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ABSTRACT. This paper reviews the seminal contributions (and tussles) of Weertman and Lliboutry to
the theory of glacier sliding in the 1950s and 1960s, and summarizes later developments up to the
present day.

THE SLIDING LAW
Solid ice, in the form of glaciers and ice sheets, flows on
long timescales, due to solid-state creep processes, and the
resulting rheology is usually described in terms of a
generalized Newtonian fluid. Most commonly, this takes
the form of Glen’s law, although other variants are possible.

The formulation of a viscous glacier flow in this way
leads to an elliptic partial differential equation for the flow
velocity, which requires the posing of boundary data at
both the upper (free) surface and the base, or bed, of the
glacier. Mostly, viscous liquids are thought to obey a no-
slip boundary condition at a solid boundary, on the
intuitive notion that the fluid molecules effectively ‘adhere’
to the boundary, but there is no intrinsic reason why this
should be so, and indeed the veracity of the condition was
a subject of controversy in the 19th century (Goldstein,
1938). A generalization, called the Navier slip condition,
allows a nonzero slip velocity proportional to stress, and it
is thought that such a condition is necessary to alleviate an
unphysical singularity (discontinuous velocity) which
would otherwise occur in the motion of a contact line
where a two-fluid interface intersects a wall (Dussan and
Davis, 1974).

It has long been understood that glaciers also slip at the
bed, and the resulting boundary condition for the flow
which relates basal velocity, u, to basal stress, � , has come
to be known as the sliding law, and it is the efforts that
have been put into its determination that form the subject
of this paper. An issue which needs immediate clarification
is what is meant by the basal stress. The quantity � refers to
the shear stress in the ice near the bed (on the scale of the
ice depth, di) but far from the bed (on the scale, l, of the
bed roughness). In the language of matched asymptotic
expansions, the basal shear stress is the limiting value at the
bed of the outer solution in an asymptotic expansion in the
small parameter

� ¼ l
di

� 1 ð1Þ

(Fowler, 1981).

WEERTMAN: REGELATION AND ENHANCED CREEP
In an early book on the dynamics of glaciers, Koechlin
(1944) discusses the flow of a glacier, together with the
necessary boundary condition at the base. This he takes to
be that the stress exerted on the bed roughness elements
should be equal to the strength of ice, and thus his basal
condition is that the shear stress is constant.* The first
paper in the subject which properly addresses the physics is
that of Hans Weertman (1957b). In a mere six pages he
enunciates the basics of the phenomena which are still
considered to explain the mechanism of sliding. That
glaciers slide at their base was well known (e.g. McCall,
1952; Ward, 1955); Weertman’s contribution was to
explicitly describe the physics of the process. This he
does by quantifying two processes: regelation and
‘enhanced creep’.

Regelation, otherwise known as pressure melting, is the
process whereby ice can move past obstacles without
deformation; as (temperate) ice approaches the upstream
face of an obstacle, the pressure is higher, and therefore
(because of the Clapeyron effect) the melting temperature is
lower than that far away. The ice therefore melts, forming a
layer of water with a thickness of the order of microns
(Nye, 1967), and squirts round the obstacle to where the
pressure is lower, where it refreezes, as the melting
temperature is now higher. Because of the higher tempera-
ture in the lee of the obstacle, there is a compensating heat
flow back through the obstacle, and it is this which delivers
the latent heat necessary to melt the ice. Weertman’s model
of the bed is that of an array of cubical obstacles of side a
separated by a distance l. Weertman’s choice of notation
differs from that used here. Thus the parameter

� ¼ a
l

ð2Þ

represents the aspect ratio of the bed roughness, and
provides a second such parameter in addition to �. If � is
the basal shear stress, as discussed above, then, since the
lubricated bed between the obstacles offers no resistance,
each obstacle bears a stress of � �=3�2, which causes a
difference of temperature of �Ta ¼ C�=3�2 across the
obstacles, where C is the slope of the Clapeyron curve.{

Equating the heat flow through the obstacle,
k�Ta
a

a2, to

the latent heat flux, �iLuRa2, where k is thermal conductivity
(of both ice and rock), �i is ice density, L is latent heat and uR
is the sliding velocity due to regelation alone, he derives the
regelative sliding law

� ¼ �2RrauR, ð3Þ
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*This almost uncited book is worth a look. He appears to discuss
deformation of subglacial till (p. 68, see also p. 152), and also refers to
various formerly surging glaciers in the European Alps apart from
Vernagtferner, such as Oberer Grindelwaldgletscher, Aletschgletscher and
Rhonegletscher. The discussion on basal friction is on pp. 98f.
{The factor 3 occurs in Weertman’s discussion, because he divides the
excess normal stress by 3 to find the excess longitudinal stress.
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where the regelative roughness coefficient,

Rr ¼ 3�iL
kC

, ð4Þ

is a material constant. Using values �i = 0.9�103 kgm�3,
L= 3.3�105 J kg�1, k = 2Wm�1 K�1, C = 0.0074 K bar�1 =
0.74�10�7K Pa�1, we find

Rr � 2� 103 barm�2 a ¼ 0:63� 1016 Pam�2s: ð5Þ
To give some idea, a driving stress of 1 bar over obstacles of
elevation 1m and asperity � ¼ 0:2 provides a regelative
velocity of little more than a centimetre a year! Only very
small obstacles or very smooth beds can support a signifi-
cant regelative sliding velocity.

Next, Weertman considers the effect of differing sizes of
asperities, but his argument (to this reader) is somewhat
mysterious. A possible paraphrase is the following. If we
suppose that an array of obstacles of asymptotically different
sizes, a1 � a2 � � � � (but with the same aspect ratio, �) are
superimposed, then we can suppose that the effects of the
small-scale roughness act effectively as a surface drag to
the flow past the largest-scale roughness. With a fairly
obvious notation, � ¼ �2RruRa1 þ �2, �2 ¼ �2RruRa2 þ �3,
etc., and thus

� ¼ �2RruR
X
i

ai: ð6Þ

Consequently the largest obstacles control the rate of sliding,
which for reasonable sizes will then be negligible.

Weertman next considers the viscous creep of ice past an
obstacle. The differential stress past an obstacle is � �=2�2,
while the strain rate is � uV=a, where uV is the creep-
controlled sliding velocity. Assuming Glen’s law in the form
_" ¼ B�n, where _" is the strain rate and B and n are contants,
this suggests the viscous sliding law

� ¼ �2Rv
uV
a

� �1=n
, ð7Þ

where the viscous roughness coefficient is

Rv ¼ 2
B1=n : ð8Þ

Weertman used a version of Glen’s law with n ¼ 4:2, but if
we take Cuffey and Paterson’s (2010) recommended value of
B ¼ 2:4� 10�24 Pa�3 s�1 with n ¼ 3, then we have

Rv � 1:49� 108 Pa s1=3 ¼ 4:7 bar a1=3: ð9Þ
Repeating our earlier estimate for � ¼ 0:2 and a ¼ 1m,

we find that a shear stress of 1 bar (105 Pa) produces a
viscous sliding velocity of 150m a�1, but now (with
constant �) the sliding velocity decreases as obstacle size
is reduced. By analogy with Equation (6), a viscous sliding
law for flow over a superimposed array of obstacles of sizes
ai takes the form

� ¼ �2Rvu
1=n
V

X
i

1
ai

� �1=n

, ð10Þ

suggesting that very small-scale roughness will prevent
significant sliding.

Finally, Weertman combines the two mechanisms to
produce his famous sliding law, applicable to beds with a
full range of obstacle size. His argument is that for large
obstacles sliding is easy by viscous creep, while for small
obstacles sliding is easy by regelation. There will thus be a
critical controlling obstacle size where the velocities, uR and

uV, for a given a are comparable. Equating these two
determines the controlling obstacle size as

a	 ¼ �

�2

� ��ðn�1Þ=2 Rr

Rv

� �1=2

, ð11Þ

and now selecting only this obstacle size, we find
Weertman’s law in the form

� ¼ �2Ru2=ðnþ1Þ, ð12Þ
where

R ¼ RvRr

4

� �1=ðnþ1Þ
: ð13Þ

(Weertman omitted the factor 4 because he took u ¼ uR ¼
uV, whereas Equation (13) assumes u ¼ uR þ uV.) With
n ¼ 3 and the values in Equations (5) and (9), we have

R � 15:1barm�1=2 a1=2 ¼ 0:85� 1010 Pam�1=2 s1=2: ð14Þ
Taking � ¼ 1 bar ¼ 105 Pa, � ¼ 0:2, we find a sliding
velocity of 1.4ma�1. Given the crudeness of the model,
this gives a laudable estimate of the sliding velocity.
Particularly, the choice of � is rather arbitrary, and since
the sliding velocity is inversely proportional to its fourth
power, higher sliding velocities are easily obtained. For
example, a sliding velocity of �44ma�1 is obtained with a
choice of � ¼ 0:1.

Weertman’s heuristic argument can be slightly tightened
in the following way. Considering the flow past obstacles of
size a, it seems reasonable (because the regelative velocity is
a plug flow) to consider the velocity to be the sum of uR and
uV, thus

u ¼ T
�2Rra

þ T
�2Rv

� �n

a, ð15Þ

which implicitly defines the stress, T ðu, aÞ, past this size of
obstacle. Then the total stress is, following our previous
superposition argument,

� ¼
X
i

T ðu, aiÞ: ð16Þ

We define dimensionless partial stress, velocity and obstacle
size as

T ¼ ��, u ¼ �

�2R

� �ðnþ1Þ=2
U, a ¼ a	A; ð17Þ

then � is defined by

U ¼ �

A
þ �nA, ð18Þ

and the sliding law is

1 ¼
X
i

�ðU,AiÞ: ð19Þ

It is reasonable to suppose that � � Oð1Þ for some value of
A, and in this case we must have U >� 1. If U � 1 then
� � 1 for A � 1, so we must have U � Oð1Þ. Hence � � 1
unless A � Oð1Þ. Taking A ¼ 1 (i.e. the controlling obstacle
size), then Equation (19) is simply �ðU, 1Þ ¼ 1, and thus
U ¼ 2, corresponding to Weertman’s law as given above in
Equation (12).

Sub-temperate sliding
In his paper, Weertman (1957b) makes the comment ‘there
should be no sliding in a glacier whose bottom surface is
appreciably below the pressure melting point’, and is thus
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seemingly aware that there will be some sliding even if the
ice is a little below the melting point. If the ice is sub-cooled
by an amount �T , then two modifications to Weertman’s
theory are necessary. Firstly, the bed should only be
lubricated by a water film at the obstacles; between them
the ice will be mildly frozen to the bed. It seems possible
that for small sub-coolings, the alternate frozen and
lubricated parts of the bed may lead to stick–slip behaviour,
as suggested by Robin (1976), and an appropriate way to
describe the effect of the frozen part of the bed might be
through a frictional stress of the form

�f ¼ �N, ð20Þ
where N is the overburden normal stress and the coefficient
of friction, �, is a rapidly increasing function of �T (Barnes
and others, 1971). The sliding law thus calculates the
residual stress, � � �f.

The second modification arises because the heat flow
through the rock must now provide not only the latent heat
to melt the film on the obstacle, but also the conductive heat
away from the rock into the sub-cooled ice. This modifies
Equation (3) (bearing in mind also the residual stress) to

� � �f ¼ �2 RrauR þ 3��T
C

� �
, ð21Þ

while the viscous sliding law is modified to

� � �f ¼ �2Rv
uV
a

� �1=n
: ð22Þ

The experiments of Barnes and others (1971) suggest we
might take

� ¼ �0�T , ð23Þ
with a value* �0 � 0:4K�1, giving

�f ¼ �00�T , ð24Þ
where

�00 ¼ �0N; ð25Þ
a typical value is �00 � 4 bar K�1¼ 4� 105 PaK�1 for a 100m
deep glacier. By comparison, 3�3=C � 0:4bar K�1 =
0.4 �105 PaK�1 for � ¼ 0:1. This suggests that we neglect
the ice heating term, and in this case the controlling obstacle
idea works exactly as before, yielding the sub-temperate
sliding law

½� � �00�T 
þ ¼ �2Ru2=ðnþ1Þ, ð26Þ
where ½x
þ =maxðx, 0Þ, and this gives a nonzero sliding

velocity if �T < �Tc ¼ �

�00, with a typical value of

�Tc � 0:1K.
Weertman’s ingenious theory has some notable features.

The sliding velocity is very sensitive to the roughness, �.

Reasonable values of sliding velocity emerge if we take
� ¼ 0:1. But what does reasonable mean? When a glacier
slides, it seems that the sliding velocity is typically
comparable to that due to shearing (table 7.3 of Cuffey
and Paterson, 2010). This suggests that the roughness of the
glacier bed adapts itself so that this should be the case. How
could that be?

If we believe the Weertman theory at face value, then the
stresses over the obstacles are of the order of �=2�2, and with
� ¼ 1 bar ¼ 105 Pa and � ¼ 0:1, this is 50 bar, or 5� 106 Pa!
Ice fractures at much lower values, which suggests there is
something amiss with the theory. This was pointed out by
Lliboutry (1968), to whose alternative theory we now turn.

LLIBOUTRY: EFFECTIVE PRESSURE AND
MULTIVALUED SLIDING LAWS
The other main early contributor to the theory of glacier
sliding was Louis Lliboutry. It is probably the case that
Lliboutry’s interest in sliding was instigated by Weertman’s
paper. His first note on the subject (1958b) is concerned
with the passage of a surface wave down Mer de Glace
between 1891 and 1893, and he suggests that the basal
friction is relatively constant at � � 1bar, despite a signifi-
cant change in the surface velocity, in apparent contra-
diction to Weertman’s theory. Next (1958a) he announces a
modified theory based on a ‘washboard bed’ consisting of
transverse sinusoidal ridges (Weertman’s bed is called a
‘tombstone bed’). The detailed calculations behind this
theory are given by Lliboutry (1959), with some slight
modifications to the formulae below. Lliboutry identifies
(and quantifies) three separate processes; the first two are
regelative and viscous sliding, essentially similar to Weert-
man’s description. His third process is viscous flow together
with cavitation, where the ice separates from the bed in the
lee of obstacles, and the stress he finds for this mode of flow
decreases with ice velocity, and increases with effective
pressure, N, equal to the overburden ice pressure minus the
subglacial water pressure.

The specific forms which Lliboutry finds for the shear
stress due to each of these processes (which he calls
processes A, B and C, respectively) are for regelation,

�R ¼ 1
2
RrauR ðAÞ ð27Þ

(the corresponding formula in Lliboutry (1959) has a slightly
different definition of Rr); for viscous creep,

�V ¼ �
ffiffiffi
3

p

2
�1þ

2
n

2uV
aB

� �1=n

, ðBÞ ð28Þ

and for viscous creep in the presence of (strong) cavitation,{

�C ¼ �
ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffi
aB
2uC

r
Nffiffiffi
3

p
� �1þn

2
: ðCÞ ð29Þ

Cavitation is supposed to occur if �V > fd � 1
2��N, which is

also the value where the curves for processes B and C
intersect. Lliboutry (1959) indicates that Equation (29) is
erroneous, and he calculates instead

�C ¼ �ffiffiffi
3

p
� �n aB

4u

� �
ð�NÞ2ðnþ1Þ

� �1=ðnþ2Þ
, ðC0Þ ð30Þ

with a corresponding slightly modified value of fd. This
change does not alter the general comments below.

*See their figure 9. In fact, they find that � depends on ice velocity, with
three regimes: (1) A low-velocity region where � increases with ice speed.
This region is associated with ice creep, presumably due to the very large
shear stresses that are being experimentally applied. (2) A plateau associated
with plastic flow and fracture. We associate this with the solid friction
assumed here. (3) Finally � decreases in a region assumed to be associated
with the formation of a lubricating water film, corresponding in our situation
to the spread of the water film between the obstacles.

{Lliboutry’s cavitation formula is modified here for cosmetic reasons by the
inclusion of the factor 2 in the denominator of the square root. Some such
adjustment is necessary for arithmetic consistency, although in his 1959
paper he has an altogether different formula (Equation (30)).
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Lliboutry adopts Weertman’s concept of controlling obstacle
size, but now there are more possibilities, since there are
now three different sliding processes. As for Weertman,
processes A and B could balance, leading in Lliboutry’s
estimate to negligible velocities, and what he calls ‘static’
friction; or, Lliboutry ingenuously supposes, processes B and
C could balance, in which the controlling obstacle size
places � ¼ fd, i.e. the solid friction law

� ¼ �N, ð31Þ
where � ¼ 1

2�� (if using Equations (28) and (29)). From
his calculations, the regelative controlling obstacle size
is �1mm, while the cavitational controlling obstacle size is
�1 cm,* and thus he suggests the solid friction-like law
is more appropriate.

Lliboutry accepts Weertman’s notion of the controlling
obstacle size without question, but it is by no means obvious
that one can do so. Weertman’s argument hinged on fixing
the roughness, �, and seeking the value of a where uR
intersects uV. Consulting Equations (27) and (28), we see this
is also true for Lliboutry’s formulae if � is fixed. But then
Equation (29) or (30) also provides a recipe for velocity
which increases with a, and it is no longer obvious which, if
either, of the two intersection points should provide the
controlling obstacle size.

Actually, Equations (28) and (29) or (30) are not alter-
natives, but are simply different approximations to a purely
viscous sliding law of the form:

�V ¼ Nf ð�Þ, � ¼ 2u
aBNn , ð32Þ

where f increases in Equation (28) to �, and then decreases in
Equation (29) or (30). We can regain Lliboutry’s controlling
obstacle argument using the version discussed above (after
Equation (15)). The controlling obstacles are those which, for
fixed u, maximize T ðu, aÞ (or, for fixed T , minimize u). If we
adopt Equations (27) and (32), then the function T is defined
by

f
u � uR
aBNn

h i
¼ T

N
, uR ¼ 2T

Rra
; ð33Þ

evidently the maximum value of T is at the maximum of f , so
the stress is approximately

� ¼ �N, ð34Þ
and the controlling obstacle size is determined, for given u,
by solving

u ¼ 2�N
Rra

þ aB�mNn, ð35Þ

where � ¼ �m at the maximum of f . This only has a solution
if

u > um ¼ 2
2�B�mNnþ1

Rr

� �1=2

, ð36Þ

in which case, however, there are two such solutions. We
might suppose that we should choose the larger, on the basis
that the smaller controlling obstacles will be swamped by the
cavities from the larger ones. (See also Lliboutry, 1959, fig. 2.)

However, while the principle of superposition embodied
in Weertman’s argument is just about believable, that in
Lliboutry’s is less so. Nevertheless, Lliboutry’s alternative

theory provides a discussion of a number of crucial features
which Weertman’s does not consider. In particular, he is
concerned with observations, amongst them the inference
that basal shear stress is, in practice, relatively constant at
�1 bar. He focuses on the importance of cavitation, which
introduces the effective pressure, N, into the sliding law. His
final comment in his 1958 paper (Lliboutry, 1958a)
addresses the interesting issue of how bed roughness evolves
due to the ice sliding over it, and why the basal shear stress
is always in the region of 1 bar. If it is much larger, because
the bed is rougher, then the consequent stresses will cause
fracturing of the bed (or of the ice), as for roches
moutonnées, and the consequent hollows will be infilled
by dead ice or frozen sediments. The bed thus becomes
smoother, reducing the friction. Alternatively, if the friction
is too low, then the shear stress must also be low and the
glacier will not slide. Thus if there is significant sliding, the
shear stress will adjust itself to be relatively uniform.

The first part of this argument seems reasonable, but the
second is not fully formed. If the bed friction is indeed low,
then with sufficient ice accumulation, force balance requires
large longitudinal stresses, and these will also cause rupture.
Rupture of the ice will lead to a catastrophic ice slide, such
as happens on hanging glaciers (Röthlisberger, 1977; Fail-
lettaz and others, 2008), while if the substrate fractures, this
will create roughness and hence increased friction. In this
way, Lliboutry’s idea can be made consistent.

WEERTMAN VS LLIBOUTRY
Weertman’s (1957b) and Lliboutry’s (1958a) paper are both
gems, full of insight and imagination. But in the following
decade, these two authors bickered with one another
through a number of publications, variously adapting or
improving (largely in cosmetic ways) their two theories. The
course of this tussle was finally charted in exasperation by
Lliboutry (1968), following which the eruptive phase entered
a period of dormancy, followed only by a brief reawakening
at the International Glaciological Society symposium on
‘Glacier beds: the ice–rock interface’ (Lliboutry, 1979;
Weertman, 1979).

Lliboutry’s theoretical objections to Weertman’s theory
are plainly stated. The stresses transmitted across the
obstacles are ��=�2, and thus huge, for the sorts of
roughness which it is necessary to invoke to get sensible
velocities. Such large stresses would, in any case, cause
fracture of the ice or of the bed, but would also cause ice
separation in the lee of obstacles, and thus cavitation.
Lliboutry’s view of the consequences is portrayed in his book
(Lliboutry, 1965b, fig. 16.20). While sliding was well known,
hydraulic (water-filled) cavitation was apparently not;
Lliboutry refers to it as ‘a very plausible phenomenon’.
Direct observations of air-filled subglacial cavities were well
known (Carol, 1947; Haefeli, 1951; Kamb and LaChapelle,
1964; Vivian and Bocquet, 1973). Further, Weertman’s
theory does not have the ability to explain daily and
seasonal variations in velocity. Lliboutry does not like
Weertman’s tombstone bed, and considers (Lliboutry,
1958a) his own washboard bed to be ‘more realistic’. Later
(Lliboutry, 1959) he describes Weertman’s theory as ‘incon-
sistent with [the] facts’, the model is ‘too schematic’, and his
punchline is ‘it is good to have as a working tool a theory
which does not conflict with numerous well-known facts’.
Lliboutry was not one for the gentle comment.*In Lliboutry (1958a); in Lliboutry (1959) the estimate is 21 cm.
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Weertman was, presumably, rightly proud of his achieve-
ment and was provoked by Lliboutry’s comments to respond.
This he did in a paper on surging glaciers (Weertman, 1962),
where he extended his theory to allow for the effect of a
distributed film of water at the bed, which partly drowns the
smaller roughness elements. In passing, he finds Lliboutry’s
theory ‘interesting’ but untenable, while in an updated
version of his original theory (Weertman, 1964b), he extends
his own theory to allow for the drag of variable obstacle
sizes, Lliboutry’s cavitation and also the presence of a water
‘layer’ at the bed. The title of his paper suggests that he
considers this newer theory to be definitive: in his view, it
includes both his earlier one and Lliboutry’s as special cases,
with Lliboutry’s applying in very limited situations, where
the ice is <10m thick.

Nevertheless, Lliboutry persevered. Earlier, Kamb and
LaChapelle (1964) had made direct measurements of sliding
at the base of Blue Glacier in Washington State, USA, where
they found regelation ice and cavitation. In comparing
observation to Weertman’s theory, they found quantitative
discrepancy of an order of magnitude. Weertman (1964a)
responded, essentially puffing various ‘O(1)’ constants up or
down by various factors to fit the observations; but so also
did Lliboutry (1964b), claiming his theory conformed to the
results of Kamb and LaChapelle, as well as other obser-
vations of sliding speed, while Weertman’s did not. Then
Lliboutry (1964a) provided his own explanation of surging
glaciers with his own sliding theory, not quoting Weertman’s
(1962) similar effort, and again denigrating the Weertman
theory. Next, the second volume of Lliboutry’s treatise
appeared (Lliboutry, 1965b), with a chapter on sliding, in
which Weertman’s (1964b) updated theory is not discussed
or referenced. Finally, Lliboutry (1965a) wrote a popular
article in which he bluntly states that Weetman’s theory is
incorrect, while his own constant friction theory is
presented as fact.

Weertman, by this stage, had had enough. He wrote a
reply (Weertman, 1966) to the New Scientist article, and
then slates Lliboutry in a paper in the Journal of Glaciology
(Weertman, 1967), which is devoted solely to destroying
Lliboutry’s theory. Weertman’s tone has now changed from
that of the calm patrician to a peremptoriness bordering on
contempt. The editor allowed Lliboutry a sentence of
response. Huffily, Lliboutry simply ignored the criticism
and referred to his forthcoming paper in the journal.

Most glaciologists, if they have read any sliding theory
papers at all, will have read Weertman’s (1957b) paper. If
they have read one of Lliboutry’s, it will be that referred to
above (Lliboutry, 1968). In this enormous paper, Lliboutry
finally makes it to the Journal of Glaciology, and finally
(courtesy of John Glen) to the English language. Weertman’s
paper has (at September 2010) 191 citations, while that of
Lliboutry (1958a) has only six. Lliboutry’s 1959 paper has
14, four by Lliboutry himself. But his 1968 paper has 132.
This last barrage in the war between the French/Spanish
glaciologist and the American material scientist finally sets
out Lliboutry’s stall for the future. It is Lliboutry’s own weary
review of the battle, a restatement of his theory, and, in
typical fashion, a mind-numbing collection of different bits
of calculations, and a variety of possible sliding laws.

How did this 10 year war of words come about? There are
interesting lessons for scientists here, ones which it is
doubtful they will learn. Science often proceeds by
entrenched battles, with progress finally being achieved by
an unexpected washing away of resistance. And yet, looking
back, there is still a tendency to think of these revolutions as
being somehow rational. The type example is the ‘plate
tectonic revolution’, in which distinguished geologists
rejected the apparently obvious idea* that the continents
had once been joined together, on (presumably) totally
spurious grounds (Oreskes, 1999). And yet geophysicists
routinely talk without embarrassment of the emergence of
the theory of plate tectonics in the 1960s, as though
Wegener had not existed. But the fact of that particular
matter is that the geophysical establishment resisted the new
theory for decades for what amounts to religious reasoning.
It is no better or worse than Copernicus or Galileo.

Weertman vs Lliboutry is a two-man war of different
dimension but similar status, in microcosm. Weertman’s
entirely elegant theory is a major advance. But it has
drawbacks; he fails to see cavitation or fracture, and he fails
to relate his elegant theory to observations, or worry about
the horrendous dependence on roughness. He is, in fact, not
a glaciologist, but a material scientist who cannot progress
beyond his simple physical concept of the glacier bed.

Lliboutry, in contrast, has a far-reaching insight into the
physical process. Apart from his focus on subglacial
cavitation, he also raises the pertinent issue of how the
bed adjusts its roughness, as it must do. This issue is one
which yet awaits investigation, 50 years after its proposal.
In this battle, he becomes the rebel outsider; he writes in
French, his calculations are complicated and frequently full
of schoolboy errors; his papers are not read, and his
personality is combative, assertive and intolerant. In con-
trast, Weertman is the relaxed American with keen insight,
getting to the heart of difficult problems. His sliding theory is
simple, popular and, in essence, correct, just like his
theories of ice-shelf motion and crevasse penetration. But
he lacks the engagement with physical reality that drives
Lliboutry, and he lacks the mathematical elegance that Nye
and Kamb later introduce to the problem. These two
antagonists fight their way into a meaningless heavyweight
battle where science recedes into the background, and
personality takes over.

Glaciology has always been one of the more convivial
sciences, where field, experimental and theoretical ap-
proaches can meet without friction. But there are sometimes
skirmishes: extrusion flow, hard beds vs soft beds, till
rheology and subglacial mega-floods are but a few ex-
amples; some of them still to be worked out. The Weertman/
Lliboutry controversy was one which played itself out as the
rest of the glaciological community looked on in bewilder-
ment. The field has moved on, and the controversy of the
time is now no more than a piece of scientific history.

LATER DEVELOPMENTS
Weertman’s 1957 article (Weetman, 1957b) stimulated a
good deal of interest in glacier sliding. Kamb and
LaChapelle (1964) and Budd and others (1979) conducted
laboratory experiments; Bindschadler (1983), Bentley
(1987), Iken and Bindschadler (1986), Iken and Truffer
(1997) and Fischer and Clarke (1997) presented field
observations. In addition, a good deal of theoretical work

*It is not just the geometry which is obvious; so also is the palaeogeology
and the palaeobiology.
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was initiated, both analytic and numerical (Nye 1969, 1970;
Kamb 1970; Morland 1976a,b; Fowler, 1981, 1986, 1987;
Iken, 1981; Gudmundsson, 1997a,b; Schoof, 2005; Gagliar-
dini and others, 2007a,b). Nye’s early work vindicated
Weertman’s concept of the controlling wavelength, and his
work and Kamb’s motivated a temporary interest in the
spectral character of bedrock roughness (e.g. Benoist, 1979).
Latterly, the focus has turned to the importance of cavitation.
While the role of regelation in providing the lubricating
water film is assured, its importance as a cause of effective
motion of ice past small protuberances has lost its import-
ance, since Lliboutry’s concept of cavitation allows such
small obstacles to be drowned, effectively producing
Weertman’s water film (cf. Creyts and Schoof, 2009).
Analytic and numerical work has vindicated Lliboutry’s
discovery of a double-valued sliding law for simple pseudo-
periodic bed shapes, and the general consensus at present
appears to favour a sliding law of the form of Equation (32),
in which the friction function, f , either increases to a
limiting friction at large �, or else has a mild maximum,
depending on the details of the bed roughness.

Soft beds
The other main development in sliding theory came with the
belated realization by desk-bound modellers that glaciers
are often, or normally, underlain by the products of glacial
erosion, and thus basal motion of the ice can be facilitated
by deformation of the underlying till, if the ice is at the
melting point and the till is water-saturated (MacClintock
and Dreimanis, 1964; Boulton and others, 1974). Although
apparently a very different situation, it is still feasible to
postulate a sliding law of the form

� ¼ Fðu,NÞ, ð37Þ
in which the function F increases with both u and N, and
thus may be not unlike the hard bed sliding law. No matter
what the rheology of the till, it is to be expected that
increased stress leads to increased velocity (thus @F=@u > 0)
while increasing water pressure also facilitates flow (thus
@F=@N > 0).

The real difficulty in assessing a possible sliding law over
soft beds is in formulating a realistic till rheology. As a
granular material, till has a yield stress (Kamb, 1991), and the
simplest basal condition to use is then the solid friction law

� ¼ �N: ð38Þ
This seems reasonable enough, but raises the question of how
to describe the deformation of till with depth, where one
would naturally suppose that N is (hydrostatically) higher,
and thus the till would be immobile, with slip occurring at
the ice/till interface. This seems possible, but widespread
evidence of till deformation indicates that till itself must
deform, and thus the rheology of granular materials becomes
an issue. An early marker was set down by Boulton and
Hindmarsh (1987), who suggested the use of a power-law
rheology for till of the form

_" ¼ A� r

Ns , ð39Þ
and this then leads to a sliding law of the form of
Equation (37). While Equation (39) makes good physical
sense, there is little convincing physical evidence for it. As a
granular material with a yield stress, a plastic rheology is
more appropriate, and this is supported by experimental
work (e.g. Kamb, 1991; Tulaczyk and others, 2000), but it

remains the case that the rheological deformation law needs
to be prescribed, and there appears to be little coherent
theory concerning this. For example, in order for a granular
material to shear at all, dilation of the medium is necessary
(so the particles can move round each other). This requires
suction of water into the pore space, and thus generation of
increased normal effective stress. This suggests that the
simplest conceptual model for till deformation is already
much more complicated than either a viscous or perfectly
plastic material, and that, where till is concerned, there is
still a great deal of theoretical work to be done concerning
the sliding law.

OUTLOOK
Part of Lliboutry’s motivation for his assault on Weertman’s
work was that it gave numerically inaccurate values for the
sliding law. And presumably the subsequent striving by Nye,
Kamb and others to develop the theory was aimed at
improving the accuracy of the sliding law. After all, basal
sliding is the key to understanding most of the interesting
dynamical things that glaciers and ice sheets do. But when
Charlie Bentley surveyed some of the various recipes which
had been advanced in his 1987 review of ice streams, he
found a range of velocities for Whillans Ice Stream (former
Ice Stream B), Antarctica, from 0.6 to (0.87�106)ma�1; and
none of them very close to the observed 443ma�1.

Why is this? Why has all the effort down the years to
establish a realistic sliding law not led to improved
formulae? A possible answer to this lies in the anthropo-
centric approach which has been taken. We walk on
exposed former glacier beds, climbing over obstacles the
same size as ourselves. We can visualize the problem at our
scale, and the theories that have been developed deal with
flow over individual bumps. The theories may be good and
sophisticated, but in their application to real ice flows, they
need to know details of bed geometry or till rheology, and
this sort of information is simply not available.

If we think of analogous problems such as determining
the frictional resistance between two solids, or the friction at
the bed of a river, we would not imagine dwelling on the
minutiae of the detailed deformation of the asperities, or the
flow of stream water round plants and rocks. Study of these
problems has been empirical; friction of solids or of rivers is
measured, and empirical formulae fitted to the data.

Why has this not been done for glaciers? The obvious
answer is that the difficulty of obtaining data precludes it. A
season’s fieldwork would be necessary to obtain a series of
measurements of velocity, stress and basal water pressure on
just one glacier and, even then, lateral stress variations,
variability of basal water pressure both in space and time, and
other such complications do not even indicate how the
appropriate average values of the variables should be chosen.
Bindschadler’s (1983) work appears to be the only attempt to
do this. The sliding law will remain in this curious data-free
limbo until such time as a concerted programme can be
organized to gather and integrate field data into a coherent
theoretical framework. It is something that should be done.

In the discussion following Weertman’s (1979) survey at
the Ottawa Glacier Beds symposium, Bob Thomas rued the
fact that ‘the final solution . . . will be incomprehensible . . .’,
and he ‘mourn[ed] the apparent demise of Weertman’s
original simple theory’.
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Weertman’s simple theory is still often used, but it should
not be. Weertman’s concept was brilliant, but so was
Lliboutry’s elaboration of it. With maturity, Lliboutry’s
original contributions have come to be essentially accepted.

It is easy to forget, though, that Lliboutry’s (1958a) paper
contains two momentous ideas. The first, hydraulic cavita-
tion and its consequences for a multivalued sliding law, has
been shown to be essentially correct. But his other idea has
received scant attention. Why is the shear stress so constant
in glaciers? Weertman’s answer was that it was because of
the high value of the Glen exponent, a not unreasonable
explanation. But Lliboutry’s idea is more imaginative. To
elaborate: if the bed is too rough, no sliding can occur, the
ice thickness will build up, the shear stress will increase to
the point that plucking occurs: the ice flow will erode the
bed to smooth it. If the bed is too smooth, there will be
widespread cavitation, cavities will fill with sediment,
causing increased roughness.

Lliboutry’s idea finds a more modern expression in the
development of the instability theory of drumlin formation
(Hindmarsh, 1998). Flow of ice over a flat sediment interface
will, if the sediment is easily deformable (and thus has little
resistance to shear), form corrugations in the bed, which
serve the purpose for Lliboutry’s argument: too-smooth beds
will build their own roughness. The process will apply (on
longer timescales) to hard beds as well; this suggests itself as
the correct roughening mechanism in Lliboutry’s argument.

The future development of the sliding law lies partly in
connecting its dependence on N into a coherent theory of
subglacial drainage, but also, more challengingly, to a
theory of bed evolution via erosion and sediment transport.
Ultimately, ice flow, water flow and sediment flow must all
be treated together. Fifty years on, the remarkable ideas of
both Lliboutry and Weertman continue to bear fruit.
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