Bull. Aust. Math. Soc. **97** (2018), 54–**56** doi:10.1017/S0004972717000363

ON A THEOREM OF KANG AND LIU ON FACTORISED GROUPS

A. BALLESTER-BOLINCHES[™] and M. C. PEDRAZA-AGUILERA

(Received 22 March 2017; accepted 28 March 2017; first published online 8 November 2017)

Abstract

Kang and Liu ['On supersolvability of factorized finite groups', *Bull. Math. Sci.* **3** (2013), 205–210] investigate the structure of finite groups that are products of two supersoluble groups. The goal of this note is to give a correct proof of their main theorem.

2010 *Mathematics subject classification*: primary 20D10; secondary 20D20, 20D40. *Keywords and phrases*: finite group, factorisations, supersolubility.

1. Introduction

All groups considered in this paper are finite.

We recall that two subgroups A and B of a group G are said to permute if AB is a subgroup of G. Further, A and B are called *mutually permutable* if every subgroup of A permutes with B and every subgroup of B permutes with A.

Products of mutually permutable subgroups have been widely studied in the last twenty-five years and receive a full discussion in [3]. The emphasis is on how the structure of the factors A and B affects the structure of the factorised group G = AB and *vice versa*.

The goal of the present paper is to give a correct proof of the main result of the paper [5]. Therefore this paper had best be read in conjunction with [5].

First, we recall the main theorem of that paper.

THEOREM A [5, Theorem C]. Let the group G = HK be the product of the subgroups H and K. Assume that H permutes with every maximal subgroup of K and K permutes with every maximal subgroup of H. If H is supersoluble, K is nilpotent and K is δ -permutable in H, where δ is a complete set of Sylow subgroups of H, then G is supersoluble.

The first author was supported by the grant MTM2014-54707-C3-1-P from the Ministerio de Economía y Competitividad, Spain, and FEDER, European Union, and a project of Natural Science Foundation of Guangdong Province (No. 2015A030313791).

^{© 2017} Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

The statement of Theorem A resembles that of a theorem of Cossey and the authors [2, Theorem 3], which asserts the same conclusion under the stronger assumption that *K* permutes with *every* Sylow subgroup of *H*. The proof of Theorem A presented in [5] is not new, but it is an exact copy of the proof of [2, Theorem 3]. However, it is abundantly clear that this proof does not hold if *K* is δ -permutable in *H*. In fact, in the last paragraph of the proof (as in [2, Theorem 3]), the authors wrote:

'By hypothesis, K is δ -permutable in H, where δ is a complete set of Sylow subgroups of H. Hence we can easily deduce that K permutes with every Hall p'-subgroup of H'.

There are many examples showing that this claim is false in general (consider, for example, the symmetric group of degree four which is a product of the alternating group and a transposition). We need K to be permutable with *all* Sylow subgroups of H to ensure that K permutes with every Hall p'-subgroup of H.

2. Proof of Theorem A

Assume that the result is false and let *G* be a counterexample of minimal order. By [2, Theorem 1], *G* is soluble. Let $1 \neq N$ be a normal subgroup of *G*. It is clear that the hypotheses of the theorem hold in G/N. By minimality of *G*, G/N is supersoluble. Consequently, *G* has a unique minimal normal subgroup *N* which is abelian and complemented in *G* by a core-free maximal subgroup *M* of *G*. Let *p* be the prime dividing |N| and let *q* be the largest prime dividing |G|.

Assume that $p \neq q$. Let H_q be a Sylow q-subgroup of H. Then H_q is a normal subgroup of H because H is supersoluble. Moreover, K has a unique Sylow q-subgroup because K is nilpotent. Applying [1, Lemma 2.4.2], we see that H_q permutes with K_q^g for each $g \in G$. Since $O_q(G) = 1$, it follows that $[H_q^G, K_q^G] = 1$ by [1, Lemma 2.5.1]. It is quite clear that we can assume that either $H_q^G \neq 1$ or $K_q^G \neq 1$ because, otherwise, G would be a q'-group.

Suppose that $H_q^G \neq 1$ (the case $K_q^G \neq 1$ is analogous). Then *N* is contained in H_q^G . Therefore $[N, K_q^G] = 1$ and $K_q^G \leq C_G(N) = N$. Hence $K_q^G = 1$ and *K* is a *q'*-group. Since every Sylow *q*-subgroup of *M* is a Sylow *q*-subgroup of *G*, we may assume that H_q is contained in *M*. Since *M* is supersoluble, it follows that H_q is normalised by *M*. If $G = N_G(H_q)$, then *N* is contained in H_q , which is a contradiction. Thus $M = N_G(H_q)$. This implies that *H* is contained in *M*. Therefore $M = H(M \cap K)$. Hence $M \cap K$ is a maximal subgroup of *K*. Applying [4, Lemma 2.3], we deduce that *K* is a Sylow *q*-subgroup of *G* with |K| = q. Moreover, H = M and |G : H| = q. Then $N \leq M$, which is a contradiction.

Suppose now that *p* is the largest prime dividing |G|. Since *M* is supersoluble and $O_p(M) = 1$, we see that *M* is a *p'*-group and so *N* is a Sylow *p*-subgroup of *G*. In particular, *G* is a Sylow tower group of supersoluble type. Let $K_{p'}$ be the Hall *p'*-subgroup of *K*. Assume that $(H \cap K)K_{p'}$ is a proper subgroup of *K* and let K_0 be a maximal subgroup of *K* containing $(H \cap K)K_{p'}$. Then HK_0 is a proper subgroup of *G*. Write $S = HK_0$. If $Core_G(S) = 1$, then $S \cap N = 1$ and G = SN. Hence $|N| = |G : S| = |HK : HK_0| = |K : K_0| = p$, which is a contradiction. Suppose that $\operatorname{Core}_G(S) \neq 1$. Then *N* is contained in HK_0 and so *N* is a Sylow *p*-subgroup of HK_0 . Since $H \cap K = H \cap K_0$, it follows that K_0 contains a Sylow *p*-subgroup of *K*. This contradiction shows that $K = (H \cap K)K_{p'}$ and so *N* is contained in *H*. In particular, $H = N(H \cap M)$.

Let $q \neq p$ be a prime and let H_q be a Sylow q-subgroup of H permuting with K. Then $X = KH_q = (H \cap K)K_{p'}H_q$ is a subgroup of G. Since X is a Sylow tower group of supersoluble type, it follows that the Sylow p-subgroup A of $H \cap K$ is normal in X. Hence A is normalised by H_q . This implies that A is a normal subgroup of H and so Ais normal in G. Consequently, A = N or A = 1. Assume that A = N so that $K = NK_{p'}$. Let N_1 denote a minimal normal subgroup of H with $N_1 \leq N$. Then $|N_1| = p$ and Knormalises N_1 . Therefore $N = N_1$, which is a contradiction. Thus we may assume that A = 1. In this case, K is contained in M, $M = K(M \cap H)$ and $M \cap H$ is a maximal subgroup of H. Therefore $p = |H : M \cap H| = |N|$, which is the final contradiction.

References

- B. Amberg, S. Franciosi and F. De Giovanni, *Products of Groups*, Oxford Mathematical Monographs (Clarendon Press, Oxford, 1992).
- [2] A. Ballester-Bolinches, J. Cossey and M. C. Pedraza-Aguilera, 'On products of finite supersoluble groups', *Comm. Algebra* 29(7) (2001), 3145–3152.
- [3] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, *Products of Finite Groups*, Gruyter Expositions in Mathematics, 53 (Walter de Gruyter, Berlin, 2010).
- [4] L. M. Ezquerro and X. Soler-Escrivà, 'On mutually *m*-permutable products of finite groups', *Comm. Algebra* 31(4) (2003), 1949–1960.
- [5] P. Kang and Q. Liu, 'On supersolvability of factorized finite groups', Bull. Math. Sci. 3 (2013), 205–210.

A. BALLESTER-BOLINCHES, Departament de Matemàtiques, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain e-mail: Adolfo.Ballester@uv.es

M. C. PEDRAZA-AGUILERA, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, 46022, Valencia, Spain e-mail: mpedraza@mat.upv.es