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Abstract

We study Cox rings of K3 surfaces. A first result is that a K3 surface has a finitely
generated Cox ring if and only if its effective cone is rational polyhedral. Moreover, we
investigate degrees of generators and relations for Cox rings of K3 surfaces of Picard
number two, and explicitly compute the Cox rings of generic K3 surfaces with a non-
symplectic involution that have Picard number 2 to 5 or occur as double covers of del
Pezzo surfaces.

1. Introduction

The Cox ring R(X) of a normal complete algebraic variety X with a finitely generated divisor
class group Cl(X) is the multigraded algebra

R(X) :=
⊕

Cl(X)

Γ(X,OX(D)).

For a toric variety X, the Cox ring R(X) is a polynomial ring and its multigrading can be
explicitly determined in terms of a defining fan; see [Cox95]. Moreover, for del Pezzo surfaces X
there are recent results on generators and relations of the Cox ring; see [BP04, Der, LV09, STV07,
SX, TVV]. In the present paper, we investigate Cox rings of K3 surfaces X, i.e. smooth complex
projective surfaces X with b1(X) = 0 that admit a nowhere vanishing holomorphic 2-form ωX .

A first basic problem is to decide if the Cox ring R(X) is finitely generated. In § 2, we first
discuss this question in general, and extend results of Hu and Keel on Q-factorial projective
varieties [HK00] to normal complete ones; a consequence is that every normal complete surface
with finitely generated Cox ring is Q-factorial and projective; see Theorem 2.5. For K3 surfaces,
we obtain the following; see Theorem 2.7.

Theorem 1. A K3 surface has finitely generated Cox ring if and only if its cone of effective
rational divisor classes is polyhedral.

The same characterization holds for Enriques surfaces; see Theorem 2.10. The second basic
problem is to describe the Cox ring R(X) in terms of generators and relations. We first consider
K3 surfaces X having Picard number %(X) = 2; see § 3. In this setting, if the effective cone is
polyhedral, then it is known that its generators are of self intersection zero or minus two; see
§ 2 for this and some more background. For the case that both generators are of self intersection
zero, we obtain the following; see Proposition 3.1 and Theorem 3.2.
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On Cox rings of K3 surfaces

Theorem 2. Let X be a K3 surface with Cl(X)∼= Zw1 ⊕ Zw2, where w1, w2 are effective, and
intersection form given by w2

1 = w2
2 = 0 and w1 · w2 = k > 3.

(i) The effective cone of X is generated by w1 and w2 and it coincides with the semiample cone
of X.

(ii) The Cox ring R(X) is generated in degrees w1, w2, w1 + w2, and one has

dim(R(X)wi) = 2, dim(R(X)w1+w2) = k + 2.

Moreover, every minimal system of generators of R(X) has k + 2 members.

(iii) For k = 3, the Cox ring R(X) is of the form C[T1, . . . , T5]/〈f〉 and the degrees of the
generators and the relation are given by

deg(T1) = deg(T2) = w1, deg(T4) = deg(T5) = w2,

deg(T3) = w1 + w2, deg(f) = 3w1 + 3w2.

(iv) For k > 4, any minimal ideal I(X) of relations of R(X) is generated in degree 2w1 + 2w2,
and we have

dim(I(X)2w1+2w2) =
k(k − 3)

2
.

The statements on the generators are directly obtained and, for the relations, we use the
techniques developed in [LV09]. When at least one of the generators of the effective cone is a
(−2)-curve, then the semiample cone is a proper subset of the effective cone. We show that
in this case the number of degrees needed to generate the Cox ring can be arbitrarily big;
Propositions 3.6 and 3.7 give a lower bound for this number in terms of the intersection form of
Cl(X).

For the K3 surfaces X with Picard number %(X) > 3, we use a different approach. Many K3
surfaces X with %(X) > 3 and polyhedral effective cone admit a non-symplectic involution, i.e. an
automorphism σ : X →X of order two with σ∗ωX 6= ωX . The associated quotient map π : X → Y
is a double cover. If it is unramified then Y :=X/〈σ〉 is an Enriques surface, otherwise Y is a
smooth rational surface. In the latter case, one may use known results and techniques to obtain
the Cox ring of Y .

This observation suggests studying the behavior of Cox rings under double coverings π :
X → Y . As it may be of independent interest, we consider in § 4 more general, e.g. cyclic, coverings
π : X → Y of arbitrary normal varieties X and Y . We relate finite generation of the Cox rings
of X and Y to each other; Propositions 4.6 and 4.3 provide generators and relations for the Cox
ring of X in terms of π and the Cox ring of Y for the case that π induces an isomorphism on
the level of divisor class groups. This enables us to compute Cox rings of K3 surfaces that are
general double covers of F0 or of del Pezzo surfaces.

Besides F0 and the del Pezzo surfaces, other rational surfaces Y =X/〈σ〉 can occur. For
2 6 %(X) 6 5, these turn out to be blow ups of the fourth Hirzebruch surface F4 in at most
three general points, and we are in this setting if and only if the branch divisor of the covering
π : X → Y has two components. Then, in order to determine the Cox ring of X, we have to solve
two problems. Firstly, the computation of the Cox ring of Y . While blowing up one or two points
gives a toric surface, the blow up of F4 in three general points is non-toric; we compute its Cox
ring in § 5 using the technique of toric ambient modifications developed in [Hau08]. The second
problem is that π : X → Y no longer induces an isomorphism on the divisor class groups. Here,
Proposition 6.4 provides a general result.

Putting all this together, we obtain the following results in the case of Picard number
2 6 %(X) 6 5; see Propositions 6.5–6.8 for the complete statements.
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M. Artebani, J. Hausen and A. Laface

Theorem 3. Let X be a generic K3 surface with a non-symplectic involution and associated
double cover X → Y and Picard number 2 6 %(X) 6 5. Then the Cox ring R(X) is given as
follows.

(i) For %(X) = 2 one has R(X) = C[T1, . . . , T5]/〈T 2
5 − f〉 and the degree of Ti is the ith column

of [
1 0 1 0 2
0 1 0 1 2

]
if Y = F0,[

1 0 −1 −1 −1
0 1 1 1 3

]
if Y = F1,[

1 0 2 0 3
0 1 4 1 6

]
if Y = F4.

(ii) For %(X) = 3 one has R(X) = C[T1, . . . , T6]/〈T 2
6 − f〉 and the degree of Ti is the ith column

of 1 0 0 1 0 2
0 1 0 0 1 2
0 0 1 1 1 3

 if Y = Bl1(F0),

1 0 0 2 0 3
0 1 0 1 −1 1
0 0 1 3 1 5

 if Y = Bl1(F4).

(iii) For %(X) = 4 one has R(X) = C[T1, . . . , T7]/〈T 2
7 − f〉 and the degree of Ti is the ith column

of 
1 0 0 0 1 0 2
0 1 0 0 0 1 2
0 0 1 0 1 1 3
0 0 0 1 −1 −1 −1

 if Y = Bl2(F0),


1 0 0 0 2 0 3
0 1 0 0 3 1 5
0 0 1 0 1 −1 1
0 0 0 1 2 1 4

 if Y = Bl2(F4).

(iv) For %(X) = 5 one has the following two cases.

(a) The surface Y is the blow up of F0 at three general points. Then the Cox ring R(X) of
X is

C[T1, . . . , T11]/〈f1, . . . , f5, T
2
11 − g〉,

where f1, . . . , f5, g ∈ C[T1, . . . , T10] and f1, . . . , f5 are the Plücker relations in
T1, . . . , T10. The degree of Ti is the ith column of

0 0 0 0 1 1 1 1 1 1 −3
1 0 0 0 −1 −1 −1 0 0 0 1
0 1 0 0 −1 0 0 −1 −1 0 1
0 0 1 0 0 −1 0 −1 0 −1 1
0 0 0 1 0 0 −1 0 −1 −1 1

.
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On Cox rings of K3 surfaces

(b) The surface Y is the blow up of F4 at three general points. Then the Cox ring R(X) of
X is

C[T1, . . . , T9]/〈T2T5 + T4T6 + T7T8, T
2
9 − f〉,

where f ∈ C[T1, . . . , T8] is a prime polynomial and the degree of Ti ∈R(X) is the ith
column of 

1 0 0 0 0 0 −2 2 1
0 1 0 0 0 1 −2 3 4
0 0 1 0 0 −1 −1 1 0
0 0 0 1 0 1 −1 2 4
0 0 0 0 1 0 1 −1 1

.
If Y =X/〈σ〉 is a del Pezzo surface, then the Cox ring of Y is known, and we obtain the

following for the Cox ring of X; see Proposition 6.9.

Theorem 4. Let X be a generic K3 surface with a non-symplectic involution, associated double
cover π : X → Y and intersection form U(2)⊕Ak−2

1 , where 5 6 k 6 9. Then Y is a del Pezzo
surface of Picard number k and:

(i) the Cox ring R(X) is generated by the pull-backs of the (−1)-curves of Y , the section T
defining the ramification divisor and, for k = 9, the pull-back of an irreducible section of
H0(Y,−KY );

(ii) the ideal of relations of R(X) is generated by quadratic relations of degree π∗(D), where
D2 = 0 and D ·KY =−2, and the relation T 2 − f in degree −2π∗(KY ), where f is the
pull-back of the canonical section of the branch divisor.

2. Finite generation of the Cox ring

The first result of this section is Theorem 2.3, which characterizes finite generation of the
Cox ring for normal complete varieties in a similar way as Hu and Keel did for Q-factorial
projective varieties in [HK00]. In the case of surfaces, we obtain statements extending and
complementing results of Galindo and Monserrat [GM05]; a consequence is that every normal
complete surface with finitely generated Cox ring is projective and Q-factorial; see Theorem 2.5.
Our main application is Theorem 2.7, which characterizes finite generation of the Cox ring of a K3
surface.

Let X be a normal complete algebraic variety defined over some algebraically closed field K
of characteristic zero and assume that the divisor class group Cl(X) is finitely generated. The
Cox ring of X is the ring R(X) of global sections of a sheaf R of Cl(X)-graded K-algebras. We
briefly recall the definition for the case where Cl(X) is free and refer to [Hau08] for the case of
torsion: take a subgroup K ⊆WDiv(X) of the group of Weil divisors such that the canonical
morphism K→ Cl(X) is an isomorphism and set

R(X) := Γ(X,R), R :=
⊕
D∈K

OX(D),

where multiplication is defined via multiplying homogeneous sections in the field of rational
functions of X. Up to isomorphy, this definition does not depend on the choice of the group
K ⊆WDiv(X). We will also identify K with Cl(X). So, for w ∈ Cl(X) represented by D ∈K,
the homogeneous component R(X)w is just H0(X,OX(D)).
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If the divisor class group Cl(X) is free, then the Cox ring R(X) admits unique factorization;
see [BH03]. If Cl(X) has torsion, then the unique factorization property is replaced by a graded
version: every non-trivial homogeneous non-unit is a product of homogeneous primes, where
the latter refers to non-trivial homogeneous non-units f such that f |gh with g, h homogeneous
implies that f |g or f |h; see [Hau08]. If the Cox ring R(X) is finitely generated as a K-algebra,
then one may define the total coordinate space X = SpecR(X) and realize X as the quotient of
an open subset X̂ = SpecXR of X by the action of the diagonalizable group Spec Cl(X) defined
by the Cl(X)-grading of the sheaf R of OX -algebras. For smooth X, the map X̂ →X is also
known as the universal torsor of X.

Let ClQ(X) = Cl(X)⊗Z Q denote the rational divisor class group of X. A first step is to give
descriptions of the cones Eff(X)⊆ ClQ(X) of effective classes and Mov(X)⊆ ClQ(X) of movable
classes, i.e. classes having a stable base locus of codimension at least two. We call a cone in
a rational vector space V polyhedral if it is the positive hull cone(v1, . . . , vr) of finitely many
vectors vi ∈ V . The following statement generalizes part of [Hau08, Proposition 4.1].

Proposition 2.1. Let X be a normal complete variety with finitely generated Cox ring R(X).
Then the cones of effective and movable divisor classes in ClQ(X) are polyhedral. Moreover, if
f1, . . . , fr ∈R(X) is any system of pairwise non-associated homogeneous prime generators, then
one has

Eff(X) = cone(deg(fi); i= 1, . . . , r),

Mov(X) =
r⋂
i=1

cone(deg(fj); j 6= i).

For the proof and also for later use, we have to fix some notation. On a normal variety X,
let a class w ∈ Cl(X) be represented by a divisor D ∈WDiv(X). Then, as usual, we write

H i(D) :=H i(X, D) :=H i(X,OX(D)), hi(w) := hi(D) := dimK(H i(D)).

Lemma 2.2. Let X be a normal complete variety with Cl(X) finitely generated and let
w ∈ Cl(X) be effective. Then the following two statements are equivalent.

(i) The stable base locus of the class w ∈ Cl(X) contains a divisor.

(ii) There exists a class w0 ∈ Cl(X) with the following properties:

– the class w0 generates an extremal ray of Eff(X) and h0(nw0) = 1 holds for any n ∈ N;
– there is an f0 ∈R(X)w0 such that for any n ∈ N and f ∈R(X)nw one has f = f ′f0 with

some f ′ ∈R(X)nw−w0 .

Proof. The implication ‘(ii) ⇒ (i)’ is obvious. So, assume that (i) holds. The class w ∈ Cl(X) is
represented by some non-negative divisor D. Let D0 be a prime component of D, which occurs
in the fixed part of any positive multiple nD, and let w0 ∈ Cl(X) be the class of D0. Then
the canonical section of D0 defines an element f0 ∈R(X)w0 , which divides any f ∈R(X)nw.
Note that h0(nD0) = 1 holds for every n ∈ Z>0, because otherwise H0(na0D0)⊆R(X)nw, where
a0 > 0 is the multiplicity of D0 in D, would provide enough sections to move na0D0. Moreover,
cone(w0) is an extremal ray of Eff(X), because otherwise we would have nD0 ∼D1 +D2 with
some n ∈ Z>0 and non-negative divisorsD1,D2, none of which is a multiple ofD0; this contradicts
h0(nD0) = 1. 2

Proof of Proposition 2.1. Only for the description of the moving cone there is something to
show. For this, set wi := deg(fi) and note that the extremal rays of the effective cone occur
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among the Q>0 · wi. By suitably renumbering, we achieve that the indices 1 6 i 6 d are precisely
those with h0(nwi) 6 1 for all n ∈ N.

Let w ∈Mov(X). Then Lemma 2.2 tells us that for any i= 1, . . . , d there must be a monomial
of the form

∏
j 6=i f

nj

j in some R(X)nw. Consequently, w lies in the cone of the right-hand side.
Conversely, consider an element w of the cone of the right-hand side. Then, for every i= 1, . . . , d,
a product

∏
j 6=i f

nj

j belongs to some R(X)nw. Hence, none of the f1, . . . , fd divides all elements
of R(X)nw. Again by Lemma 2.2, we conclude that w ∈Mov(X). 2

We characterize finite generation of the Cox ring. By SAmple(X)⊆ ClQ(X) we denote the
cone of semiample divisor classes of a variety X, i.e. classes having a base point free positive
multiple. Moreover, by a small birational map X → Y , we mean a rational map that defines an
isomorphism U → V of open subsets U ⊆X and V ⊆ Y such that the respective complements
X\U and Y \V are of codimension at least two.

Theorem 2.3. Let X be a normal complete variety with finitely generated divisor class group.
Then the following statements are equivalent.

(i) The Cox ring R(X) is finitely generated.

(ii) The effective cone Eff(X)⊆ ClQ(X) is polyhedral and there are small birational maps
πi : X →Xi, where i= 1, . . . , r, such that each semiample cone SAmple(Xi)⊆ ClQ(Xi) is
polyhedral and one has

Mov(X) = π∗1(SAmple(X1)) ∪ · · · ∪ π∗r (SAmple(Xr)).

Moreover, if one of these two statements holds, then there is a small birational map X →X ′

with a Q-factorial projective variety X ′.

In the proof we use the fact that the moving cone of any normal complete variety is of full
dimension; we are grateful to Jenia Tevelev for providing us with the following statement and
proof.

Lemma 2.4. LetX be a normal complete variety with Cl(X) finitely generated. Then the moving
cone Mov(X) is of full dimension in the rational divisor class group ClQ(X).

Proof. Using Chow’s lemma and resolution of singularities, we obtain a birational morphism
π : X ′→X with a smooth projective variety X ′. Let D1, . . . , Dr ∈WDiv(X) be prime divisors
generating Cl(X), and consider their proper transforms D′1, . . . , D

′
r ∈WDiv(X ′). Moreover,

let E′ ∈ CaDiv(X ′) be very ample such that all E′ +D′i are also very ample, and denote by
E ∈WDiv(X) its push-forward. Then the classes E and E +Di generate a full-dimensional cone
τ ⊆ ClQ(X) and, since E′ and the E′ +D′i are movable, we have τ ⊆Mov(X). 2

Proof of Theorem 2.3. Suppose that (i) holds. Then Proposition 2.1 tells us that Eff(X) is
polyhedral. Let F = (f1, . . . , fr) be a system of pairwise non-associated homogeneous prime
generators of R :=R(X) and set wi := deg(fi).

By [Hau08, Proposition 2.2], the group H = Spec K[Cl(X)] acts freely on an open subset
W ⊆X of X = SpecR(X) such that X\W is of codimension at least two in X. Thus, we can
choose a point z ∈W with fi(z) = 0 and fj(z) 6= 0 for j 6= i. Consequently, the weights wj , where
j 6= i, generate Cl(X) and hence the system of generators F is admissible in the sense of [Hau08,
Definition 3.4]. Moreover, by Lemma 2.4, the moving cone of X is of full dimension and, by
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Proposition 2.1, it is given as

Mov(X) =
r⋂
i=1

cone(wj ; j 6= i).

Thus, we are in the setting of [Hau08, Corollary 4.3]. That means that Mov(X) is a union of full-
dimensional GIT chambers λ1, . . . , λr, the relative interiors of which are contained in the relative
interior of Mov(X) and the associated projective varieties Xi := X̂i//H, where X̂i :=X

ss(λi) are
Q-factorial and have R(X) as their Cox ring and λi as their semiample cone.

Moreover, if q : X̂ →X and qi : X̂i→Xi denote the associated universal torsors, then the
desired small birational maps πi : X →Xi are obtained as follows. Let X ′ ⊆X and X ′i ⊆Xi

be the respective sets of smooth points. Then, by [Hau08, Proposition 2.2], the sets q−1(X ′)
and q−1

i (X ′i) have a small complement in X and thus we obtain open embeddings with a small
complement

X (q−1(X ′) ∩ q−1
i (X ′i))//Hoo // Xi .

Now suppose that (ii) holds. Let w1, . . . , wd ∈ Eff(X) be those primitive generators of
extremal rays of Eff(X) that satisfy h0(nwi) 6 1 for any n ∈ Z>0 and fix 0 6= fi ∈R(X)niwi

with ni minimal. Then we have ⊕
n∈Z>0

R(X)nwi = K[fi].

Set λi := π∗i (SAmple(Xi)). Then, by Gordon’s lemma and [HK00, Lemma 1.8], we have another
finitely generated subalgebra of the Cox ring, namely

S(X) :=
⊕

w∈Mov(X)

R(X)w =
r⊕
i=1

(⊕
w∈λi

R(X)w

)
.

We show that R(X) is generated by S(X) and the fi ∈R(X)niwi . Consider any 0 6= f ∈R(X)w
with w 6∈Mov(X). Then, by Lemma 2.2, we have f = f (1)fi for some 1 6 i 6 d and some
f (1) ∈R(X) homogeneous of degree w(1) := w − niwi. If w(1) 6∈Mov(X) holds, then we repeat
this procedure with f (1) and obtain f = f (2)fifj with f (2) homogeneous of degree w(2). At some
point, we must end with w(n) = deg(f (n)) ∈Mov(X), because otherwise the sequence of the w(n)
would leave the effective cone. 2

Theorem 2.5. Let X be a normal complete surface with finitely generated divisor class group
Cl(X). Then the following statements are equivalent.

(i) The Cox ring R(X) is finitely generated.

(ii) The effective cone Eff(X)⊆ ClQ(X) and the moving cone Mov(X)⊆ ClQ(X) are polyhedral
and Mov(X) = SAmple(X) holds.

Moreover, if one of these two statements holds, then the surface X is Q-factorial and projective.

Proof. We verify the implication ‘(i) ⇒ (ii)’. By Proposition 2.1, we only have to show that
the moving cone coincides with the semiample cone. Clearly, we have SAmple(X)⊆Mov(X).
Suppose that SAmple(X) 6= Mov(X) holds. Then Mov(X) is properly subdivided into GIT
chambers; see [Hau08, Corollary 4.3]. In particular, we find two chambers λ′ and λ both
intersecting the relative interior of Mov(X) such that λ′ is a proper face of λ. The associated
GIT quotients Y ′ and Y of the total coordinate space X have λ′ and λ as their respective

970

https://doi.org/10.1112/S0010437X09004576 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004576


On Cox rings of K3 surfaces

semiample cones. Moreover, the inclusion λ′ ⊆ λ gives rise to a proper morphism Y → Y ′, which
is an isomorphism in codimension one. As Y and Y ′ are normal surfaces, we obtain Y ∼= Y ′,
which contradicts the fact that the semiample cones of Y and Y ′ are of different dimension.

The verification of ‘(ii) ⇒ (i)’ runs as in the preceding proof; this time one uses the finitely
generated subalgebra

S(X) :=
⊕

w∈Mov(X)

R(X)w =
⊕

w∈SAmple(X)

R(X)w.

Moreover, by Theorem 2.3, there is a small birational map X →X ′ with X ′ projective and
Q-factorial. As X and X ′ are complete surfaces, this map already defines an isomorphism. 2

In the case of a Q-factorial surface X, we obtain the following simpler characterization
involving the cone Nef(X)⊆ ClQ(X) of numerically effective divisor classes; note that the
implication ‘(ii) ⇒ (i)’ was obtained for smooth surfaces in [GM05, Corollary 1].

Corollary 2.6. Let X be a Q-factorial projective surface with finitely generated divisor class
group Cl(X). Then the following statements are equivalent.

(i) The Cox ring R(X) is finitely generated.

(ii) The effective cone Eff(X)⊆ ClQ(X) is polyhedral and Nef(X) = SAmple(X) holds.

Proof of Corollary 2.6. If (i) holds, then we infer from [BH07, Corollary 7.4] that the semiample
cone and the nef cone of X coincide. Now suppose that (ii) holds. From

SAmple(X)⊆Mov(X)⊆Nef(X),

we then conclude that Mov(X) = Nef(X). Moreover, since Eff(X) is polyhedral, Nef(X) is given
by a finite number of inequalities and hence is also polyhedral. Thus, we can apply Theorem 2.5. 2

We turn to K3 surfaces X. Recall that, by definition, X is a smooth complete complex surface
with b1(X) = 0 and trivial canonical class. We always assume a K3 surface X to be algebraic.
As a sublattice of H2(X, Z)∼= Z22, the divisor class group Cl(X) is finitely generated and free.
In particular, we can define a Cox ring R(X) as above. Our first result characterizes finite
generation of R(X).

Theorem 2.7. For any complex algebraic K3 surface X, the following statements are equivalent.

(i) The Cox ring R(X) is finitely generated.

(ii) Eff(X) is polyhedral.

Lemma 2.8. Let X be a K3 surface and D be a non-principal divisor on X. If we have h0(D) = 1,
then D2 < 0 holds.

Proof. Since the canonical divisor of X is principal, Serre’s duality theorem gives us h2(D) =
h0(−D) = 0. The Riemann–Roch theorem then yields 1 >D2/2 + 2. The assertion follows. 2

Proof of Theorem 2.7. Only for ‘(ii)⇒ (i)’ there is something to show. So, assume that Eff(X) is
polyhedral. Then, by Corollary 2.6, we have to show that for every numerically effective divisor D
on X, some positive multiple is semiample.

By a result of Kleiman, the class [D] ∈ ClQ(X) lies in the closure of the cone of ample divisor
classes. Since any ample class is effective and Eff(X) as a polyhedral cone is closed in ClQ(X),
we obtain [D] ∈ Eff(X). Thus, we may assume that D is non-negative.
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Since D is numerically effective, we have D2 > 0. If D2 > 0 holds, then [May72, Corollary,
p. 11] tells us that the linear system |3D| is base point free, i.e. that 3D is semiample. If we
have D2 = 0, then we write D =D0 +D1, where D0 denotes the fixed part of D and D0, D1 are
non-negative. Then we have

0 =D2 =D ·D0 +D ·D1.

Since D0 and D1 are non-negative, we conclude that D ·D0 = 0 and D ·D1 = 0. We show that
D0 = 0 must hold. Otherwise, using Lemma 2.8, we obtain

D2
1 = (D −D0)2 < 0.

On the other hand, D1 has no fixed components. Thus, according to [Sai74, Corollary 3.2], the
divisor D1 is base point free and hence numerically effective, a contradiction. Thus, we see that
D =D1 holds, and thus D is semiample. 2

Corollary 2.9. Let X be a K3 surface. If the cone Eff(X)⊆ ClQ(X) of effective divisor classes
is polyhedral, then the cone SAmple(X)⊆ ClQ(X) of semiample divisor classes is also polyhedral.

For Enriques surfaces, i.e. smooth projective surfaces X with q(X) = 0 and 2KX trivial but
KX non-trivial, we obtain the following analogue of Theorem 2.7.

Theorem 2.10. For any Enriques surface X, the following statements are equivalent.

(i) The Cox ring R(X) is finitely generated.

(ii) Eff(X) is polyhedral.

Proof. Only for ‘(ii) ⇒ (i)’ is there something to show. So, assume that Eff(X) is polyhedral.
Then, by Corollary 2.6, we have to show that for every given numerically effective divisor D on X,
some positive multiple is semiample. Since Eff(X) is polyhedral, we obtain Nef(X)⊆ Eff(X) and
hence we may assume that D is non-negative.

Let π : S→X be the universal covering. Then S is a K3 surface and π is an unramified
double covering. The pull-back π∗D on S is effective and numerically effective. As in the
proof of Theorem 2.7, we see that some positive multiple π∗nD is semiample. From [BHPV04,
Lemma 17.2], we infer that

H0(S, π∗nD) = π∗H0(X, nD) + π∗H0(X, nD +KX).

If x ∈X is a base point of nD, then there is a g ∈H0(X, nD +KX) such that g(x) 6= 0 holds;
otherwise π−1(x) would be in the base locus of π∗nD, which is a contradiction. Since 2KX is
trivial, we deduce that 2nD has no base points. 2

We conclude the section with recalling some classical statements on algebraic K3 surfaces
X characterizing the case of a polyhedral effective cone and thus providing further criteria for
finite generation of the Cox ring. Consider the lattice Cl(X) = Pic(X) with the intersection
pairing; denote by O(Cl(X)) the group of its isometries and by W (Cl(X)) the Weyl group, i.e.
the subgroup generated by reflections with respect to δ ∈ Cl(X) with δ2 =−2.

Theorem 2.11. See [Kov94, Theorem 2, Remark 7.2] and [PS71, § 7, Corollary]. For any
algebraic K3 surface X, the following statements are equivalent.

(i) The cone Eff(X)⊆ ClQ(X) is polyhedral.

(ii) The set O(Cl(X))/W (Cl(X)) is finite.

(iii) The automorphism group Aut(X) is finite.
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Moreover, if the Picard number is at least three, then (i) is equivalent to the property that X
contains only finitely many smooth rational curves. In this case, the classes of such curves
generate the effective cone.

The hyperbolic lattices satisfying (ii) have been classified in [PS71] and a series of papers by
Nikulin; see [Nik79, Nik83, Nik85]. In particular, it has been proved that there are only finitely
many of them having rank at least three. The results of these papers, together with Theorem 2.11,
give the following.

Theorem 2.12. See [Nik79, Nik83, Nik85]. Let X be an algebraic K3 surface with Picard
number %(X).

(i) Suppose that %(X) = 2 holds. Then Eff(X) is polyhedral if and only if Cl(X) contains a
class of self intersection 0 or −2.

(ii) Suppose that %(X) > 3 holds. Then Eff(X) is polyhedral if and only if Cl(X) belongs to a
finite list of hyperbolic lattices. The following table gives the number n of these lattices for
any Picard number.

%(X) 3 4 5–6 7 8 9 10 11–12 13–14 15–19 20

n 27 17 10 9 12 10 9 4 3 1 0

The following statement is a consequence of the results mentioned above or of [Kov94,
Theorem 2].

Proposition 2.13. Let X be an algebraic K3 surface such that Eff(X) is polyhedral. Then the
generators of Eff(X) are described in the following table.

%(X) Eff(X) Type of generators

1 Q+[H] Ample divisor

2 Q+[E1] + Q+[E2] (−2)- or (0)-curves

3–19
∑

Q+[Ei] (−2)-curves

Note that for %(X) = 1, the Cox ring of X coincides with its usual homogeneous coordinate
ring, whose generators have been studied in [Sai74].

3. K3 surfaces of Picard number two

We consider (complex algebraic) K3 surfaces X with divisor class group Cl(X) = Zw1 ⊕ Zw2,
where w2

i ∈ {0,−2} and, as we may assume then, w1 · w2 > 1 hold; recall from [Mor84,
Corollary 2.9(i)] that any even lattice of rank two with signature (1, 1) is the Picard lattice
of an algebraic K3 surface. According to Theorem 2.7 and the characterization of Eff(X) being
polyhedral provided in Theorem 2.12, such surfaces X have a finitely generated Cox ring R(X).
We investigate the possible degrees of generators and relations forR(X). An explicit computation
of R(X) for the cases w1 · w2 = 1, 2 is given in § 6. A first observation concerns the effective cone.

Proposition 3.1. Let X be a K3 surface with Cl(X) = Zw1 ⊕ Zw2, where w1, w2 are effective
such that w2

i ∈ {0,−2} and w1 · w2 > 2 hold. Then w1 and w2 generate Eff(X) as a cone.

Proof. Suppose that cone(w1, w2) ( Eff(X) holds. Then we may assume that w1 does not lie on
the boundary of Eff(X). Thus, one of the generators of Eff(X) is of the form w = aw1 − bw2 for
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some a, b ∈ N, where a > 0. Proposition 2.13 gives

w2 = a2w2
1 + b2w2

2 − 2ab w1 · w2 ∈ {0,−2}.

This can only be realized for b= 0, because we assumed that w2
i ∈ {0,−2} and w1 · w2 > 2. Thus,

w = aw1 holds and, consequently, w1 lies on the boundary of Eff(X); a contradiction. 2

Note that the assumption of w1 and w2 being effective in Proposition 3.1 can always be
achieved: the Riemann–Roch theorem and w2

i ∈ {0,−2} show that either wi or −wi is effective.
Our next result settles the case w2

i = 0 and w1 · w2 > 3. In order to state it, we first have to
fix our usage. Consider any finitely generated C-algebra R, graded by a lattice K. We say that
a system of homogeneous generators f1, . . . , fr of R is minimal if no fi can be expressed as a
polynomial in the remaining fj . Moreover, we say that R has a generator in degree w ∈K if
any minimal system of generators for R contains a non-trivial element of Rw. Given a system
f1, . . . , fr of generators, we have the surjection

C[T1, . . . , Tr]→R, Ti 7→ fi.

The ideal of relations determined by f1, . . . , fr is the kernel I ⊆ C[T1, . . . , Tr] of this map; it is
homogeneous with respect to the K-grading of C[T1, . . . , Tr] defined by deg(Ti) := deg(fi). By
a minimal ideal of relations, we mean the ideal of relations determined by a minimal system of
generators.

Theorem 3.2. Let X be a K3 surface with Cl(X)∼= Zw1 ⊕ Zw2, where w1, w2 are effective,
and intersection form given by w2

1 = w2
2 = 0 and w1 · w2 = k > 3.

(i) The semiample cone of X coincides with its effective cone.

(ii) The Cox ring R(X) is generated in degrees w1, w2, w1 + w2, and one has

dim(R(X)wi) = 2, dim(R(X)w1+w2) = k + 2.

Moreover, any minimal system of generators of R(X) has k + 2 members.

(iii) For k = 3, the Cox ring R(X) is of the form C[T1, . . . , T5]/〈f〉 and the degrees of the
generators and the relation are given by

deg(T1) = deg(T2) = w1, deg(T4) = deg(T5) = w2,

deg(T3) = w1 + w2, deg(f) = 3w1 + 3w2.

(iv) For k > 4, any minimal ideal I(X) of relations of R(X) is generated in degree 2w1 + 2w2,
and we have

dim(I(X)2w1+2w2) =
k(k − 3)

2
.

Note that for k = 3, 4 the Cox ring of X is a complete intersection, while for k > 5 this no
longer holds. Before giving the proof of the above theorem, we briefly provide the necessary
ingredients.

Lemma 3.3. Let X be a smooth surface, assume that D, D1, D2 ∈WDiv(X) satisfy D1 ·D2 = 0
and h1(D −D1 −D2) = 0, and let 0 6= fi ∈H0(Di) be such that div(f1) +D1 and div(f2) +D2

have no common components. Then one has a surjection

H0(D −D1)⊕H0(D −D2)→H0(D),
(g1, g2) 7→ g1f1 + g2f2.
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Proof. First note that due to the assumptions, the assignments ı : h 7→ (hf2,−hf1) and
ϕ : (h1, h2) 7→ h1f1 + h2f2 give rise to an exact sequence of sheaves

0 // OX(−D1 −D2) ı // OX(−D1)⊕OX(−D2)
ϕ // OX // 0.

Tensoring this sequence with OX(D) and looking at the associated cohomology sequence, we
obtain the assertion. 2

Proposition 3.4. Let X be a K3 surface, w ∈ Cl(X) be the class of a smooth irreducible curve
D ⊆X of genus g and consider the Veronese algebra

R(X, w) :=
⊕
n∈N
R(X)nw.

Then the algebra R(X, w) is generated in degree one if D is not hyperelliptic or g 6 1, in degrees
one and three if g = 2 and in degrees one and two if D is hyperelliptic of genus g > 3.

Proof. If g = 0 holds, then R(X, w) = C[s] with s ∈H0(D), since D is irreducible with negative
self intersection. Thus, R(X, w) is generated in degree one.

For non-rational D, the canonical algebra ⊕H0(D, nKD) is generated in degree one if D
is not hyperelliptic or g = 1, in degrees one and three if g = 2 and in degrees one and two
if D is hyperelliptic and g > 3; see [ACGH85, p. 117]. By the adjunction formula we have
OX(D)|D ∼=KD. Thus, we obtain the exact sequence

0 // H0(X, (n− 1)D) // H0(X, nD) // H0(D, nKD) // 0,

where the last zero is due to the Kawamata–Viehweg vanishing theorem. This gives the
assertion. 2

In order to prove Theorem 3.2(iii), we use the techniques introduced in [LV09]. We say that
a degree w ∈R is not essential for a minimal ideal I of relations of a K-graded algebra R if no
minimal system of homogeneous generators of I has members of degree w.

Theorem 3.5. See [LV09]. Let f1, . . . , fr ∈R(X) be a minimal system of generators for the
Cox ring of a surface X and set wi := deg(fi) ∈ Cl(X). Consider the maps

ϕw,i : R(X)w−w1−wi ⊕R(X)w−w2−wi →R(X)w−wi ,

(g1, g2) 7→ g1f1 + g2f2,

where w ∈ Cl(X) and i= 3, . . . , r. If w1 · w2 = 0 holds and ϕw,i is surjective for i= 3, . . . , r,
then w is not essential for the ideal of relations arising from f1, . . . , fr.

Proof of Theorem 3.2. Let Di ∈WDiv(X) represent wi ∈ Cl(X). Then D2
i = 0 implies that the

complete linear system of Di defines a fibration, which in turn gives h0(wi) = 2. In particular, we
have bases (fi1, fi2) for R(X)wi , where i= 1, 2. Moreover, applying the Riemann–Roch theorem
yields h1(wi) = 0.

By Proposition 3.1, the classes w1 and w2 generate the effective cone. Moreover, h0(wi) = 2
and w2

i = 0 show that wi is semiample, i.e. we have Eff(X) = SAmple(X). Consequently, any
divisor class w = aw1 + bw2 with a, b > 0 is ample and the Kawamata–Viehweg vanishing theorem
gives h1(w) = 0.

We show now that R(X) is generated in degrees w1, w2 and w1 + w2. Consider a class
w = aw1 + bw2. If a > 3 and b > 1 or (a, b) = (2, 1) holds, then we have h1(w − 2w1) = 0.
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Thus, Lemma 3.3 provides a surjective map

ϕ : R(X)w−w1 ⊕R(X)w−w1 →R(X)w, (g1, g2) 7→ g1f11 + g2f12.

If b= 0 holds, then the complete linear system of any representative of w is composed with a
pencil. This implies again surjectivity of the above map ϕ.

Iterating this procedure, we see that for any w = aw1 + bw2 with a > 3 and b > 1 or (a, b) =
(2, 1) or b= 0, the elements of R(X)w are polynomials in f11, f12 and the elements of R(X)u,
where

u= 2w1 + bw2 if b > 2, u= w1 + bw2 if b= 0, 1.

Interchanging the roles of a and b, in this reasoning, we finally see that any element of R(X)w
is a polynomial in f11, f12, f21, f22 and elements of R(X)nu, where u := w1 + w2 and n 6 2.

Thus, we are left with describing the elements ofR(X)nu, where u= w1 + w2. Observe that no
complete linear system on X has fixed components, because, by Lemma 2.8 and the adjunction
formula, any such component would be a (−2)-curve and, by our assumptions, there are no
classes of self intersection −2 in Cl(X). Moreover, note that w1 and w2 are the only classes of
elliptic curves in Cl(X).

It follows that u= w1 + w2 is represented by a smooth irreducible curve D ⊆X of genus
u2/2 + 1> 3. Since u2 > 6 holds, u is a primitive class in Cl(X) and we have u · wi > 3: the curve
D is not hyperelliptic, see [Sai74, Theorem 5.2]. According to Proposition 3.4, the elements of
R(X)nu are polynomials in those of R(X)u.

Thus, we obtained that R(X) is generated in the degrees w1, w2 and u := w1 + w2. Moreover,
the Riemann–Roch theorem gives us

dim(R(X)wi) = 2, dim(R(X)w1+w2) = k + 2.

We now turn to the relations. First note that any minimal system of generators must
comprise a basis (f11, f12) of R(X)w1 and a basis (f21, f22) of R(X)w2 . Now, consider any degree
w = aw1 + bw2. If a > 4 and b > 2 or (a, b) = (3, 2) holds, then we have

h1(w − 2w1 − w2) = h1(w − 3w1 − w2) = 0.

Thus, taking f1 = f11 and f2 = f12 in Theorem 3.5 and using Lemma 3.3, we see that w is not
essential for any minimal ideal of relations of R(X). If b= 1 holds, then

R(X)(c−1)w1
⊕R(X)(c−1)w1

→R(X)cw1 , (g1, g2) 7→ g1f11 + g2f12

is surjective for c= a, a− 1, because R(X) is generated in degrees w1, w2 and w1 + w2. Thus,
Theorem 3.5 shows that w is not essential for b= 1. Eventually, there are no relations of degree w
for b= 0. In fact, then R(X)w is generated by f11 and f12 and hence any such relation defines a
relation among f11 and f12, which contradicts the fact that f11, f12 define a surjection X → P1.

Exchanging the roles of w1 and w2 in this consideration, we obtain that essential relations
can only occur in degrees 2u and 3u, where u= w1 + w2.

In the case k = 3, the statements proven so far give that any minimal system of generators
has five members and their degrees are w1, w1, w2, w2 and u. Hence, there must be exactly one
relation in R(X). The degree of this relation minus the sum of the degrees of the generators
gives the canonical class, see [BH07, Proposition 8.5], and hence vanishes. Thus, our relation
must have degree 3u.
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Finally, let k > 4. As observed before, R(X)nu is generated by R(X)u. Hence, any relation
in degree nu is also a relation of ⊕

n∈N
R(X)nu.

Since u · wi > 3 holds and X does not contain smooth rational curves, [Sai74, Theorem 7.2] tells
us that the ideal of relations of this algebra is generated in degree two. Thus, there are only
essential relations of degree 2u in R(X).

In order to determine the dimension of I(X)2u for a minimal ideal of relations I(X), note
that we have the four generators fij , where 1 6 i, j 6 2, of degree wi, and k − 2 generators of
degree u= w1 + w2. Using the Riemann–Roch theorem, we obtain that R(X)2u is of dimension
4k + 2. Thus, denoting by C[T ] the polynomial ring in the above generators and by V ⊆R(X)u
the vector space spanned by the k − 2 generators of degree u, we obtain

dim(I(X)2u) = dim(C[T ]2u)− dim(R(X)2u)
= dim(Sym2V ) + 4(k − 2) + 9

=
k(k − 3)

2
. 2

We now turn to the cases w2
1 =−2 and w2

2 = 0,−2. In contrast to the previous cases, the
number of degrees occurring in a minimal system of generators for the Cox ring becomes
arbitrarily large when w1 · w2 increases.

Proposition 3.6. Let X be a K3 surface with Cl(X)∼= Zw1 ⊕ Zw2 and intersection form given
by w2

1 =−2, w2
2 = 0 and w1 · w2 = k ∈ N.

(i) The semiample cone SAmple(X) of X is generated by the classes kw1 + 2w2 and w2.

(ii) The Cox ring R(X) has generators in degrees w1 and aw1 + w2, where 0 6 a 6 bk/2c.
(iii) If k > 1 holds and k is odd, then the Cox ring R(X) has, in addition to those of (ii),

generators in degree kw1 + 2w2.

Proof. To verify (i), note that (aw1 + bw2) · w1 =−2a+ kb and (aw1 + bw2) · w2 = ka hold.
These intersection products are both non-negative if 0 6 a 6 kb/2 holds. So, the nef cone of X is
generated by the classes kw1 + 2w2 and w2. Since SAmple(X) is polyhedral, the claim follows.

We prove (ii). By Proposition 3.1, the classes w1 and w2 generate the effective cone. Thus,
R(X) has generators in the degrees w1 and w2. Note that h0(w1) = 1 and, fixing a generator
f1 ∈R(X)w1 , we obtain R(X)nw1 = Cfn1 . Moreover, up to a constant, f1 occurs in any minimal
system of generators of R(X); we fix such a system f1, . . . , fr.

We now show that R(X) has generators in degree aw1 + w2 for any 1 6 a 6 [k/2]. By
assertion (i), the class aw1 + w2 is big and nef for 1 6 a 6 [k/2]. Using the Riemann–Roch theorem
and the Kawamata–Viehweg vanishing theorem, we obtain

h0((a− 1)w1 + w2)< h0(aw1 + w2) for 1< a 6 bk/2c.

This implies that there exists an f ∈R(X)aw1+w2 , which is not a multiple of f1 ∈R(X)w1 . The
same holds for a= 1, because then we have (k = 1 implies that a= 0)

h0(w2) = 2, h0(w1 + w2) = k + 1> 2.

Suppose that every monomial m ∈R(X)aw1+w2 in the fi is a product m=m1m2 of
non-constant mi. Then m1 or m2 belongs to R(X)bw1 = Cf b1 , where 1 6 b 6 a. Then
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every f ∈R(X)aw1+w2 is a multiple of f1, contradicting the previous statement. Hence, some
fi, where i= 2, . . . , r, has degree aw1 + w2.

We turn to (iii). Then kw1 + 2w2 is big and nef. Reasoning as before, we obtain that
there is an f ∈R(X)kw1+2w2 , which is not a multiple of f1. Suppose that every monomial
m ∈R(X)kw1+2w2 in the fi is a productm=m1m2 of non-constantmi. Thenm1 orm2 belongs to
R(X)bw1+cw2 , where b/c > bk/2c+ 1. Since (bw1 + cw2) · w1 =−2b+ kc < 0 holds, every element
of R(X)bw1+cw2 is divisible by f1; a contradiction. Hence, some fi, where i= 2, . . . , r, has degree
kw1 + 2w2. 2

Proposition 3.7. Let X be a K3 surface with Cl(X)∼= Zw1 ⊕ Zw2 and intersection form given
by w2

1 = w2
2 =−2 and w1 · w2 = k ∈ N.

(i) We have k > 3 and the semiample cone SAmple(X) is generated by the classes kw1 + 2w2

and 2w1 + kw2.

(ii) The Cox ring R(X) has generators in degrees aw1 + w2 and w1 + aw2, where 0 6 a 6 bk/2c.
(iii) If k > 1 holds and k is odd, then the Cox ring R(X) has, in addition to those of (ii),

generators in degrees kw1 + 2w2 and 2w1 + kw2.

Proof. By the Hodge index theorem, Cl(X) has signature (1, 1), which implies that k > 3.
Determining the semiample cone runs as in the proof of Proposition 3.6.

As to the remaining statements, note that the semigroup SAmple(X) ∩ Z2 is generated by
aw1 + w2 and w1 + aw2 with 0 6 a 6 bk/2c if k is even, and by the same classes plus the two
extremal rays if k is odd. Reasoning as in the proof of Proposition 3.6, we obtain

h0((a− 1)w1 + w2)< h0(aw1 + w2)

whenever 0 6 a 6 bk/2c holds. This formula also holds when w1 and w2 are exchanged. Now the
same arguments as used in the proof of Proposition 3.6 give the assertion. 2

Example 3.8. Let X be a K3 surface with Cl(X)∼= Zw1 ⊕ Zw2 and intersection form given by
w2

1 = w2
2 =−2 and w1 · w2 = 3. Then the Cox ring R(X) has generators

f1,0, f0,1, f1,1, g1,1, f2,3, f3,2

in the corresponding degrees by Proposition 3.7 and its proof. A monomial basis of
Sym3 R(X)w1+w2 , plus f2,3f0,1 and f3,2f1,0, give 12 linearly dependent elements of R(X)3w1+3w2 ,
since this space has dimension 11 by the Riemann–Roch theorem. This means that R(X) has a
relation in degree 3w1 + 3w2.

Similarly, a monomial basis of Sym5 R(X)w1+w2 , plus f2,3f3,2 and the product of f2,3f1,0 for
a monomial basis of Sym2 R(X)w1+w2 , give 28 monomials. These are linearly dependent, since
the dimension of R(X)5w1+5w2 is 27 by the Riemann–Roch theorem. This means that R(X) has
a relation in degree 5w1 + 5w2.

We now give a geometric interpretation for generators and relations. The map π : X → P2

associated with w1 + w2 is a double cover branched along a smooth plane sextic; see [Sai74].
Observe that f1,0f0,1 = π∗(s) and f2,3f3,2 = π∗(t), where s= 0 is a line and t= 0 is a quintic
in P2. The second equality gives a relation in degree 5w1 + 5w2.

The assumptions w2
i ∈ {0,−2} made in Theorem 3.2 imply that the primitive generators of

the effective cone form a basis of the divisor class group. However, the techniques of its proof
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allow us as well to treat, for example, the following case, where the primitive generators of the
effective cone span a sublattice of index two in the divisor class group.

Proposition 3.9. Let X be a K3 surface with Cl(X)∼= Zw1 ⊕ Zw2 and intersection form given
by w2

1 = 4, w2
2 =−4 and w1 · w2 = 0.

(i) The effective cone of X is generated by u1 := w1 + w2 and u2 := w1 − w2.

(ii) The Cox ring R(X) is generated in degrees u1, u2 and w1.

(iii) Any minimal ideal of relations of R(X) is generated in degree 2w1.

Proof. Note that we have u2
1 = u2

2 = 0. Thus, by the Riemann–Roch theorem, we can assume that
u1 and u2 are effective. Moreover, Theorem 2.12 tells us that Eff(X) is polyhedral; we denote
by v1 and v2 its primitive generators. Then we have v2

i ∈ 4Z and thus Proposition 2.13 gives
v2
1 = v2

2 = 0. Choosing presentations ui = aiv1 + biv2 with non-negative ai, bi ∈Q, we obtain

8 = u1 · u2 = (a1v1 + b1v2) · (a2v1 + b2v2) = (a1b2 + a2b1) · v1 · v2,
0 = u2

i = (aiv1 + biv2)2 = 2aibi v1 · v2.
The first identity gives v1 · v2 6= 0 and, thus, the second one shows that aibi = 0. As a consequence,
we obtain {u1, u2}= {v1, v2}. This proves the first assertion.

As to the second one, note that any effective divisor class w ∈ Cl(X) can be written as

w = au1 + bu2 + cw1, where a, b ∈ N, c= 0, 1.

Observe that u1 and u2 are classes of elliptic curves. Moreover, we have h0(ui) = 2 and thus
R(X)ui has a basis of the form (fi1, fi2).

We now proceed as in the proof of Theorem 3.2. If a > 3 and b > 1 hold, then w − 2u1 is
nef and big, and thus we have h1(w − 2u1) = 0. Since u2

1 = 0 holds, Lemma 3.3 shows that the
sections of w are polynomials in f11, f12 and elements of R(X)w−u1 .

Iterating this procedure and interchanging the roles of a and b, we reduce to the study of
classes w with a+ b 6 4. A case by case analysis now shows that R(X) is generated in degrees
u1, u2 and w1. In the following table we briefly provide the reason why h1(w − 2u1) = 0 holds,
when a > b and w − 2u1 is not nef and big.

a b c h1(w − 2w1) = 0 because

1 1 0 R(X, w1) is 1-generated

1 0 1 h1(−u2) = 0

1 1 1 R(X, w1) is 1-generated

2 0 0 R(X, u1) is 1-generated

2 1 0 h1(u2) = 0

In a similar way, Theorem 3.5 and Lemma 3.3 imply that w is not essential unless a= b= 1.
Since w1 is the class of a smooth irreducible curve of genus at most one, Proposition 3.4 yields
that R(X)w1 is generated in degree one. This implies that the monomials f1if2k are quadratic
functions in the fi ∈R(X)w1 :

f1if2k = qik(f0, f1, f2, f3),

where qik is a homogeneous polynomial of degree two. This gives four independent relations in
degree (2, 0), as can be checked since h0(2w1) = 10 and the number of monomials of type fifj
and f1if2k is 14. 2
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4. Cox rings and coverings

In this section, we investigate the effect of certain, e.g. cyclic, coverings π : X → Y on the Cox
ring. Among other things, we obtain that finite generation of the Cox ring is preserved, provided
that π∗(Cl(Y )) is of finite index in Cl(X); see Proposition 4.6. In the whole section, we work
over an algebraically closed field K of characteristic zero. First, we make precise which type of
coverings we will treat.

Construction 4.1. Let Y be a normal variety and D1, . . . , Dr ∈ CaDiv(Y ) be a linearly
independent collection of Cartier divisors. Denote by M+ ⊆ CaDiv(Y ) the semigroup generated
by the divisors D1, . . . , Dr and set

Y (D1, . . . , Dr) := SpecY (A), A :=
⊕

D∈M+

OY (−D).

Then the inclusion OY →A defines a morphism α : Y (D1, . . . , Dr)→ Y , which is a (split)
vector bundle of rank r over Y . Similarly, with n1, . . . , nr ∈ Z>0 and Ei := niDi, denote by
N+ ⊆ CaDiv(Y ) the semigroup generated by E1, . . . , Er. Setting

Y (E1, . . . , Er) := SpecY (B), B :=
⊕
E∈N+

OY (−E)

gives a further (split) vector bundle β : Y (E1, . . . , Er)→ Y of rank r over Y . The inclusion B ⊆A
defines a morphism κ : Y (D1, . . . , Dr)→ Y (E1, . . . , Er). Now, let σ : Y → Y (E1, . . . , Er) be a
section such that all projections of σ to the factors Y (Ei) are non-trivial. Then we define

X := κ−1(σ(Y ))⊆ Y (D1, . . . , Dr).

Restricting α gives a morphism π : X → Y , which we call an abelian covering of Y . Note that
π : X → Y is the quotient for the action of the abelian group Z/n1Z⊕ · · · ⊕ Z/nrZ on X defined
by the inclusion B ⊆A of graded algebras.

Remark 4.2. For a smooth variety Y , Cartier divisors D and E := nD on Y and a section
σ : Y → Y (E) with non-trivial reduced divisor B, Construction 4.1 gives a branched n-cyclic
covering of Y ; see [BHPV04, § 1.17].

In order to formulate our first result, we need the following pull-back construction for Weil
divisors under an abelian covering π : X → Y of normal varieties. Given D ∈WDiv(Y ), consider
the restriction D′ of D to the set Y ′ ⊆ Y of smooth points and take the usual pull-back π∗(D′)
on π−1(Y ′). Since π is finite, the complement X\π−1(Y ′) is of codimension at least two in X
and hence π∗(D′) uniquely extends to a Weil divisor π∗(D) on X.

Proposition 4.3. Let π : X → Y be an abelian covering as in Construction 4.1, assume that X
is normal and let K ⊆WDiv(Y ) be a subgroup containing D1, . . . , Dr of Construction 4.1. Set

SY :=
⊕
D∈K

OY (D), SX :=
⊕
D∈K

OX(π∗D).
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Then, setting deg(Ti) :=Di turns SY [T1, . . . , Tr] into a K-graded sheaf of OY -algebras and there
is a K-graded isomorphism of sheaves

π∗SX ∼= SY [T1, . . . , Tr]/〈Tn1
1 − g1, . . . , T

nr
r − gr〉,

where gi ∈ Γ(Y,O(Ei)) are sections such that the branch divisor B of the covering π : X → Y is
given as

B = div(g1) + · · ·+ div(gr).

Proof. Note that for any open set V ⊆ Y and its intersection V ′ := V ∩ Y ′ with the set Y ′ ⊆ Y
of smooth points, the sections of SY over V and V ′ coincide and also the sections of π∗SX over V
and V ′ coincide. Hence, we may assume that K ⊆WDiv(Y ) consists of Cartier divisors.

A first step is to express the direct image π∗SX in terms of π∗OX and data living on Y . Using
the projection formula, we obtain

π∗SX = π∗
⊕
D∈K

OX(π∗D)∼=
⊕
D∈K

OY (D)⊗OY
π∗OX ∼= SY ⊗OY

π∗OX . (1)

Now we have to investigate π∗OX . Denote by q : Ỹ → Y the torsor associated with SY , i.e. we
have Ỹ = SpecY (SY ). Moreover, in Construction 4.1 we constructed the rank r vector bundles

α : Y (D1, . . . , Dr)→ Y, β : Y (E1, . . . , Er)→ Y.

Using the pull-back divisors q∗(Di) and q∗(Ei), we obtain the respective pull-back bundles

α̃ : Ỹ (q∗D1, . . . , q
∗Dr)→ Ỹ , β̃ : Ỹ (q∗E1, . . . , q

∗Er)→ Ỹ .

Set for short Y (D) := Y (D1, . . . , Dr) and Ỹ (q∗D) := Ỹ (q∗D1, . . . , q
∗Dr). Similarly, define Y (E)

and Ỹ (q∗E). Then we have a commutative diagram

X̃
ı̃ //

p

��

Ỹ (q∗D)
κ̃ //

α̃

''

qD

��

Ỹ (q∗E)
β̃

//oo σ̃

qE

��

Ỹ

q

��
X ı

//

π

77Y (D) κ
// Y (E)

β
//oo σ

Y

where p, qD and qE are the canonical morphisms, we set X̃ := q−1
D (X) and σ̃ := q∗σ is the pull-

back section.
Recall that q : Ỹ → Y is the quotient for the free action of the torus H := Spec(K[K]) defined

by the grading of q∗OỸ = SY . Thus, Ỹ (D) and X̃ inherit free H-actions having qD and p as
their respective quotients. Moreover, let Ĩ denote the ideal sheaf of X̃ in Ỹ (q∗D). Then Ĩ is
homogeneous, and we have

π∗OX ∼= (π∗p∗OX̃)0 ∼= (π∗p∗ı̃ ∗(OỸ (q∗D)
/Ĩ))0 = (q∗α̃∗(OỸ (q∗D)

/Ĩ))0. (2)

To proceed, we need a suitable trivialization of the bundle α̃ : Ỹ (q∗D)→ Ỹ . For this,
consider an open affine subset V ⊆ Y such that on V we have Di = div(hi,V ) for 1 6 i 6 r.
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This gives us sections

ηi,V := h−1
i,V ∈ Γ(V,OY (Di))⊆ Γ(q−1(V ),O

Ỹ
)Di ,

q∗D(hi,V ) ∈ q∗D(Γ(α−1(V ),OY (D)))⊆ Γ(α̃−1(q−1(V )),O
Ỹ (q∗D)

)0.

Given another open affine subset W ⊆ Y such that on W we have Di = div(hi,W ) for 1 6 i 6 r,
we obtain over V ∩W for the corresponding sections:

α̃∗(ηi,W )
α̃∗(ηi,V )

= α̃∗q∗
(
ηi,W
ηi,V

)
= q∗Dα

∗
(
hi,V
hi,W

)
=
q∗D(hi,V )
q∗D(hi,W )

.

Covering Y with V ’s as above, we obtain that the functions α̃∗(ηi,V ) · q∗D(hi,V ) living on
α̃−1(q−1(V )) glue together to a global regular function fi of degree Di on Ỹ (q∗Di) generating
O
Ỹ

(q∗Di) over O
Ỹ

. Thus, the fi define a trivialization,

Ỹ ×Kr
(ỹ,z)7→(ỹ,zn) // Ỹ ×Kr ll

id×g

X̃
ı̃ // Ỹ (q∗D)

κ̃
//

∼=α̃×f

OO

Ỹ (q∗E)
β̃

//oo σ̃

∼=β̃×fn

OO

Ỹ
��

pr
Ỹ

where we write z for (z1, . . . , zr) and zn for (zn1
1 , . . . , znr

r ), etc. Since σ̃ = q∗σ is H-equivariant,
each component gi of g is homogeneous with deg(gi) = Ei. Note that the divisors div(gi) describe
the branch divisor, as claimed.

Denote by J̃ ⊆ O
Ỹ

[T1, . . . , Tr] the ideal sheaf of the image of X̃ in Ỹ ×Kr. Then, using
X̃ = κ̃−1(σ̃(Ỹ )), we obtain

Ĩ = 〈fn1
1 − α̃

∗g1, . . . , f
nr
r − α̃∗gr〉, J̃ = 〈Tn1

1 − g1, . . . , T
nr
r − gr〉.

Thus, using the isomorphism q∗α̃∗OỸ (q∗D)
∼= SY [T1, . . . , Tr] established by the above commuta-

tive diagram, we may continue Equations (2) as

π∗OX ∼= (SY [T1, . . . , Tr]/J̃ )0 ∼= SY [T1, . . . , Tr]0/J̃0. (3)

The homogeneous ideal sheaf Ĩ is locally, over Y , generated in degree zero in the sense that we
have Ĩ = α̃∗O

Ỹ
· Ĩ0. The same holds for J̃ , and we obtain

π∗SX ∼= SY ⊗OY
π∗OX ∼= SY ⊗OY

SY [T1, . . . , Tr]0/J̃0
∼= SY [T1, . . . , Tr]/J̃ . 2

Proposition 4.4. Consider a normal variety X, a finitely generated subgroup K ⊆WDiv(X)
mapping onto Cl(X), a subgroup L⊆K and the algebras

R :=
⊕
D∈K

Γ(X,OX(D)), A :=
⊕
D∈L

Γ(X,OX(D)).

If the subgroup L⊆K is of finite index and the algebra A is finitely generated, then the algebra R
is also finitely generated.

Lemma 4.5. Let X be a normal variety, K be a finitely generated abelian group, R be a
quasicoherent sheaf of normal K-graded OX -algebras and Z be its relative spectrum,

R=
⊕
w∈K

Rw, Z := SpecX(R),
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where we assume R to be locally of finite type. Let L⊆K be a subgroup of finite index and
consider the associated Veronese subalgebra of the algebra of global sections

A :=
⊕
w∈L

Γ(X,Rw)⊆
⊕
w∈K

Γ(X,Rw) =:R.

Suppose that there are homogeneous sections f1, . . . , fr ∈A such that each Rfi
is finitely

generated, each Zfi
= Z\V (Z, fi) is an affine variety and we have

Z = Zf1 ∪ · · · ∪ Zfr .

If A is finitely generated and for Y := Spec(A) the complement Y \(Yf1 ∪ · · · ∪ Yfr) is of
codimension at least two in Y , then R is finitely generated.

Proof. First note that Z is a variety with Γ(Z,O) =R and that Γ(Zfi
,O) =Rfi

holds. Since
each Rfi

is finitely generated, we may construct a finitely generated K-graded subalgebra S ⊆R
with

A⊆ S, Sfi
=Rfi

for 1 6 i 6 r.

Set Z ′ := Spec(S). Then the inclusion S ⊆R defines a canonical morphism ı : Z→ Z ′.
Moreover, S is canonically graded by the factor group K/L and hence Z ′ comes with an action
of the finite abelian group G := Spec(K[K/L]). The inclusion A⊆ S defines the quotient map
π : Z ′→ Y for the action of G. By construction, we have

Zfi
= ı−1(Z ′fi

)∼= Z ′fi
, Z ′fi

= π−1(Yfi
).

Consequently, ı : Z→ Z ′ is an open embedding, and we may regard Z as a subset of Z ′. By
our assumptions, setting V := Yf1 ∪ · · · ∪ Yfr , we obtain Z = π−1(V ). Since π : Z ′→ Y is a finite
map, we can conclude that

dim(Z ′\Z) = dim(Y \V ) 6 dim(Y )− 2 = dim(Z ′)− 2.

Let Z ′′→ Z ′ be the normalization. Since Z is normal, we have Z ⊆ Z ′′. We conclude that
R= Γ(Z,O) = Γ(Z ′′,O) holds, and thus R is finitely generated. 2

Proof of Proposition 4.4. First note that the rings R and A do not change if we replace X with
the set of its smooth points. Thus, we may assume that X is smooth. Then we obtain graded
sheaves of normal OX -algebras

R=
⊕
w∈K

Rw, A=
⊕
w∈L
Rw,

which are locally of finite type. Our task is to verify the assumptions of Lemma 4.5 for R and
A= Γ(X,A). Setting Z := SpecX(R) and X̃ := SpecX(A), we obtain normal varieties, and we
have a commutative diagram of affine morphisms

Z
κ //

p
��??

??
??

?? X̃

q
��~~

~~
~~

~

X

where κ is the quotient for the action of the finite abelian group G := Spec(K[K/L]) on Z defined
by the canonical (K/L)-grading of R. Moreover, we have an affine variety Y := Spec(A), and
there is a canonical morphism ı : X̃ → Y .
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To obtain the desired sections fi ∈A, cover X by affine open subsets U1, . . . , Ur. Then each
X\Ui is the set of zeroes of a suitable homogeneous section fi ∈Ri. Replacing fi with a suitable
power, we achieve fi ∈Ai. Thus, we can cover X̃ by the affine open subsets

q−1(Ui) = X̃fi
= ı−1(Yfi

);

use e.g. [Hau08, Lemma 2.3]. Now, Γ(X̃,O) =A= Γ(Y,O) implies that X̃fi
∼= Yfi

. Thus, each
restriction ı : X̃fi

→ Yfi
is an isomorphism and ı : X̃ → Y is an open embedding. Moreover, using

again Γ(X̃,O) = Γ(Y,O), we see that we have a small complement

Y \X̃ = Y \(X̃f1 ∪ · · · ∪ X̃fr) = Y \(Yf1 ∪ · · · ∪ Yfr). 2

Proposition 4.6. Let π : X → Y be an abelian covering of normal varieties with finitely
generated free divisor class groups such that π∗(Cl(Y )) is of finite index in Cl(X). Then the
following statements are equivalent.

(i) The Cox ring R(X) is a finitely generated K-algebra.

(ii) The Cox ring R(Y ) is a finitely generated K-algebra.

Proof. Let M ⊆WDiv(Y ) and K ⊆WDiv(X) be subgroups mapping isomorphically to the
respective divisor class groups Cl(Y ) and Cl(X). Then the Cox rings are given as

R(Y ) =
⊕
E∈M

Γ(Y,OY (E)), R(X) =
⊕
D∈K

Γ(X,OX(D)).

Since Cl(Y ) is free and π : X → Y is the quotient for a finite group action, the pull-back
π∗ : Cl(Y )→ Cl(X) is injective; see [Ful98, Example 1.7.6]. Consequently, there are a unique
subgroup L⊆K and an isomorphism π∗(M)→ L inducing the identity on π∗(Cl(Y )). By our
assumption, L is of finite index in K. Moreover, we have canonical identifications

R(Y )⊆
⊕
E∈M

Γ(X,OX(π∗(E))) = S :=
⊕
D∈L

Γ(X,OX(D))⊆R(X).

Suppose that R(X) is finitely generated over K. Then the Veronese subalgebra S ⊆R(X) is
also finitely generated over K. Moreover, by Proposition 4.3, the algebra S is a finite module over
R(Y ). Thus, the tower K⊆R(Y )⊆ S fulfills the assumptions of the Artin–Tate lemma [AM69,
Proposition 7.8], and we obtain that R(Y ) is a finitely generated K-algebra.

Now let R(Y ) be finitely generated over K. Then Proposition 4.3 tells us that S is finitely
generated over K. Thus, Proposition 4.4 shows that R(X) is finitely generated over K. 2

5. Cox rings and blowing up

In this section, we compute the Cox ring of the fourth Hirzebruch surface blown up at three
general points. As in the preceding section, we work over an algebraically closed field K of
characteristic zero. We use the technique of toric ambient modifications provided in [Hau08],
and begin with giving a short outline of this technique. A basic ingredient is the following
construction of the Cox ring and the universal torsor of a toric variety given in [Cox95].

Construction 5.1. Let Z be the toric variety arising from a complete fan Σ in a lattice N , and
suppose that the primitive generators v1, . . . , vr of Σ span the lattice N . Then we have mutually
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dual exact sequences

0 // L // Zr
P : ei 7→vi // N // 0,

0 Koo Zr
Q

oo Moo 0,oo

where the lattice K is isomorphic to the divisor class group Cl(Z). The Cox ring of Z is the
polynomial ringR(Z) = K[T1, . . . , Tr] with theK-grading defined by deg(Ti) :=Q(ei). Moreover,
denoting by δ ⊆Qr the positive orthant, we obtain a fan in Zr consisting of certain faces of δ,
namely

Σ̂ := {σ̂ � δ; P (σ̂)⊆ σ for some σ ∈ Σ}.

The associated toric variety Ẑ is an open toric subvariety of Z := Kr. The toric morphism
p : Ẑ→ Z defined by P : Zr→N is a universal torsor; it is a quotient for the action of the torus
Spec(K[K]) on Z defined by the K-grading of R(Z).

Given a variety X0, the rough idea of [Hau08] is to work with a suitable embedding X0 ⊆ Z0

into a toric variety, consider the proper transform X1 ⊆ Z1 under suitable toric modifications
Z1→ Z0 and then compute the Cox ring R(X1) in terms of R(X0) using the toric universal
torsors over Z1 and Z0. In our outline, we restrict to the case of blowing up a smooth projective
surface X0 with divisor class group K0

∼= Zk0 and a Cox ring, which admits a representation

R(X0) = K[T1, . . . , Tr]/〈f0〉, deg(Ti) = wi ∈K0,

where f0 ∈K[T1, . . . , Tr] is a homogeneous polynomial and the Ti define pairwise non-associated
prime elements in R(X0). We use this presentation to embed X0 into a toric variety. First note
that we have mutually dual sequences

0 // M // Zr
Q0 : ei 7→wi // K0, // 0

0 Noo Zr
P0

oo L0
oo 0.oo

Consider any complete simplicial fan Σ0 in N having the images vi := P0(ei) ∈N of the canonical
base vectors ei ∈ Zr as the generators of its rays. Let Σ̂0 be the fan consisting of faces of the
positive orthant δ ⊆Qr provided by Construction 5.1. Then the toric variety Ẑ0 is an open toric
subvariety of Z0 := Kr, and the toric morphism p0 : Ẑ0→ Z0 defined by P0 : Zr→N is a universal
torsor. Moreover, setting

X0 := V (Z0, f0), X̂0 :=X0 ∩ Ẑ0,

we obtain X0
∼= p0(X̂0), which allows us to view X0 as a closed subvariety of the toric variety

Z0; see [Hau08, Proposition 3.14]. Note that our freedom in choosing the fan Σ0 essentially relies
on the assumption that X0 is a surface; in general one has to proceed more carefully, as X0 and
p0(X̂0) may differ by a small birational transformation.

Now we perform a toric modification. Suppose that for some d > 2 the cone σ0 spanned by
v1, . . . , vd belongs to Σ0 and that we have a primitive lattice vector

v∞ := v1 + · · ·+ vd ∈N.
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Recall that σ0 corresponds to a toric orbit T0 · z0 ⊆ Z0. Moreover, the stellar subdivision Σ1 of
Σ0 at v∞ defines a modification Z1→ Z0 of toric varieties having the closure of the toric orbit
T0 · z0 ⊆ Z0 as its center. Then we have commutative diagrams

Z1
π // Z0

Ẑ1
//

OO

p1

��

Ẑ0

OO

p0

��
Z1 π

// Z0

X1
// X0

X̂1
//

OO

��

X̂0

OO

��
X1

// X0

where p1 : Ẑ1→ Z1 denotes the toric universal torsor, X1 ⊆ Z1 the proper transform of X0 ⊆ Z0

and we write X̂1 = p−1
1 (X1) for the inverse image and X1 for the closure of X̂1 in Z1 = Kr+1.

Note that we have

π(z1, . . . , z∞) = (z1z∞, . . . , zdz∞, zd+1, . . . , zr)

for the lifting π : Z1→ Z0 of the toric modification π : Z1→ Z0 to the total coordinate spaces;
see [Hau08, Lemma 5.3]. Moreover, p1 : Ẑ1→ Z1 defines another pair of dual sequences

0 // L1
// Zr+1

P1 : ei 7→vi // N // 0,

0 K1
oo Zr+1

Q1

oo Moo 0.oo

Now, the basic observation is that under some mild assumptions, X1 is the total coordinate
space of X1 and the explicit description of π given above enables us to compute moreover the
Cox ring. For the precise statement, consider the Z>0-grading of K[T1, . . . , Tr] given by

deg(Ti) :=

{
1, 1 6 i 6 d,

0, d+ 1 6 i 6 r.

Then we can write f0 = gk0 + · · ·+ gkm with gki
homogeneous of degree ki ∈ Z>0 and k0 < · · ·<

km. We call f0 ∈K[T1, . . . , Tr] admissible, if gk0 is an irreducible polynomial in at least two
variables and, moreover, X0 = V (f0) intersects the toric orbit 0× Tr−d of Kr. Then [Hau08,
Proposition 7.2] says the following.

Proposition 5.2. Suppose that the polynomial f0 ∈K[T1, . . . , Tr] is admissible. Then the
proper transform X1 has X1 as its total coordinate space, and the Cox ring of X1 is given
as

R(X1) = K[T1, . . . , Tr, T∞]/〈f1〉, f1 :=
f0(T1T∞, . . . , TdT∞, Td+1, . . . , Tr)

T a∞
,

where a ∈ N is maximal such that f1 stays a polynomial. The divisor class group of X1 is given
by Cl(X1)∼=K1 and the degrees of the variables T1, . . . , Tr, T∞ are given by deg(Ti) =Q1(ei).

We turn to the fourth Hirzebruch surface F4. If q : F4→ P1 denotes the bundle projection,
we write C1, C2, C3, C5 ⊆ F4 for the section at infinity, the fiber q−1(0), the fiber q−1(∞) and
the zero section, respectively. As a toric variety, F4 arises from the fan
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and the curves C1, C2, C3, C5 are the toric curves corresponding to the rays through v1, v2, v3, v5,
respectively. In the following, we consider blow ups of F4 and we will denote any proper transform
of some Ci again by Ci.

Proposition 5.3. Let X be the blow up of F4 at points c0, c∞, c1 ∈ F4\C1, no two of them lying
in a common fiber of q : F4→ P1, and let C4 ⊆X be the exceptional divisor over c0. Then X is
a smooth surface with

Cl(X)∼= Z · w1 ⊕ · · · ⊕ Z · w5,

where wi ∈ Cl(X) denotes the class of the curve Ci ⊆X. Moreover, the Cox ring of X is the
polynomial ring

R(X) = K[T1, . . . , T8]/〈T2T4 + T3T6 + T7T8〉

and, with respect to the basis (w1, . . . , w5) of Cl(X), the degree of the generator Ti ∈R(X) is
the ith column of the matrix 

1 0 0 0 0 0 −1 1
0 1 0 0 0 1 −2 3
0 0 1 0 0 −1 −1 1
0 0 0 1 0 1 −1 2
0 0 0 0 1 0 1 −1

.
Proof. We first reduce to the case that our three points c0, c1, c∞ belong to the zero section
C5 ⊆ F4 and within that c0, c∞ are toric fixed points, whereas c1 is the distinguished point of the
non-trivial toric orbit; note that C5 is the closure of the toric orbit corresponding to cone(v5).

We proceed in two steps. First choose an automorphism of F4 that moves c0, c1 and c∞ into
the fibers over 0, 1 and∞, respectively. Then construct a section s : P1→ F4 mapping 0, 1 and∞
to c0, c1 and c∞, and apply the automorphism x 7→ x− s(π(x)), where π : F4→ P1 denotes the
projection.

Blowing up the Hirzebruch surface F4 at the points c0 and c∞ gives a toric variety X0; its
fan looks as follows.
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The matrix P having v1, . . . , v6 as its columns defines a surjection Z6→ Z2 and hence an
exact sequence. As a matrix for the projection Z6→ Z4 in the dual sequence, we may take

Q :=


1 0 0 0 1 0
0 1 0 0 3 1
0 0 1 0 1 −1
0 0 0 1 2 1

.
Assigning to T1, . . . , T6 the columns w1, . . . , w6 of Q as their degrees, we obtain an action

of the four torus T4 = (K∗)4 on K6. Note that X0 is obtained as the GIT quotient of the set of
T4-semistable points associated with the T4-linearization of the trivial bundle given by the weight
(3, 11, 2, 10) ∈ Z4; in fact, by [Hau08, Corollary 4.3], we could take any weight from the relative
interior of the moving cone inside the moving cone

Mov(X) =
6⋂
i=1

cone(wj ; j 6= i).

In order to blow up the point c1 ∈ C5, we first embed X0 in a suitable toric variety Z0.
Consider the polynomial ring K[T1, . . . , T7] with the Z4-grading given by

deg(Ti) := wi for 1 6 i 6 6, deg(T7) := (0, 1, 0, 1),

and let Q0 denote the matrix having these degrees as its columns. Then we have a surjection
K[T1, . . . , T7]→K[T1, . . . , T6] of Z4-graded rings, defined by

Ti 7→ Ti for 1 6 i 6 6, T7 7→ T2T4 − T3T6.

This gives a T4-equivariant embedding of X0 := K6 into Z0 := K7. Note that the vanishing ideal
of X0 in Z0 is generated by the polynomial

f0 := T7 − T2T4 + T3T6.

Consider the linearization of the trivial bundle on Z0 = K7 given by the weight (3, 11, 2, 10) ∈
Z4. Then the corresponding set of semistable points Ẑ0 ⊆ Z0 is an open toric subvariety. The
quotient Z0 := Ẑ0/T4 is a smooth projective toric variety; its fan Σ0 has the columns v′1, . . . , v

′
7

of the matrix

P0 =

 0 −1 1 −1 0 1 0
0 −1 0 −1 0 0 1
−1 −2 −1 −1 1 0 −1


corresponding to Q0 as the primitive generators of its rays, and the 10 maximal cones of the fan
Σ0 are given as

cone(v′1, v
′
2, v
′
3), cone(v′1, v

′
2, v
′
7), cone(v′1, v

′
3, v
′
7), cone(v′2, v

′
3, v
′
6), cone(v′2, v

′
4, v
′
6),

cone(v′2, v
′
4, v
′
7), cone(v′3, v

′
6, v
′
7), cone(v′4, v

′
5, v
′
6), cone(v′4, v

′
5, v
′
7), cone(v′5, v

′
6, v
′
7).

The closed embedding X0 ⊆ Z0 induces a closed embedding X0→ Z0 of the quotient spaces,
and this is a neat embedding in the sense of [Hau08]; see [Hau08, Proposition 3.14]. By our
choice of the embedding, the curve C5 intersects the toric orbit corresponding to cone(v′5, v

′
7) ∈ Σ0

exactly in the point c1.
Moreover, the polynomial f0 is admissible, the gk0-term is just T2T4 + T3T6 and thus we

may perform a toric ambient blow up Z1→ Z0 at the toric orbit closure corresponding to
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cone(v′5, v
′
7) ∈ Σ0. Adding the column v′5 + v′7 = (0, 0, 1) to the matrix P0 gives the matrix P1

describing the quotient presentation Ẑ1→ Z1.

With the proper transform X1 ⊆ Z1 we obtain a modification X1→X0 of X0 centered at the
point c1 ∈X0. According to Proposition 5.2, the Cox ring of X1 is given as

R(X1) = K[T1, . . . , T8]/〈T7T8 − T2T4 + T3T6〉,

where the Z5-grading assigns to the generator Ti the ith column of the matrix Q1 corresponding
to P1; a direct computation shows that Q1 is the matrix given in the assertion.

We still have to check that X1 =X holds; that means that the modification X1→X0 is indeed
a blow up of the point c1 ∈X0. For this, note first that, according to [Hau08, Corollary 4.13],
the variety X1 inherits smoothness from its toric ambient variety Z1. Secondly, the exceptional
curve over c1 is smooth and rational, and thus it must be a (−1)-curve. 2

6. K3 surfaces with a non-symplectic involution

We now take a closer look at (complex algebraic) K3 surfaces X admitting a non-symplectic
involution, i.e. an automorphism σ : X →X of order two such that σ∗ωX =−ωX holds, where
ωX is a non-zero holomorphic 2-form of X. Since Cl(X) =H2(X, Z) ∩ ω⊥X holds, and σ is non-
symplectic, one has

Lσ := {u ∈H2(X, Z); σ∗(u) = u} ⊆ Cl(X)

for the fixed lattice. The K3 surface X is called generic if Cl(X) = Lσ holds: for fixed Cl(X) = Lσ,
these K3 surfaces form a family of dimension 20− rk(Lσ); see [Nik83]. Our aim is to determine the
Cox ring for the generic K3 surfaces with Picard number 2 6 %(X) 6 5, see Propositions 6.5–6.8,
and for those that are generic double covers of del Pezzo surfaces, see Proposition 6.9.

For any K3 surface with a non-symplectic involution σ : X →X, one has a quotient surface
Y :=X/〈σ〉 and the quotient map π : X → Y . We will use the following basic facts.

Proposition 6.1. Let X be a generic K3 surface with a non-symplectic involution σ : X →X.
Then the quotient map π : X → Y is a double cover and:

(i) if π : X → Y is unramified then the quotient surface Y is an Enriques surface;

(ii) if π : X → Y is ramified, then Y is a smooth rational surface and the following statements
hold:

(a) the branch divisor B ∈WDiv(Y ) of π is smooth and, denoting by KY the canonical
divisor of Y , we have

π∗(B) = 2π−1(B), B ∼−2KY ;

(b) the pull-back π∗ : Cl(Y )→ Cl(X) is injective and π∗(Cl(Y )) is of index 2n−1 in Cl(X),
where n is the number of components of B.

Proof. The fact that π : X → Y is a double cover and (i) as well as (ii) up to part (b) are known;
see [Zha98, Lemma 1.2]. In order to show part (b) of (ii), note first that Cl(Y ) is free, because Y
arises by blowing up points from P2 or a Hirzebruch surface. According to [Ful98, Ex. 1.7.6], we
have

π∗(ClQ(Y )) = ClQ(X)σ, π∗π
∗(Cl(Y )) = 2Cl(Y ).
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Since X is generic, the first equation tells us that π∗(Cl(Y )) is of finite index in Cl(X). The
second one shows that π∗ is injective. Moreover, by [BHPV04, Lemma 2.1], we have

[π∗(Cl(Y )) : Cl(X)]2 =
det π∗(Cl(Y ))

det Cl(X)
.

Since Cl(Y ) is unimodular, see [BHPV04], the numerator equals 2%(Y ). By [Nik83, Theorem 4.2.2],
the lattice Lσ = Cl(X) has determinant 2l and the difference %(Y )− l equals 2(n− 1), where n
is the number of connected components of the branch divisor. 2

Lemma 6.2. Let X be a generic K3 surface with a non-symplectic involution such that the
associated double cover π : X → Y has branch divisor B = C1 + CB, where C1 ⊆ Y is a smooth
rational curve and CB ⊆ Y is an irreducible curve.

(i) Let w1 ∈ Cl(Y ) be the class of C1 ⊆ Y . Then (w1, w2, . . . , wr) is a basis of Cl(Y ) if and
only if (π∗(w1)/2, π∗(w2), . . . , π∗(wr)) is a basis of Cl(X).

(ii) With respect to bases as in (i), the homomorphism π∗ : Cl(Y )→ Cl(X) is given by the
matrix

A :=


2 0

1
. . .

0 1

.
(iii) Let C ⊆X be any smooth rational curve and let w ∈ Cl(X) be its class. Then precisely one

of the following statements holds:

(a) π(C) is a component of B and π(C)2 =−4;
(b) w ∈ π∗(Cl(Y )) and π(C)2 =−1.

Proof. Since π∗ : Cl(Y )→ Cl(X) is injective, (w1, . . . , wr) is a basis of Cl(Y ) if and only if
(π∗(w1), . . . , π∗(wr)) is a basis of π∗(Cl(Y )). By Proposition 6.1(ii), we have π∗(w1) = 2u1 with
some u1 ∈ Cl(X). Moreover, also by Proposition 6.1(ii), the pull-back π∗(Cl(Y )) is of index two
in Cl(X). This gives (i) and (ii).

To prove (iii), let w ∈ Cl(X) denote the class of C ⊆X. The adjunction formula and the
Riemann–Roch theorem give w2 =−2 and h0(w) = 1. Since the elements of Cl(X) are fixed
under the involution σ : X →X, we can conclude that σ(C) = C. If σ = id holds on C, then C
is contained in the ramification divisor. By Proposition 6.1(ii), we have 2C = π−1(π(C)), which
implies that π(C)2 =−4. If σ 6= id on C, then the restriction π : C→ π(C) is a double cover.
This implies that C = π−1(π(C)) and π(C)2 = 1/2 · C2 =−1. 2

We are ready to describe the quotient surfaces of generic K3 surfaces with small Picard
number. In the following, we denote by Blk(Z) the blow up of a variety Z in k general points.
Moreover, we adopt the standard notation for integral lattices, see [BHPV04, § 2, ch. I], and L(k)
denotes the lattice obtained from L by multiplying the intersection matrix by k.

Proposition 6.3. Let X be a generic K3 surface X with a non-symplectic involution and
associated double cover π : X → Y . For 2 6 %(X) 6 5, the table
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%(X) Cl(X) Y B

2 U , U(2), (2)⊕A1 F4, F0, Bl1(P2) P1 + C10, C9, C9

3 6 k 6 5 U ⊕Ak−2
1 , U(2)⊕Ak−2

1 Blk−2(F4), Blk−2(F0) P1 + C12−k, C11−k

describes the intersection form of X, the quotient surface Y and the branch divisor B of π, where
Cg denotes a smooth irreducible curve of genus g.

Proof. According to [Nik83, § 4], a lattice L of rank at most five is the fixed lattice Lσ of an
involution σ on a K3 surface if and only if it is an even lattice of signature (1, k − 1) which is
2-elementary, i.e. satisfies Hom(L, Z)/L= Za2, where 2a = |det(L)|. Such lattices are classified up
to isometries by three invariants: the rank k, the integer a and an invariant δ defined as

δ(L) =

{
0 if u2 ∈ Z for all u ∈Hom(L, Z),
1 otherwise.

It is easy to check that the lattices in the table are the only 2-elementary even lattices of signature
(1, k − 1) with 2 6 k 6 5, since they cover all possible triples (k, a, δ); see [Nik83, Theorem 4.3.1]
and also [AN06, § 2.3].

Now, suppose that the intersection form on Cl(X) is U ⊕Ak−2
1 . Then it is known that there

is an elliptic fibration p : X → P1 with a section E and k − 2 reducible fibers; see [Kon89,
Lemma 3.1]. In fact, if e, f is the natural basis of U and v1, . . . , vk−2 is an orthogonal basis
of Ak−2

1 , we can assume that the class of E is f − e and vi are represented by components of the
reducible fibers not intersecting E.

By [Nik83, Theorem 4.2.2], the ramification divisor of σ is the disjoint union of a smooth
irreducible curve of genus 12− k and a smooth irreducible rational curve. This implies that C is
transverse to the fibers of p; hence, any fiber is preserved by σ and the section E is the rational
curve in the ramification divisor.

A basis of Cl(X) is given by e, f − e, v1, . . . , vk−2. It follows from Lemma 6.2(ii) and (iii)
that the Picard lattice of Y has intersection form(

0 1
1 −4

)
⊕ (−1)k−2.

Consequently, the classification of minimal rational surfaces yields that Y is the blowing up of
the Hirzebruch surface F4 at k − 2 points.

Now assume that the intersection form on Cl(X) is U(2)⊕Ak−2
1 . Then, by [Nik83,

Theorem 4.2.2], the ramification divisor has only one connected component and this is a smooth
irreducible curve of genus 11− k. Thus, Proposition 6.1(ii) gives Cl(X) = π∗(Cl(Y )). It follows
that the intersection form on Cl(Y ) is U ⊕ (−1)k−2. Hence, as before, we can conclude that Y
is the blowing up of F0 at k − 2 points.

Similarly, if the intersection form on Cl(X) is (2)⊕A1, then we obtain that the intersection
form on Cl(Y ) is (1)⊕ (−1), the ramification divisor is a smooth irreducible curve of genus 9
and conclude that Y is the blowing up of P2 at one point. 2
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Proposition 6.4. Let X be a generic K3 surface with a non-symplectic involution. Suppose
that:

– the branch divisor of the associated double cover π : X → Y is of the form B = C1 + CB
with C1, CB ⊆ Y irreducible and C1 rational;

– the Cox ring of Y is a polynomial ring S = S′[t1] with the canonical section t1 of C1 and a
finitely generated C-algebra S′.

Moreover, denote by f ∈ S′ the canonical section of CB. Then the Cox ring of X is given as

R= π∗(S′)[T1, T2]/〈T 2
2 − π∗(f)〉,

with the Cl(X)-grading defined by deg(π∗(g)) := π∗(deg(g)) for any homogeneous g ∈ S′ and

deg(T1) :=
π∗(w1)

2
, deg(T2) :=−π

∗(2KY + w1)
2

.

Moreover, the pull-back homomorphism π∗ : S→R of graded rings is given on the grading groups
by Zr→ Zr, w 7→Aw and as a ring homomorphism by

t1 7→ T 2
1 , g 7→ π∗(g) for any homogeneous g ∈ S′.

Proof. First note that by Proposition 4.6, the Cox ring R of X inherits finite generation from
the Cox ring S of Y . Consider the pull-back group of Cl(Y ) and the corresponding Veronese
subalgebra

L := π∗(Cl(Y ))⊆ Cl(X), RL :=
⊕
w∈L

Rw.

Write, for the moment, B =B1 +B2 and let r and bi denote the canonical sections of π−1(B)
and Bi, respectively. We claim that there is a commutative diagram of finite ring homomorphisms

R RLoo

wwnnnnnnnnnnnnn

RL[u1,u2]
〈u2

1−π∗b1,u2
2−π∗b2,u1u2−r〉

ψ

ggOOOOOOOOOOOOO

S[T ]
〈T 2−b2〉

κ∼=

OO

RR

where, denoting by r1 and r2 the canonical sections of the reduced divisors π−1(B1) and π−1(B2),
respectively, the homomorphism ψ is induced by ui 7→ ri.

In this claim, everything is straightforward except the definition of the isomorphism κ. By
Proposition 4.3, we know that RL is generated as a π∗(S)-module by 1 and a section s ∈RL
satisfying s2 = π∗(b), where b denotes the canonical section of B. According to Lemma 6.2, we
may choose s to be the canonical section r of the ramification divisor π−1(B). Thus, we obtain
isomorphisms

RL[u1, u2]/〈u2
1 − b1, u2

2 − b2, u1u2 − r〉 ∼= π∗(S)[y, u1, u2]/〈y2 − b, u2
1 − b1, u2

2 − b2, u1u2 − y〉
∼= π∗(S)[u1, u2]/〈u2

1 − b1, u2
2 − b2〉.

Now we use our assumption S = S′[t1]. This enables us to define a ring homomorphism

κ̃ : S[T ]→ π∗(S)[u1, u2], S′ 3 g 7→ π∗(g) ∈ π∗(S′), t1 7→ u1, T 7→ u2.
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It sends t21 to u2
1, which defines the same element in π∗(S)[u1, u2]/〈u2

1 − b1, u2
2 − b2〉 as π∗(t1).

Consequently, κ̃ induces the desired isomorphism

κ : S[T ]/〈T 2 − b2〉 → π∗(S)[u1, u2]/〈u2
1 − b1, u2

2 − b2〉.

The next step is to show that the homomorphism ψ of the above diagram is an isomorphism.
For this, it is enough to show that S[T ]/〈T 2 − b2〉 is a normal ring. Indeed, RL→R is of degree
two,

RL→RL[u1, u2]/〈u2
1 − b1, u2

2 − b2, u1u2 − r〉
is of degree at least two and thus ψ is a finite morphism of degree one. If we know that
S[T ]/〈T 2 − b2〉 is normal, we can conclude that ψ is an isomorphism.

In order to show that S[T ]/〈T 2 − b2〉 is normal, note that S can be made into a Z-graded ring
by assigning to each Zr-homogeneous element the w1-component of its Zr-degree. In particular,
then, deg(b2) is odd. Moreover, b2 ∈ S is a prime element. Thus, we can apply the result [SS84,
p. 45] and obtain that S[T ]/〈T 2 − b2〉 is even factorial. In particular, it is normal.

Having verified that ψ is an isomorphism, the commutative diagram tells us that the Cox ring
R of X is isomorphic to S[T ]/〈T 2 − b2〉. Consequently, R is the polynomial ring π∗(S′)[T1, T2]
divided by the relation T 2

2 − π∗(b2), where π∗(b2) only depends on the first variable. The degrees
of the generators Ti are easily computed using Lemma 6.2(ii). 2

We are ready to compute the Cox rings of generic K3 surfaces X admitting a non-symplectic
involution and satisfying 2 6 %(X) 6 5. We will work with the curves D1, D2 ⊆ F0 given by

D1 := {0} × P1, D2 := P1 × {0},

the integral curves C1, C2, C3 ⊆ F4 given by

C2
1 =−4, C2 := q−1(0), C3 := q−1(∞),

where q : F4→ P1 is the bundle projection, and the curves E1, E2 ⊆ Bl1(P2) with

E2
1 = 1, E2

2 =−1.

Moreover, on blow ups of the surfaces F0 and F4, we denote the proper transforms of the curves
Di and Cj again by Di and Cj .

Proposition 6.5. Let X be a generic K3 surface admitting a non-symplectic involution, and
let π : X → Y be the associated double cover. If %(X) = 2 holds, then the following cases can
occur.

(i) We have Y = F0. Then Cl(X) = Z · π∗(w1)⊕ Z · π∗(w2) holds, where wi ∈ Cl(Y ) is the class
of Di ∈WDiv(Y ). The Cox ring of X is

R(X) = C[T1, . . . , T5]/〈T 2
5 − f〉

with a polynomial f ∈ C[T1, . . . , T4] and the degree of Ti with respect to the above basis is
the ith column of the matrix

Q=
[
1 0 1 0 2
0 1 0 1 2

]
.

(ii) We have Y = F4. Then Cl(X) = Z · π∗(w1)/2⊕ Z · π∗(w2) holds, where wi ∈ Cl(Y ) denotes
the class of Ci ∈WDiv(Y ). The Cox ring of X is

R(X) = C[T1, . . . , T5]/〈T 2
5 − f〉
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with a polynomial f ∈ C[T 2
1 , T2, T3, T4] and, with respect to the above basis, the degree of

Ti is the ith column of the matrix

Q=
[
1 0 2 0 3
0 1 4 1 6

]
.

(iii) We have Y =Bl1(P2). Then Cl(X) = Z · π∗(w1)⊕ Z · π∗(w2) holds, where wi ∈ Cl(Y )
denotes the class of Ei ∈WDiv(Y ). The Cox ring of X is

R(X) = C[T1, . . . , T5]/〈T 2
5 − f〉

with a polynomial f ∈ C[T1, T2, T3, T4] and, with respect to the above basis, the degree of
Ti is the ith column of the matrix

Q=
[
1 0 −1 −1 −1
0 1 1 1 3

]
.

Proof. First note that by Proposition 6.3, the surface Y is one of the three types listed in the
assertion.

If Y = P1 × P1 holds, then Cl(Y )∼= Z2 is generated by the classes w1, w2 of D1, D2 and the
Cox ring of Y is given by

C[T1, . . . , T4], deg(T1) = deg(T3) = w1, deg(T2) = deg(T4) = w2;

use e.g. Construction 5.1. Similarly, if Y = Bl1(P2), then Cl(Y )∼= Z2 is generated by the classes
w1, w2 of E1, E2 and the Cox ring of Y is given by

C[T1, . . . , T4], deg(T1) = w1, deg(T2) = deg(T3) = w1 − w2, deg(T4) = w2.

In both cases, Proposition 6.3 tells us that the branch divisor B ⊆ Y is irreducible.
Propositions 6.1(ii) and 4.3 thus show that the Cox ring is as claimed in (i) and (iii).

If Y = F4 holds, then Cl(Y )∼= Z2 is generated by classes w1, w2 of C1, C2 and the Cox ring
of Y is given by

C[T1, . . . , T4], deg(Ti) = w1, deg(T3) = w1 + 4w2, deg(T2) = deg(T4) = w2.

This time, Lemma 6.2 and Proposition 6.4 show that the Cox ring of X is as claimed in (ii). 2

Proposition 6.6. Let X be a generic K3 surface admitting a non-symplectic involution, and
let π : X → Y be the associated double cover. If %(X) = 3 holds, then the following cases can
occur.

(i) The surface Y is the blow up of F0 at the point (0, 0). If D3 ⊆ Y denotes the exceptional
curve, then

Cl(X) = Z · π∗(w1)⊕ Z · π∗(w2)⊕ Z · π∗(w3)

holds, where wi ∈ Cl(Y ) denotes the class of Di ∈WDiv(Y ). Moreover, the Cox ring of X
is given by

R(X) = C[T1, . . . , T6]/〈T 2
6 − f〉

with a polynomial f ∈ C[T1, T2, . . . , T5] and, with respect to the above basis, the degree of
Ti is the ith column of the matrix

Q=

1 0 0 1 0 2
0 1 0 0 1 2
0 0 1 1 1 3

.
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(ii) The surface Y is the blow up of F4 at the point in C1 ∩ C2, where S0 ∈ F4 is the zero section.
Then the divisor class group of X is

Cl(X) = Z · π
∗(w1)

2
⊕ Z · π∗(w2)⊕ Z · π∗(w3),

where wi ∈ Cl(Y ) denotes the class of Ci ∈WDiv(Y ). Moreover, the Cox ring of X is given
by

R(X) = C[T1, . . . , T6]/〈T 2
6 − f〉

with a polynomial f ∈ C[T 2
1 , T2, . . . , T5] and, with respect to the above basis, the degree of

Ti is the ith column of the matrix

Q=

1 0 0 2 0 3
0 1 0 1 −1 1
0 0 1 3 1 5

.
Proof. The fact that Y is either P1 × P1 blown up at a point p or F4 blown up at a point p
follows from Proposition 6.3. Moreover, the same proposition yields that the branch divisor has
one component in the first case and two components in the second one. In both cases, applying
a suitable automorphism, we may assume that the point p to be blown up is as in the assertion.
Then, in both cases, the surface Y is toric and the computation of the Cox rings then goes in
the same way as in the preceding proposition. 2

Proposition 6.7. Let X be a generic K3 surface admitting a non-symplectic involution, and
let π : X → Y be the associated double cover. If %(X) = 4 holds, then the following cases can
occur.

(i) The surface Y is the blow up of F0 at the points (0, 0) and (∞,∞). If D3, D4 ⊆ Y are
exceptional curves corresponding to these points, then

Cl(X) = Z · π∗(w1)⊕ · · · ⊕ Z · π∗(w4)

holds, where wi ∈ Cl(Y ) denotes the class of Di ∈WDiv(Y ). Moreover, the Cox ring of X
is given by

R(X) = C[T1, . . . , T7]/〈T 2
7 − f〉

with a polynomial f ∈ C[T1, T2, . . . , T6] and, with respect to the above basis, the degree of
Ti is the ith column of the matrix

Q=


1 0 0 0 1 0 2
0 1 0 0 0 1 2
0 0 1 0 1 1 3
0 0 0 1 −1 −1 −1

.
(ii) The surface Y is the blow up of F4 at the two points p1 ∈ C1 ∩ C2 and p2 ∈ C1 ∩ C3. We

have

Cl(X) = Z · π
∗(w1)

2
⊕ Z · π∗(w2)⊕ Z · π∗(w3)⊕ Z · π∗(w4),

where wi ∈ Cl(Y ) is the class of Ci ∈WDiv(Y ) and C4 ⊆ Y is the exceptional curve over
p1 ∈ F4. The Cox ring of X is given by

R(X) = C[T1, . . . , T7]/〈T 2
7 − f〉
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with a polynomial f ∈ C[T 2
1 , T2, . . . , T6] and, with respect to the above basis, the degree of

Ti is the ith column of the matrix

Q=


1 0 0 0 2 0 3
0 1 0 0 3 1 5
0 0 1 0 1 −1 1
0 0 0 1 2 1 4

.
Proof. Again, Proposition 6.3 tells us that Y is either P1 × P1 blown up at two points p, q or F4

blown up at two points p, q and that the branch divisor has one component in the first case and
two components in the second one. In both cases, we may apply a suitable automorphism,
and achieve that the points p, q to be blown up are as in the assertion. Thus, again, the surface
Y is toric and the computation of the Cox rings proceeds as before. 2

Proposition 6.8. Let X be a generic K3 surface admitting a non-symplectic involution, and
let X → Y be the associated double cover. If %(X) = 5 holds, then the following cases can occur.

(i) The surface Y is the blow up of F0 at three general points. Then the Cox ring of X is

R(X) = C[T1, . . . , T11]/〈f1, . . . , f5, T
2
11 − g〉,

where f1, . . . , f5 are the Plücker relations in the variables T1, . . . , T10, i.e. we have

f1 = T2T5 − T3T6 + T4T7, f2 = T1T5 − T3T8 + T4T9,

f3 = T1T6 − T2T8 + T4T10, f4 = T1T7 − T2T9 + T3T10,

f5 = T5T10 − T6T9 + T7T8

and g ∈ C[T1, . . . , T10] is a prime polynomial. The degree of Ti ∈R(X) is the ith column
of

Q=


0 0 0 0 1 1 1 1 1 1 −3
1 0 0 0 −1 −1 −1 0 0 0 1
0 1 0 0 −1 0 0 −1 −1 0 1
0 0 1 0 0 −1 0 −1 0 −1 1
0 0 0 1 0 0 −1 0 −1 −1 1

.
(ii) The surface Y is the blow up of F4 at three general points. Then the Cox ring of X is

R(X) = C[T1, . . . , T9]/〈T2T5 + T4T6 + T7T8, T
2
9 − f〉,

where f ∈ C[T1, . . . , T8] is a prime polynomial and the degree of Ti ∈R(X) is the ith column
of

Q=


1 0 0 0 0 0 −2 2 1
0 1 0 0 0 1 −2 3 4
0 0 1 0 0 −1 −1 1 0
0 0 0 1 0 1 −1 2 4
0 0 0 0 1 0 1 −1 1

.
Proof. The facts that only (i) and (ii) are possible and that the branch divisor has one component
in (i) and two in (ii) follow from Proposition 6.3.

If we are in the situation (i), then Y is the blow up of P2 at four general points and hence
is a del Pezzo surface. Its Cox ring is the ring of (3× 3)-minors of a generic (3× 5)-matrix;
see [BP04, Proposition 4.1]. Moreover, by Proposition 6.1(ii), the pull-back π∗ : Cl(Y )→ Cl(X)
is an isomorphism. Thus, taking the same basis of Cl(Y ) as in the proof of [BP04, Proposition 4.1],
the assertion follows from Propositions 4.3 and 6.1(ii).
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If we are in situation (ii), then the assertion is a direct consequence of Propositions 5.3 and 6.4
and Lemma 6.2. Note that the canonical class of Y can be determined according to [BH07,
Proposition 8.5] as the degree of the relation minus the sum of the degrees of the generators of
the Cox ring of Y . 2

If X is a generic K3 surface with a non-symplectic involution such that the associated double
cover has an irreducible branch divisor, then we can proceed with the computation of Cox rings
as follows.

Proposition 6.9. Let X be a generic K3 surface with a non-symplectic involution, associated
double cover π : X → Y and intersection form U(2)⊕Ak−2

1 , where 5 6 k 6 9. Then Y is a del
Pezzo surface of Picard number k and:

(i) the Cox ring R(X) is generated by the pull-backs of the (−1)-curves of Y , the section T
defining the ramification divisor and, for k = 9, the pull-back of an irreducible section of
H0(Y,−KY );

(ii) the ideal of relations of R(X) is generated by quadratic relations of degree π∗(D), where
D2 = 0 and D ·KY =−2, and the relation T 2 − f in degree −2π∗(KY ), where f is the
pull-back of the canonical section of the branch divisor.

Proof. As in the proof of Proposition 6.3, we use [Nik83, Theorem 4.2.2] to see that the
ramification divisor of π : X → Y is irreducible. Then Proposition 6.1(ii) yields Cl(X) =
π∗(Cl(Y )). It follows that the intersection form on Cl(Y ) is U ⊕ (−1)k−2. Consequently, Y is the
blow up of F0 at k − 2 general points and hence is a del Pezzo surface.

It is known that R(Y ) is generated by all the (−1)-curves of Y plus, if k = 9, an irreducible
section of H0(Y,−KY ); see [BP04, Theorem 3.2]. The ideal of relations of R(Y ) is generated by
quadratic relations of degree D, where D is a conic bundle, i.e. we have D2 = 0 and D ·KY =−2;
see [LV09, Lemmas 2.2, 2.3 and 2.4]. Thus, the statement follows from Proposition 4.3. 2

Acknowledgement

We would like to thank the referee for several comments which helped to clarify the exposition.

References

AN06 V. Alexeev and V. V. Nikulin, Del Pezzo and K3 surfaces, MSJ Memoirs, vol. 15 (Mathematical
Society of Japan, Tokyo, 2006).

ACGH85 E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of algebraic curves,
Grundlehren der Mathematischen Wissenschaften, vol. 267 (Springer, New York, 1985).

AM69 M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra (Addison-Wesley,
Reading, MA, 1969).

BHPV04 W. P. Barth, K. Hulek, A. M. C. Peters and A. Van de Ven, Compact complex surfaces, in
Ergebnisse der Mathematik und ihrer Grenzgebiete (3), second edition, A Series of Modern
Surveys in Mathematics, vol. 4 (Springer, Berlin, 2004).

BP04 V. Batyrev and O. Popov, The Cox ring of a del Pezzo surface, in Arithmetic of higher-
dimensional algebraic varieties (Palo Alto, CA, 2002), Progress in Mathematics, vol. 226
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