclusion

For the geometrical restrictions placed on the system under study, we have shown
that for highly viscous fluids the eccentricity has the greatest influence over both the
radial velocity through the membrane and the presence of eddies, whose locations are
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FIGURE 5. Streamlines in the entire flow regime for (a) R = 0.5 (b) R = 1.5 (c) R = 3.0 with
e = 3/8, U = 1.25, k = 0.5.

influenced by the Reynolds number. Increasing the rotor speed appears to inhibit the
entrainment of fluid through the membrane. This flow inhibition has an important
consequence on the study of slurries. Assuming the flow pattern is relevant for
slurries, experimental results will be less reliable if the inner rotor is maintained
at a high rotation rate for prolonged periods, since the particle trapped inside the
viscometer will tend to settle. Furthermore, we anticipate the presence of eddies close
to the membrane will affect the entrainment process; however, for the present model,
the radial velocity through the membrane is invariant to changes in the rotational
speeds and, therefore, this assertion cannot be verified. The model clearly becomes
invalid when a modified viscometer with large slots is considered. In this case it will
be necessary to either relax the no-slip condition or use a numerical treatment, or both.
We note that the computational complexity in this problem has been largely removed
by use of an algebraic manipulative package.
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