The Epidemiology of Infantile Spasms

P.M. Brna, K.E. Gordon, J.M. Dooley, E.P. Wood

ABSTRACT: Objective: The aim of this study was to estimate population based incidence rates for infantile spasms (IS) and to study our clinical impression that the incidence of IS has recently decreased in the Canadian Provinces of Nova Scotia and Prince Edward Island. Methods: Birth cohorts from 1978 to 1998, identified through the hospital health records, EEG records and physician computerized databases, were followed for two years for the development of IS. Disease incidence rates were calculated using denominators derived from Statistics Canada’s reported annual live birth rates. Results: The inclusion criteria for IS were fulfilled by 75 patients. The overall incidence of IS was 30.7/100,000 live births (95% CI 24.3, 38.8). Etiologic classification was symptomatic for 51 cases (68%), cryptogenic for 18 (24%), and idiopathic in six children (8%). Although there were more males (N=44) than females (N=31), the incidence rates were similar. There was a marked variability in annual and five-year incidence rates. Conclusions: Although the clinical characteristics of our patients were similar to other reported IS populations, the instability in IS incidence rates indicates a need for caution in interpreting smaller IS epidemiologic studies.


There is little recent epidemiologic data available on infantile spasms (IS). Published incidence rates have ranged from 22-45/100,000 live births,1-6 with apparent stability from 1960-1992.7 It was our clinical impression that incidence rates have declined more recently. The aim of this study was to estimate population based incidence rates and to provide demographic and clinical data on cases diagnosed with IS in our catchment area between 1979 and 1998.

As the only tertiary care pediatric hospital within a provincially based health care system, our population was ideal for this epidemiologic study.

METHODS

The IWK Health Centre is the only tertiary care pediatric hospital serving the Canadian Provinces of Nova Scotia, Prince Edward Island and New Brunswick. All residents of both provinces have universal and complete access to health care, including medical and hospital treatment. The department of Health Records at our institution identified children with a discharge diagnosis of IS (ICD9 code 345.6) between January 1, 1979 and December 31, 1998. As all pediatric EEG records for the regions of mainland Nova Scotia (NS) and Prince Edward Island (PEI) are interpreted in our hospital, the EEG records were audited for cases of hypsarrhythmia and modified hypsarrhythmia for the same birth cohorts. An audit of a
contractions of the muscles of the neck, trunk and sometimes
Infantile spasms were defined as sudden bilateral salaam-like
borns for mainland Nova Scotia and Prince Edward Island as
by the hospital and EEG records. Statistics Canada Vital
physicians' database only identified cases previously identified
department coding. Thus there were a total of 75 patients. The
myoclonic seizures, not IS. Review of the EEG records
in patients in our hospital. Fifty-three charts were excluded; 46
(25th percentile: 5 months 75th percentile: 10 months) and the
initial treatment was with ACTH for 46 (62%) patients,
24% and idiopathic in six children (8%). Initial treatment was with ACTH for 46 (62%) patients,
vigabatrin for nine (12%), valproate for two (3%), nitrazepam for
the median age at hospital admission was seven months
percentile: 0 months, 75th percentile: 4 months). When corrected
for date of IS onset, there was no significant seasonal or temporal
The diagnosis of IS was made, according to established
criteria,1,8 through a chart review by two pediatric neurologists.
Infantile spasms were defined as sudden bilateral salaam-like
contractions of the muscles of the neck, trunk and sometimes
extremities, associated with hypersarrhythmia on EEG.1 If
consensus was not reached, the third pediatric neurologist served
as arbiter. Cases were classified as symptomatic, cryptogenic
or idiopathic according to previous criteria.9 Computed
tomography scan reports were reviewed.

Disease incidence rates were calculated using denominators
derived from Statistics Canada’s reported annual live births from
1978-1997,10-13 with estimated 95% confidence intervals. Differences in rates by sex, etiologic subgroup and by year were examined by chi square analysis, with expected values from the
live birth data.

Data processing and analysis were performed using Epi Info
version 6.04b.14

RESULTS

We identified 111 patients with a discharge diagnosis of IS
(ICD9 code 345.6) from 1978-1998. All patients had been seen
by one of the pediatric neurologists and all had been treated as
inpatients in our hospital. Fifty-three charts were excluded; 46
cases were resident outside mainland Nova Scotia and Prince
Edward Island, five had normal EEGs and two patients had
myoclonic seizures, not IS. Review of the EEG records
identified an additional 17 patients with IS, who had been
admitted to hospital but were not captured by health records
department. Thus there were a total of 75 patients. The
physicians’ database only identified cases previously identified
by the hospital and EEG records. Statistics Canada Vital
Statistics data identified the combined annual number of live
births for mainland Nova Scotia and Prince Edward Island as
11,927 (1978) – 9,945 (1997).10-13 Data for 1998 were not
available at the time of this study, but were estimated based on
the available data.

The overall annual incidence rate of IS was 30.7/100,000 live
births (95% CI: 24.3, 38.8). Annual incidence rates showed
significant variation and ranged from 8.5/100,000 to
59.1/100,000 live births during the study period (Figure). There
were more males (N=44) than females (N=31), but the difference
in respective incidence rates was not statistically significant.

The etiology was symptomatic for 51 cases (68%),
cryptogenic in 18 (24%) and idiopathic in six children (8%). Initial treatment was with ACTH for 46 (62%) patients,
vigabatrin for nine (12%), valproate for two (3%), nitrazepam for
six (8%) and other anticonvulsant treatment for 11 (15%).

The median age at hospital admission was seven months
(25th percentile: 5 months 75th percentile: 10 months) and the
median duration of IS prior to diagnosis was one month (25th

DISCUSSION

Our region has been previously shown to provide an excellent
cohort for the epidemiological study of childhood epilepsy.15 The
universality of health care access and the concentration of all
tertiary care pediatric neurology within a single institution
provide a unique model for such studies. We believe that it is
likely that all patients with IS in the region were identified
through our case finding methods. This study contains a large
cohort, representing children with IS from our geographic region
over a 21-year period.

Our population does not appear unique, as the clinical
features were identical to previously reported groups.1,4,6,16 The
higher incidence in males was consistent throughout the study
period and was similar to previous studies.3,4,6 In addition, our
numerator for incidence estimates (N=75 children) was larger
than in four of six previous studies.1,3-5

Our 21-year study period has demonstrated instability in
annual incidence rates with the annualized plot of IS indicating
significant yearly variability. The five-year instantaneous rate
showed a trend toward decreased incidence rates in the early
1990s, compared to stable incidence rates reported in Finland
from 1960-1992.7 Our annual incidence was 15.7/100,000 live
births during the 1992-1998 period compared to 34.0/100,000
live births during 1978-1991. The variation in incidence rates,
however, makes us reluctant to conclude that this change is
significant. Minor fluctuations in the annual incidence rates of a
relatively rare condition, such as IS, might have a dramatic
impact.

This study raises methodological concerns about smaller IS
epidemiologic studies. A large population based study over a
long period of observation is necessary to avoid drawing
erroneous conclusions from yearly fluctuations. Confirmation of
a decline in incidence rates of IS would require a significant
population base. With a baseline incidence of IS at 30/100,000 live
births, a decline of 33% to 20/100,000 live births would
require approximately 200 cases from a population of
800,000 live births (α=0.05, β=0.2, 1:1 ratio of group sizes). Although our incidence rates are similar to
published estimates,3-5,6,17 the instability of rate over time
demands caution in interpreting smaller studies.

In a recent study, Cortez et al18 reported a seasonal variation
in IS onset, with highest frequencies occurring in the fall and
winter months. We did not observe seasonal or monthly
clustering of IS incidence, despite similarities in latitude and
climate.

We have implemented a multi-source surveillance system to
ensure accurate case ascertainment. Only patients residing in
provinces consistently served by our tertiary care center and EEG department were included (mainland NS and PEI). We did not include birth cohorts prior to 1978, as the earlier ICD coding system for IS was less specific. The earliest birth cohort included was 1978 with the premise that virtually all IS presents in the first two years of life. The addition of an audit of all EEG records and of our physician outpatient database provided increased certainty to our identification of IS cases.

It is our experience that IS presents with sufficient severity and concern that it is brought to medical attention and referred to a pediatric neurologist. During our study period, it has been standard practice for all cases of IS to be admitted for investigation and treatment. Although there has been a change in treatment practices over the past seven years to initial treatment with vigabatrin, this has not altered our practice of admitting all children with IS to hospital. We believe that we continue to see all IS cases in the region.

Our 20-year data have shown a decrease in the incidence rates of IS over the past six years. The average annual incidence fell to 17.3/100,000 live births during 1993-1998, compared to 33.1/100,000 during 1979-1992 and published estimates of 22-45/100,000.3-5,7,17 In a similar study, Riikonen% observed stable incidence rates in Finland from 1960-1992. Our incidence rates were also stable up to 1992, with the decline beginning in 1993, remarkably in the symptomatic and cryptogenic groups.

The reason for the decline in incidence is unclear. Although there has been a change in treatment practices over the past six years to initial therapy with vigabatrin, this has not altered our practice of admitting all children with IS to hospital for therapy initiation. It is therefore unlikely to explain an erroneous impression of falling incidence.

Another potential source of under-ascertainment is migration in and out of the study area. The authors were not aware of any out-migration for IS treatment from mainland NS and PEI within the 21 year period. There was one patient diagnosed in Nova Scotia while visiting from outside the study area. This patient was not included in our incidence estimates. Migration out of the study area prior to IS diagnosis could result in an underestimate of IS incidence. Such patients would return to NS for further care and would be recorded in the pediatric neurologists’ database.

Although we cannot definitively exclude out-migration, it is unlikely to have had a significant impact on incidence estimates. Our cohort is relatively large, is representative of our population and was gathered over a long period. It is impossible, however, to determine if the suggested trend towards a more recent fall in incidence, is real or is due to the rarity of IS and the variability of annual incidence. Multi-center studies, with a large numerator, will be necessary to establish true incidence rates and trends for children with IS.

REFERENCES