
J. Functional Programming 11 (5): 439–440, September 2001. Printed in the United Kingdom

c© 2001 Cambridge University Press

439

Special issue on

Algorithmic aspects of
functional programming languages

Edited by

CHRIS OKASAKI

Department of Computer Science, Columbia University, NY, USA

(e-mail: cdo@cs.columbia.edu)

Algorithms can be dramatically affected by the language in which they are imple-

mented. An algorithm that is elegant and efficient in one language may be ugly

and inefficient in another. If you have ever attempted to implement an assignment-

intensive algorithm in a functional programming language, you are probably more

familiar with this phenomenon than you ever wanted to be! But this sword does not

cut in only one direction. Functional programming languages are wonderfully suited

to expressing certain kinds of algorithms in a clean, modular way, and researchers

over the last five to ten years have greatly expanded the range of algorithms for

which this is true.

In September 1999, the First Workshop on Algorithmic Aspects of Advanced

Programming Languages (WAAAPL) was held in Paris, in conjunction with PLI’99,

to bring together researchers in this fledgling field. This special issue builds on the

success of that workshop by featuring expanded versions of three of its papers,

together with two new papers on related topics.

In ‘Modular lazy search for constraint satisfaction problems’, Nordin and Tol-

mach demonstrate, once again, the modularity benefits of functional programming,

especially lazy functional programming. They describe a framework for solving

constraint satisfaction problems in which the important algorithmic components

of common algorithms are isolated into separate functions, which can then be

combined in nearly arbitrary ways. The contrast with traditional approaches to

constraint satisfaction problems, which are typically presented as large monolithic

chunks of code, is remarkable.

In ‘Inductive graphs and functional graph algorithms’, Erwig tackles the problem

of how to write graph algorithms such as depth-first search cleanly in a functional

language. Tree-based algorithms can often be implemented very elegantly in func-

tional languages, but graph algorithms have historically been much more difficult to

express. One of the major differences is pattern matching – trees are usually easy to

express as inductive datatypes that mesh smoothly with pattern matching, whereas

graphs are usually represented as some kind of array (perhaps an array of adjacency

lists). Erwig proposes a view-like mechanism for pattern matching on graphs as if

they were inductively defined, and shows how his approach increases the clarity of

many common graph algorithms.

https://doi.org/10.1017/S0956796801004142 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004142


440 C. Okasaki

In ‘Persistent triangulations’, Blelloch et al. investigate uses of persistence in

computational geometry. A persistent representation would seem to add an O(log n)

overhead, but they show how one can sometimes compensate for this overhead by

requiring fewer operations overall. In particular, they present a three-dimensional

convex-hull algorithm that matches the Ω(n log n) lower bound for this problem in

spite of using persistent triangulations.

In ‘Inductive benchmarking for purely functional data structures’, Moss and

Runciman tackle the problem of how to benchmark data structures in a purely

functional setting. The catch is persistence – no one yet knows how to effectively

benchmark persistent data structures. Moss and Runciman propose a method for

accounting for persistence and describe Auburn, a tool they have developed that

largely automates the benchmarking of data structures in Haskell.

In ‘Manufacturing datatypes’, Hinze describes a methodology for designing new

functional data structures. He advocates first capturing the essence of some desired

structural constraint by writing simple recursion equations on multisets of natural

numbers that satisfy some related constraint. For example, if you wanted a data

structure for square matrices you might first define the set of all square numbers.

These recursion equations can then be mechanically transformed into Haskell type

definitions.

My thanks to the many referees who aided in the production of this special issue,

and especially to the original members of the program committee for WAAAPL.

https://doi.org/10.1017/S0956796801004142 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004142

