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Abstract

Interim analyses in clinical trials can take on a multitude of forms. They are often used to guide
Data and Safety Monitoring Board (DSMB) recommendations to study teams regarding
recruitment targets for large, later-phase clinical trials. As collaborative biostatisticians working
and teaching in multiple fields of research and across a broad array of trial phases, we note the
large heterogeneity and confusion surrounding interim analyses in clinical trials. Thus, in this
paper, we aim to provide a general overview and guidance on interim analyses for a
nonstatistical audience. We explain each of the following types of interim analyses: efficacy,
futility, safety, and sample size re-estimation, and we provide the reader with reasoning,
examples, and implications for each. We emphasize that while the types of interim analyses
employed may differ depending on the nature of the study, we would always recommend
prespecification of the interim analytic plan to the extent possible with risk mitigation and trial
integrity remaining a priority. Finally, we posit that interim analyses should be used as tools to
help the DSMB make informed decisions in the context of the overarching study. They should
generally not be deemed binding, and they should not be reviewed in isolation.

Introduction

The term “interim analysis” in clinical trials has multiple meanings. In general, interim analyses
help guide decisions on overall clinical trialmodifications, specifically those pertaining to the study
sample size or recruitment targets [1,2]. The goal of the interim analyses will drive the decision on
the type of analyses to conduct. Since the context of any given trial will determine the research
objectives, study design, sample size, study outcome(s), and final analyses, these elements will also
guide the appropriate interim analyses. An interim analysis for early-phase studies (phase I or
early phase II) would often be linked to safety outcomes or adaptive designs methods, and thus
they typically have differing goals than for later-phase trials. In general, early-phase studies usually
involve small sample sizes and short follow-up and are often exploratory in nature,making interim
analyses for early-phase studies often impractical. Therefore, we focus our discussion on the
interim analyses that might be best used in larger, later phase (late phase II or phase III-IV), and
often confirmatory trials.

Researchers must keep study integrity and bias mitigation a priority when planning,
implementing, or interpreting interim analyses. Prespecification and impartial review of interim
analysis are thus key in ensuring rigor. The study sponsor or lead investigative team will
oftentimes enlist an external committee or board that can be impartial (i.e., not directly involved
in the study design/conduct/analysis) to help interpret interim analyses and assist in decision-
making based on these interpretations [3,4]. We will refer to these external boards as Data and
SafetyMonitoring Boards (DSMBs) for the purposes of thismanuscript, noting that they are also
known as Data Monitoring Committees or Data and Safety Monitoring Committees. When
tasked with reviewing interim analysis results, DSMBs are meant to use them as a guide to make
recommendations on potential study design adaptations to the sponsor and study team. We
emphasize the notion of guidelines here as the DSMB should use interim analysis results as one
piece of information and one tool in decision-making within the context of the whole picture of
the trial. The DSMB should not use these guidelines in isolation to make interim
recommendations to study sponsors and investigators [3].

While interim monitoring of things like processes, screening rates, visit adherence, study
intervention adherence, etc., may also help with interim decision-making and ensuring overall
trial integrity, we view this data quality monitoring as a separate issue [5–7] –much less prone to
resulting in added biases – and we will not focus on this aspect of study monitoring in this
manuscript. Rather, in this paper, we focus on interim analyses involving primary and key
secondary outcomes that have potential to result in overall study design adaptations.

As collaborative biostatisticians working and teaching in multiple fields of research and
across a broad array of trial phases, we note the large heterogeneity and confusion surrounding
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interim analyses in clinical trials. Thus, in the present paper, we
aim to provide a general overview and guidance on interim
analyses for a nonstatistical audience. In the sections to follow, we
will discuss each of the following types of interim analyses: efficacy,
futility, safety, and sample size re-estimation. Within each section,
we (1) describe the purpose in more detail, (2) give a high-level
view of statistical reasoning behind them, (3) provide an example
study, and (4) discuss implications for researchers to consider
when contemplating their use. The discussion in this manuscript
focuses on analyses set in a frequentist framework rather than a
Bayesian framework.

Interim Analysis for Efficacy

Purpose

The most frequent connotation pertaining to the term “interim
analysis” revolves around early looks at the data with potential to
stop a trial early for efficacy. The process involves a statistical
hypothesis test on primary and potentially key secondary
outcome(s) at some interim point in the trial, and if there is a
large enough signal early in the study suggesting efficacy of one
intervention arm over another, then it may be ethically imperative
and most efficient to stop the study early. Stopping early and
reporting on findings will allow for the investigational product to
progress faster in the development process to reach the target
clinical population sooner [3].

Reasoning

The thresholds to use as sufficient evidence to stop a trial early
remains subject to debate and requires careful consideration.
Investigators cannot simply use a statistically significant (usually
denoted as a two-sided p-value< 0.05) finding early on to guide
this decision [1–3,8]. Recall the definition of type I error in an
interventional study context: finding a statistically significant
result when in fact there is no underlying intervention effect in
reality. The more statistical tests we conduct, the more likely we are
to find a significant result (i.e., make a type I error). Further, given
the lack of stability of test statistics early in the trial, we must
interpret statistical tests, conducted with less than the planned
sample size, with increased scrutiny. Refer to Fig. 1 for a
hypothetical example whereby we simulated a two-arm clinical
trial with a null treatment effect and four interim analyses for
efficacy. Since we simulated no intervention effect, we would hope
the conclusion of the hypothetical trial would be that of no
(significant) intervention effect. However, the plot in Fig. 1
illustrates the instability of test statistics, especially with small
sample sizes. If we were to track its behavior after every participant,
it may appear to bounce around, and as we get more information, it
will stabilize and converge to its true value as the amount of
information increases [9].

The methodology surrounding interim analysis evaluating for
early efficacy signals thus centers on methods to control type I
error and account for this sequential behavior of the test statistics
throughout the course of the study. We usually set this type I error
rate at 0.05, but this threshold is typically reserved for a single study
analysis without a plan for interim analyses. The more analyses we
do (including interim analyses), the more we need to adjust or
correct for multiple hypothesis tests.

Interim analyses for early efficacy involve formal statistical
hypothesis tests that mirror those prespecified in the primary
analysis plan at the end of the study, and the methodology in this

arena provides statistically justified guidelines to help researchers
evaluate whether the resultant test statistic is “significant enough”
such that it provides strong enough evidence to merit stopping for
early efficacy. Among themost well-knownmethods for evaluation
of these test statistics are group sequential methods [10–13] and
alpha-spending functions [2,14,15] – sometimes these terms are
used interchangeably, but there is a nuanced distinction.

Group sequential methods predate alpha-spending functions.
They call for a prespecified number of interim looks at the study
data. Then the thresholds used to determine whether the evidence
warrants early stopping depend on the number of these interim
looks. The most commonly used bounds fall into one of three
categories: Pocock, Peto, and O’Brien-Fleming (Fig. 2) [10–13].
The difference between each lies in the weight that each time point
in analyses may carry or how the type I error is “spent” throughout
the trial.

The more contemporary methods of alpha-spending functions
[2,14,15] build upon these ideas of group sequential methods, but
they allow for more flexibility: (a) the time points at which the
interim looks need not be exact nor equally spaced, but they are
based on the information fraction – the amount of outcome data
obtained divided by the total amount of outcome data that is
planned for the trial; and (b) the investigators can assign weight to
different information fractions according to a function. The link
between the two sets of methods – group sequential and alpha-
spending – lies in the ability to use an alpha-spending function that
behaves like those illustrated above: a Peto-like, a Pocock-like, and
an O’Brien-Fleming-like alpha-spending function.

Example

The Thrombectomy for Stroke in the Public Health Care System of
Brazil (NCT02216643) [16] is an example of a study that stopped
early for efficacy. Investigators randomized (1:1) stroke patients
with proximal intracranial occlusion across 12 sites in Brazil to
either standard-of-care (SOC) or SOC plus mechanical throm-
bectomy (a one-time procedure), and the primary outcome was the
modified Rankin scale, a measure of disability, at 90 days. The
investigators planned interim analyses after 25, 50%, and 75% of
trial participants had completed their 90-day follow-up, and they
used the alpha-spending function approach [14,15], taking
advantage of the flexibility in the exact trial fraction and the
way alpha is spent throughout the trial. According to the
prespecified analysis plan, the one-sided bounds for overwhelming
efficacy at these time points were p< 0.0125 at 25%, p< 0.0161 at
50%, p< 0.0203 at 75%, and p< 0.0248 at final analyses. The trial
stopped early for efficacy after 174 (25%) of the 690 planned
participants completed 90-day follow-up, with an adjusted
common odds ratio of 2.24 (95% confidence interval [CI]: 1.30–
3.88; p= 0.004) in favor of thrombectomy. The investigators state
that since the resulting statistic crossed the prespecified stopping
boundary and at the recommendation of the DSMB and Steering
Committee, they ended enrollment thereafter. At the time of
halting the trial enrollment, a total of 221 (32% of planned total)
had undergone randomization and were included in final analyses.
The final reported adjusted common odds ratio was 2.28 (95% CI:
1.41–3.69; p= 0.001).

Implications

Controlling type I error rate in clinical trial analyses using a
correction (e.g., Bonferroni, Holm’s, etc.) [8] is undeniably
important to bear in mind, as the more times we analyze our
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data (e.g., multiple primary outcomes), the more likely we are to
find something significant. This notion becomes even more
complex andmore imperative in the context of interim analyses for
efficacy as we run the risk of erroneously stopping the trial early.
Without appropriate methodology, the overall type I error is
inflated as we introduce interim analyses such that we have more
opportunities to make an incorrect decision on the accumulating
data. If we detect a large intervention effect early in the study such
that analysis results suggest such a drastic change as stopping early,
we would hope that if we were to continue the study through to the
end, the probability of this early large effect attenuating toward a
null effect would be negligible. In the example trial noted above, we
see a trivial change in the estimated effect after reanalysis using all
randomized participants, but the evidence in favor of thrombec-
tomy strengthened. The group sequential methods and alpha-
spending functions discussed here provide researchers with a tool
to maintain some control over type I error, ensuring more
stringent criteria for claiming an efficacious intervention earlier on
in the study.

While the difference between the group sequential methods and
alpha-spending functions may seem trivial, the alpha-spending
approaches allow for both rigor and clear specification of these
interim analyses while providing flexibility for the exact timing of
these analyses [2,14,15]. For example, a statistical analysis plan
may prespecify an interim analysis for efficacy using the O’Brien-
Fleming like alpha-spending function at 50% of the way through
the trial but allow for flexibility such that the information fraction
need not be exactly 50% (e.g., it may be 53% if the timing of
analyses and logistical constraints make this level of precision
operationally difficult).

The O’Brien-Fleming bounds [11] are perhaps most intuitive as
they “spend” very little type I error early on, ensuring very strict
criteria for claiming early efficacy when we have less information,
but then they become less stringent as more information is
obtained in the course of the study – ultimately ending with a
critical value that is very close to that which would be used without
interim looks (i.e., close to the typical 0.05 type I error at the end;
refer to Fig. 2). Finally, researchers must bear in mind that just as

Figure 1. Type I error illustration for a hypothetical null effect trial. The data presented show a simulated, hypothetical two-arm clinical trial using a binary outcome,
“success” of intervention. In the simulated example, there is no underlying difference in population proportions of successes across study arms, each set at a probability of success
of 0.30. After randomly sampling observations from the two study arms, we conduct interim analyses for efficacy sequentially, at the shown information fractions. The starred data
points indicate a statistical test result below the two-sided 0.05 level of significance. If we were to naively use the 0.05 threshold alone to make a decision to stop the trial based on
an early efficacy signal, we would run the risk of incorrectly stopping at 20% of the way through the study, based on fairly unstable test statistics. The illustration at the transition
between 142 (40%) and 143 (almost 41%; **included for illustrative purposes) participants per arm shows how easy it may be early on to move from an “insignificant” to
“significant” finding with much less information than the overall sample would provide. With 143 participants, a difference on 16 participants (29 vs 45) experiencing a success
across study arms corresponds to an 11% difference in proportions and a two-sided p-value of 0.042. Without protections on controlling type I error rate in a trial like this, we run
the risk of incorrectly stopping the trial for early efficacy. At the end of the trial, the same 16-participant difference across arms results in an estimated 4.5% difference in
proportions and an insignificant two-sided p-value of 0.212. We note this is just one of infinite possible example hypothetical trials.
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the final analysis plan should be prespecified in any trial, any
interim analyses involving hypothesis tests and potential type I
error “spending” should also be prespecified.

In the example trial exploring thrombectomy in stroke patients
[16], the investigators were able to address their research question
regarding their intervention with fewer participants than planned,
equating to more efficient use of participant time and study
resources. This is the heart of the reasoning behind interim
analyses for early efficacy, but the intervention being studied
should be far enough along in the process of development to justify
a potential to study in fewer than planned representative patients,
and we must keep in mind the lack of stability of test statistics with
smaller numbers. For these reasons, we recommend reserving
efficacy interim analyses for later phase, confirmatory studies that
are prone to have large sample sizes and lengthy follow-up.

Interim Analysis for Futility

Purpose

An interim analysis incorporating a futility assessment is designed
to assess whether a trial is likely to meet its objectives if continued
to completion. In a traditional randomized clinical trial designed to
detect a clinically meaningful treatment effect, futility suggests that
observing a statistically significant result at the end of the study is
unlikely. Stopping a futile trial early can increase efficiencies from
cost, resource, and participant burden perspectives [2,3,8,17].
Given this reasoning, futility analyses are most appropriate in mid-
late-phase studies enrolling larger sample sizes.

Reasoning

A variety of statistical methods exist for estimating the futility of a
trial at an interim time point [2,17]. A specified futility boundary
ideally allows for a high probability of stopping early when there is
not a true treatment effect and a low probability of stopping early
when there is a true treatment effect. Various methods have been

proposed for defining optimal boundaries, including group
sequential methods (similar to those for efficacy bounds) or
error-spending functions which allow greater flexibility in the
timing of interim analyses.

Alternative approaches are based on estimating the probability
of “success” of the trial under various frameworks. For example,
conditional power is an estimate of the probability of seeing a
significant effect at the end of a trial based on the current trend in
the data and making specific assumptions about the trend for the
remaining participants not yet enrolled. These assumptions
generally include (a) the originally hypothesized effect, (b) the
observed effect at the interim time point, and (c) the null effect.
Predictive power is a similar concept that utilizes a Bayesian
framework, updating prior assumptions of the treatment effect
with observed data and averaging conditional power over this
distribution. In both approaches, an a priori threshold is specified,
such that the trial is deemed futile if conditional power or
predictive power are low, typically less than 0.1–0.2 [18,19].

Example

The Stroke Hyperglycemia Insulin Network Effort (SHINE)
randomized clinical trial was designed to evaluate the efficacy of
intensive glucose control during acute ischemic stroke [20]. Initial
sample size calculations determined that 1400 patients were
needed to provide at least 80% power to detect a clinically
meaningful absolute difference in proportion of patients with a 90-
day favorable outcome. The trial design incorporated four interim
analyses to assess efficacy and futility after approximately 500, 700,
900, and 1100 patients had completed the 90-day follow-up.
Efficacy and futility boundaries were based on an error-spending
function method, controlling the overall probabilities of false
negatives (type II error) and false positives (type I error). The
statistical analysis plan indicated the test statistic and correspond-
ing two-sided p-value thresholds for each interim analysis, such
that stopping the trial early for futility would be considered if the

Figure 2. Interim stopping bounds for group sequential methods with five evenly spaced analyses. The plot provides a visual depiction of the three most well-known group
sequential stopping bounds – Pocock, Peto, and O’Brien-Fleming – for a hypothetical clinical trial involving five total analyses: four interim analyses or looks and one final analysis,
each equally spaced apart from one another. The faint dotted horizontal line provides a reference point for the typical two-sided p < 0.05 statistically significant result without any
adjustment for multiple tests. Each method requires a more extreme result than the typical p< 0.05 for an investigative team and Data and Safety Monitoring Board to
contemplate stopping for overwhelming efficacy. As illustrated, (a) the Pocock bounds have a constant approximate two-sided p < 0.016 threshold for all five analyses, (b) the Peto
bounds have a stringent p< 0.001 threshold for the first four interim looks and p< 0.05 at the final look, and (c) the O’Brien-Fleming has very stringent thresholds early on, but the
final analysis threshold is near the typical p < 0.05 at approximately p< 0.04.
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p-value at the interim analysis crossed the specified threshold
(p-value≥ 0.949, 0.896, 0.652, and 0.293, respectively). The futility
decision rules were deemed nonbinding, such that the decision to
stop for futility could be overruled based on other pertinent
information. Following the fourth interim analysis after enroll-
ment of 1151 participants, the trial was stopped for futility. The
primary manuscript concluded that there was no significant
difference in the proportion with 90-day favorable outcomes in
intensive compared to standard glucose control (20.5% in intensive
arm vs 21.6% in standard arm).

Implications

The benefits and limitations of interim futility analyses have been
well documented [21–23]. Incorporating a futility assessment can
increase the efficiency of the trial, allowing trials that are unlikely
to meet their objectives to stop early ultimately reducing costs,
preserving resources, and limiting patient burden. Particularly in
large clinical trials or vulnerable patient populations, an interim
futility assessment may be essential to prevent patients from
being unnecessarily randomized to ineffective treatments.
Despite common misconceptions, an interim analysis incorpo-
rating a futility assessment alone does not inflate the type I error.
Futility can be assessed while preserving the overall probability of
a false-positive result at the final analysis. It can, however, have
implications on type II error, reducing the overall power of the
study by stopping early. Stopping a trial early for futility can also
introduce challenges [22] in the interpretation of results. A
smaller than planned sample size may result in less precision
around the treatment effect (i.e., wider CIs) and may introduce
bias toward the null (i.e., a smaller observed treatment effect)
[24]. Early termination also increases the risk for potential
imbalance in baseline covariates and decreases the power for any
secondary outcomes of interest. While a null effect may be
observed for the primary outcome of interest, stopping early can
prevent the ability to detect important differences in secondary
end points. It may also be possible to observe low conditional
power (or small test statistic/large p-value) at an interim analysis
that is driven by opposite treatment effects occurring in different
subgroups [23]. As such, special attention should be given in
scenarios where there is a plausible heterogeneity of treatment
effect. A similar argument can be made in the presence of largely
influential baseline variables that may exhibit large imbalances at
the time of interim analyses [25].

The decision to incorporate an interim futility assessment
should bemade with careful consideration, evaluating the effects of
futility thresholds on overall trial operating characteristics. When a
futility analysis is deemed appropriate, it is recommended to strike
a balance between prespecified rules and the flexibility to
incorporate new information as the trial progresses. In general,
futility analyses can be deemed binding or nonbinding. Binding
futility rules are less common and not recommended as they
require that a trial be stopped if the futility boundary is crossed,
regardless of any other information. Nonbinding futility thresh-
olds, as incorporated in the SHINE trial, allow for incorporation of
other factors (such as secondary end points) or external
information (such as information from related trials), and these
are recommended over the binding rules [26]. Investigators should
lean on DSMBs to provide independent and unbiased recom-
mendations [3,4]. Regardless, transparency in reporting planned
versus unplanned interim analyses and any decision rules is
imperative.

Interim Analysis for Safety

Purpose

An interim analysis incorporating a safety assessment is designed
to assess whether there is evidence for increased risk of adverse
events in intervention study arms relative to the SOC arm or
historic data. All studies, regardless of phase (e.g., Phase I, II, III, or
IV), should incorporate safety monitoring. If safety concerns are
identified, a study could either temporarily pause enrollment while
investigating the potential causal nature between an intervention
and adverse events or terminate the trial prior to full enroll-
ment [1].

Reasoning

Safety monitoring is done to protect the interests of trial
participants so that they are not exposed to unnecessary risk in
the presence of limited benefit. While serious and potentially
unexpected adverse events may require immediate reporting to the
DSMB and/or regulatory authorities and may result in trial
modifications, this discussion focuses on the process of benefit-to-
risk assessment. To determine the benefit-to-risk assessment, a
safety interim analysis must be paired with an interim evaluation of
the efficacy of the study’s primary outcome. Without efficacy
information, it can be challenging, if not impossible, to
contextualize the safety concerns.

The population enrolled in a study may also warrant additional
safety considerations. For instance, the US Food and Drug
Administration has designated special populations that warrant
special attention, including pregnant women, children, prisoners,
those with impaired cognition, and the elderly [27]. The DSMB, or
other parties monitoring the study, should be concerned about the
benefit-to-risk assessment in the context of these special
populations when appropriate. In single-arm trials or studies
without a SOC comparator, such as those for rare diseases or in
oncology settings, historic rates of adverse events may be used as
the reference to determine the benefit-to-risk ratio [28]. However,
the potential for time biases, where the adverse events or condition
studied itself are changing over time, need to be carefully
contemplated when selecting and interpreting the historic
reference data [29]. The comparison to a concurrently enrolled
SOC arm may also be more useful to contextualize safety concerns
because it is possible that increased rates of adverse events would be
observed in both arms, indicating the study intervention may not
be the primary cause [30].

Example

The EARLY trial (NCT02569398) [31] was a three-arm,
randomized, double-blind, placebo-controlled multinational
phase 2b/3 trial exploring the short-term effects of atabecestat at
two different doses compared to placebo in preclinical Alzheimer’s
disease (AD). The primary efficacy outcome was the change from
baseline in the Preclinical Alzheimer Cognitive Composite score.
The planned enrollment was 1650 participants from 143 sites.
While interim monitoring for futility was specified in the study
protocol, no formal efficacymonitoring was planned. However, the
trial was terminated early for safety after 557 participants were
randomized due to hepatic safety concerns relating to serious
elevations of liver enzymes. Based on the accumulated evidence, it
was decided at the interim analysis that the benefit-to-risk
assessment offered by the drug did not support its continued study.
While study drug dosing was immediately halted, participants were
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followed off-treatment for 6 additional months to evaluate for any
persistent safety concerns. The primarymanuscript concluded that
atabecestat would not be developed further given the safety
concerns and confirmed dose-related worsening of cognition
within 3 months of treatment initiation.

Implications

Themonitoring of safety outcomes and adverse events is paramount
to maintaining the integrity of any study. The importance and
understanding of safety monitoring has been discussed and
developed from a wide variety of perspectives, including patients,
investigators, DSMBs, and statisticians [3,32–36]. The choice to stop
a trial early for safety concerns should be made in the context of the
benefit-to-risk ratio, where the presence of some adverse eventsmay
become less tolerable and acceptable as the potential efficacy
decreases. In trials where the primary outcome is a safety outcome,
traditional group sequential methods may be used to monitor for
interim differences.

While safety monitoring may raise concerns about multiple
looks at the data before the final analysis, the potential benefit of
the treatment is needed to determine if any increased risk of
adverse events may be acceptable as a trade-off for improved
efficacy. Further, if only safety monitoring is desired, interim
efficacy boundaries may be set to fixed, small α-levels (e.g.,
<0.0001) or a conservative α-spending approach (e.g., O’Brien-
Fleming as mentioned in efficacy monitoring) can be selected so
that the impact on the final analysis is negligible [3].

The context of a given research study is also important, since
some adverse events may not be unexpected in certain populations.
For example, a cardiovascular secondary prevention trial to
prevent subsequent myocardial infarction may have the expect-
ation of some myocardial infarction events, whereas it may be
extremely concerning to observe the same events in a behavioral
intervention in a generally healthy population. In cases where there
is suspected harm to study participants, the trial should carefully
determine if any potential benefits are worth the increased and
potentially serious risks to participants and future patients. If both
hypothetical examples of a cardiovascular or behavioral study
exhibit efficacy signals early on in conjunction with these safety
signals, the benefit-to-risk ratio would be different for each trial
because of the context. For that reason, there is no “one-size-fits-
all” benefit-to-risk ratio guidance.

In practice, safety monitoring should be coupled with
summaries of the efficacy of the primary outcome and with
reference to a SOC arm or historic data to fully understand the
benefit-to-risk ratio. Ultimately, depending on the safety concerns
identified, a trial may temporarily pause enrollment to better assess
causality or may terminate early due to a poor benefit-to-risk ratio
where any benefit provided by the intervention is not identified as
outweighing increased safety risks. These decisions are often best
made through the independent DSMB and their review of the full
picture to the extent possible, to providing informed and unbiased
recommendations

Interim Analysis for Sample Size Re-Estimation

Purpose

A study with an interim analysis to re-estimate sample size is
designed to modify the planned sample size based on the
accumulating data within the trial to account for any uncertainty
when conducting power calculations during the initial planning of

the study. These approaches facilitate a revised sample size
calculation – often through an internal pilot study [37] – using
information for the ongoing assessment of event rates, the
estimation of nuisance parameters (e.g., the variance of a
continuous outcome), or the effect size expected [38].
Re-estimating a sample size at an interim stage can increase the
likelihood of a successful trial but may result in a substantial
increase in the needed sample size if the initial sample size
assumptions were very different from what is observed.

Reasoning

A range of statistical approaches have been developed to
accommodate a variety of settings for uncertainty in clinical trials
that may wish to adaptively re-estimate their sample size. The
intention of these methods is to improve confidence that the
present trial is adequately powered as more information is
obtained. The statistical methods used for sample size
re-estimation fall into two categories: blinded or unblinded [39].
The blinded or unblinded distinction is with regard to the study
arm allocation of currently randomized participants. Blinded
sample size re-estimation methods are primarily used to revise the
estimation of nuisance parameters in a trial, such as the variance of
a continuous outcome. These may use either a pooled estimate of
the variance by combining all arms or use statistical approaches to
incorporate variance estimates from multiple study arms [40–42].

In contrast, unblinded sample size re-estimation approaches are
based on comparative interim results. These designs are ideal when
there is uncertainty in both the estimates of the true effect size and
the nuisance parameters to be measured. This adaptation allows
the trial to capture an effect that may still be clinically meaningful
but differs from the initial assumptions. Numerous statistical
approaches have been proposed for sample size re-estimation with
the goal of maintaining the desired type I error rate after having a
comparative interim analysis [43–46].

Example

The Tenecteplase versus Alteplase before Endovascular Therapy for
Ischemic Stroke (EXTEND-IA TNK) trial [47] was a multicenter,
randomized, open-label, non-inferiority, blinded-outcome trial that
enrolled patients with ischemic stroke within 4.5 hours after onset
and were eligible to undergo intravenous thrombolysis and
endovascular thrombectomy. Participants were randomized 1:1 to
either intravenous tenecteplase or alteplase. The primary outcome
was the proportion of participants with restoration of blood flow
to> 50% of the affected arterial territory or absence of retrievable
thrombus at initial angiogram. The initial power calculation
suggested a minimum sample size of 120 participants would have
80% power, but there was substantial uncertainty over the
participant disposition within the trial and prevalence of the
outcome [48]. A blinded adaptive sample size re-estimation
approach was implemented after enrollment of 100 participants,
and the re-estimated sample size was 202 participants to establish
non-inferiority. The trial then continued to enroll a total of 202
participants, with 101 assigned to each study arm to ultimately
determine that tenecteplase (22% event rate) was non-inferior to
alteplase (10% event rate).

Implications

Underpowered studies happen often and result in participant and
resource waste [49], much of which may be mitigated with more
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certainty around assumptions in the initial power calculation. The
ability of sample size re-estimation approaches to better ensure an
adequately powered study increases efficiency for clinical trials. The
higher likelihood of detecting a clinically meaningful effect, if it
exists, may better utilize resources and can ensure that the time and
contribution of trial participants are not wasted. Blinded
re-estimation approaches generally have a limited effect on the
type I error rate but may require additional steps to maintain trial
integrity for methods which involve treatment assignment
information [38]. In contrast, uncontrolled unblinded re-estimation
may have a substantial impact on the overall type I error rate, where
the desired alpha level may be doubled at the end of the trial without
using appropriate preplanned methods [50]. However, numerous
statisticalmethods have been proposed tomaintain the overall type I
error rate across a range of trial designs and outcome types [43–46].

There are practical considerations for choosing a sample size re-
estimation approach. In our experience, increases in sample size are
more common than decreases in sample size as a result of interim
sample size re-estimation. It is possible that the re-estimated sample
size is so large that it is infeasible due to resource or time constraints.
If a sample size re-estimation is planned, the investigators should
take care to determine a maximum possible sample size given
available resources ahead of time and with consideration of a
minimal effect size. In some cases, an unblinded re-estimation may
identify a smaller effect size thatmay not be agreed upon as clinically
beneficial by the broader research community and call into question
the equipoise of a continued trial that could stop for futility. It is also
possible that a trial could stop early for efficacy if there is an
unforeseen large interim signal based on efficacy analyses, in line
with more traditional group sequential methods to monitor for
efficacy as discussed previously [51]. Care should be taken in how
the results of a re-estimated sample size are reported for ongoing
studies, since itmay be possible to back-calculate the effect size if one
knows the conditional power or other assumptions [38]. In all of
these cases, prespecified rules for how tomodify the sample size and
what do to in different scenarios should be incorporated into the trial
documentation.

Discussion

Interim analyses using current data from an ongoing randomized
trial can guide decisions on early study termination or
modifications to the originally proposed sample size. Analyses
conducted with the potential to alter the trial conduct include
interim analyses for efficacy, futility, safety, and sample size re-
estimation. Table 1 provides a summary of the interim analyses
discussed.

While the types of interim analyses employed may differ
depending on the nature of the study, prespecifying the interim
analytic plan to the extent possible is always recommended to
mitigate risk of biases and maintain overall integrity of the study.
Modifications to the analysis plan or protocol that were not
planned will be met with larger scrutiny than modifications that
were expected. Detailed documentation should describe antici-
pated timing of interim analyses, proposed statistical methodology,
and any prespecified rules or thresholds to guide decisions. The
timing of analyses can be flexible and is often specified when some
proportion of participants is enrolled and meet a particular study
milestone (e.g., 50% of participants completed 6-week follow-up).
Care should be taken to strike a balance between having maximal
information (later interim analysis) versus ensuring adequate time
to make any modifications and reducing potential risk to
participants as much as possible. Procedures for ensuring blinding
of interim data and results, as appropriate, should also be
documented. Interim results should be kept strictly with the DSMB
and the unblinded study statistician. Only high-level recommen-
dations from the DSMB and/or modifications to the trial should be
communicated to the study team or external entities.

Before proposing an interim analysis plan, investigators should
carefully think about potential logistical implications. For example,
if an interim sample size re-estimation is proposed, are there
adequate resources to support an increase in sample size if
indicated? Simulation studies may be used in advance to explore
possible scenarios and weigh pros and cons of any analyses of
primary and key secondary end points.

Table 1. Summary of interim analysis types

Type of
interim
analysis Explanation Justification for use

Efficacy • Early termination of a trial that is showing promising results
• Control of type I error through group sequential methods or alpha-spending
functions

• Usually for longer, larger studies and later phases of
research

• Ethical imperative for a promising treatment to reach the
entire target clinical population

Futility • Early termination of a trial that is not likely to achieve the intended objective
(e.g., little chance of finding a “significant” treatment effect at the end of the
study)

• Employed through group sequential methods, error-spending functions,
conditional power, or predictive power

• Reduces costs, resources, and patient burden for a trial
with a low probability of “success”

• Usually for mid-late-phase studies
• Helpful in the context of recruitment and retention
challenges

Safety • Early termination (or pausing) of a trial for safety concerns
• Should be coupled with efficacy analyses to evaluate the benefit-to-risk
ratio

• Incorporated across all phases of research
• Particularly important for vulnerable populations and
high-risk interventions with more “serious” outcomes
(e.g., death)

Sample size
re-estimation

• Reassessment of the sample size required to ensure adequate power using
updated information from interim trial data

• Can be blinded or unblinded
• May not necessarily spend alpha

• Allows for interim look at assumptions (standard
deviations, event rates, correlations, etc.)

• May be particularly useful for mid-late-phase studies
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Evaluation of interim analysis results should not be interpreted
in isolation, but rather in the context of other internal study factors
and external contemporaneous issues, including information that
becomes available on outcomes, therapies, or within the relevant
disease area in other studies. Any interim analysis results and
statistical tools are intended to serve as guidelines. Independent
and unbiased expertise from the members of the DSMB should be
leveraged to inform decisions. Transparency in disseminating trial
results when interim analyses were conducted is also critical. Final
results should be interpreted in the context of any preplanned or ad
hoc analyses during the trial.
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