A STABILITY THEOREM
 FOR THE NONLINEAR DIFFERENTIAL EQUATION
 $x^{\prime \prime}+p(t) g(x) h\left(x^{\prime}\right)=0$

A. G. KARTSATOS ${ }^{1}$
(Received 31 October 1967, revised 15 April 1968)
K. W. Chang generalizing a result of Lazer [3], proved in [4] the following

Theorem 1. Suppose that $f: I \rightarrow \mathbf{R}_{+}=(0,+\infty), I=\left[t_{0},+\infty\right)$, $t_{0} \geqq 0$, is a non-decreasing function whose derivatives of orders $\leqq 3$ exist and are continuous on $\left[t_{0},+\infty\right)$. Moreover, $\lim _{t \rightarrow+\infty} f(t)=+\infty$ and for some α, $1 \leqq \alpha \leqq 2$, and $F=f^{-1 / \alpha}$

$$
\int_{t_{0}}^{+\infty}\left|F^{\prime \prime \prime}(t)\right| d t<+\infty ;
$$

then every solution $x(t)$ of the equation

$$
\begin{equation*}
x^{\prime \prime}+f(t) x=0 \tag{}
\end{equation*}
$$

tends to zero as $t \rightarrow+\infty$.
Here we extend the above theorem to a nonlinear equation of the form:

$$
\begin{equation*}
x^{\prime \prime}+p(t) g(x) h\left(x^{\prime}\right)=0 \tag{}
\end{equation*}
$$

As solutions of (**) we consider only functions $x(t) \in C^{2}\left[t_{0},+\infty\right)$, $t_{0} \geqq 0$, which satisfy $\left({ }^{* *}\right)$ on the whole interval $\left[t_{0},+\infty\right)$. By an oscillatory solution of $\left(^{* *}\right)$ we mean a solution with arbitrarily large zeros. We suppose also that the only solution $y(t)$ of $\left(^{* *}\right)$ satisfying the initial conditions $y(a)=0, y^{\prime}(a)=0$ for any $a \geqq t_{0}$ is the trivial solution $y(t) \equiv 0$, $t \in\left[t_{0},+\infty\right)$.

We prove the following:
Theorem 2. Consider (**) with the assumptions:
(i) $p: I \rightarrow \mathbf{R}_{+}, I=\left[t_{0},+\infty\right), t_{0} \geqq 0$, non-decreasing with continuous derivatives of orders $\leqq 3$ on $\left[t_{0},+\infty\right)$. Moreover, $\lim _{t \rightarrow+\infty} p(t)=+\infty$, and

$$
\int_{t_{0}}^{+\infty}\left|P^{\prime \prime \prime}(t)\right| d t<+\infty
$$

with $P(t)=[p(t)]^{-1 / \alpha}, \propto$ a positive constant greater than 1 ;

[^0](ii) $g: \mathbf{R} \rightarrow \mathbf{R}, g^{\prime}(x)$ exists and is continuous on $\mathbf{R}, x g(x)>0$ for $x \neq 0, g(-x)=-g(x)$, and $\lim _{|x| \rightarrow+\infty} G(x)=+\infty$, where
$$
G(x)=\int_{0}^{x} g(u) d u ;
$$
(iii) $h: \mathbb{R} \rightarrow \mathbb{R}_{+}$, continuous, even and such that
(S) $2 H(y) /(\alpha-1)+p(t)\left(g^{2}(x) h(y)-2 G(x)\right)-g^{\prime}(x) y^{2} \geqq 0, \quad(t, x, y) \in I \times \mathbf{R}^{2}$,
where
$$
H(y)=\int_{0}^{y} u d u / h(u)
$$
$(H(y)$ is non-negative and finite valued); then if $x(t)$ is a nontrivial solution of (**), we have $\lim _{t \rightarrow+\infty} x(t)=0$.

Proof. For the sake of completeness we shall give the whole proof of the theorem, although the boundedness of the solutions can be traced in Bihari's Theorem 1, in [1].

First we show that all solutions of $\left({ }^{* *}\right)$ are bounded. In fact, by differentiation of the function

$$
\begin{equation*}
V=V(t)=H(y(t))+p(t) G(x(t)) \quad\left(y(t)=x^{\prime}(t)\right) \tag{1}
\end{equation*}
$$

where $x(t)$ is a solution of $\left({ }^{* *}\right)$, we find

$$
\begin{align*}
V^{\prime}(t) & =p^{\prime}(t) G(x(t)) \\
& \leqq\left[p^{\prime}(t) / p(t)\right] V(t) \tag{2}
\end{align*}
$$

which by integration from t_{0} to $t\left(t \geqq t_{0}\right)$ and application of a well known inequality gives

$$
V(t) \leqq V\left(t_{0}\right)+\int_{t_{0}}^{t}\left[p^{\prime}(s) / p(s)\right] V(s) d s
$$

and

$$
\begin{align*}
V(t) & \leqq V\left(t_{0}\right) \exp \int_{t_{0}}^{t}\left[p^{\prime}(s) / p(s)\right] d s \tag{3}\\
& =V\left(t_{0}\right)\left[p(t) / p\left(t_{0}\right)\right] .
\end{align*}
$$

Thus, $G(x(t)) \leqq V\left(t_{0}\right) / p\left(t_{0}\right)$, and consequently, $x(t)$ is bounded on $\left[t_{0},+\infty\right)$.

Now we prove that all solutions of (**) are oscillatory. The proof is by contradiction. Let $x(t), t \in\left[t_{0},+\infty\right)$ be a solution of (${ }^{* *}$) which is nonoscillatory. Then, since for every solution $x(t)$ of (**), $-x(t)$ is alsc a solution, we may (and do) assume that $x(t)>0, t \in\left[t_{1},+\infty\right), t_{1} \geqq t_{0}$. It can be easily seen that $x(t)$ must be concave and strictly increasing on $\left[t_{1},+\infty\right)\left(x^{\prime \prime}(t)<0\right)$, while its derivative has to be positive and strictly decreasing on the same interval. Thus, if $\lim _{t \rightarrow+\infty} x(t)=\lambda(0<\lambda<+\infty)$, then since $\lim _{t \rightarrow+\infty} x^{\prime}(t)=0$, given a positive number $\varepsilon<\min \{g(\lambda), h(0)\}$, there exists a $t_{2} \geqq t_{1}$ such that

$$
\begin{align*}
& g(\lambda)-\varepsilon<g(x(t))<g(\lambda)+\varepsilon \\
& h(0)-\varepsilon<h\left(x^{\prime}(t)\right)<h(0)+\varepsilon \tag{4}
\end{align*}
$$

for every $t \geqq t_{2}$. From (**) by use of (4) we get

$$
\begin{align*}
x^{\prime \prime}(t) & =-p(t) g(x(t)) h\left(x^{\prime}(t)\right) \\
& <-L[g(\lambda)-\varepsilon][h(0)-\varepsilon] \tag{5}\\
& =-L^{*}<0
\end{align*}
$$

where $p(t) \geqq L$ for $t \geqq t_{2}$. Obviously (5) implies $x(t) \rightarrow-\infty$ as $t \rightarrow+\infty$, a contradiction. Thus, every solution of (**) is oscillatory.

To show the decrease of the amplitudes, let $x(t)$ be any solution of (**) with $x^{\prime}(a)=x^{\prime}(c)=0$ and $x(b)=0$ where $t_{0} \leqq a<b<c$. Then after a simple manipulation we obtain from (${ }^{* *}$):

$$
\begin{align*}
H(y(b)) / p(b) & =-\int_{a}^{b} H(y(t))\left[p^{\prime}(t) / p^{2}(t)\right] d t+\int_{0}^{x(a)} g(u) d u, \\
-H(y(b)) / p(b) & =-\int_{b}^{c} H(y(t))\left\lceil p^{\prime}(t) / p^{2}(t)\right] d t-\int_{0}^{x(c)} g(u) d u \tag{6}
\end{align*}
$$

from which, by adding the corresponding sides we get

$$
\begin{equation*}
\int_{a}^{e} H(y(t))\left[p^{\prime}(t) / p^{2}(t)\right] d t=\int_{x(c)}^{x(a)} g(u) d u . \tag{7}
\end{equation*}
$$

Since g is an odd function, (7) implies that $|x(c)| \leqq|x(a)|$, which proves the decrease of the amplitudes. Now we are ready to show that all nontrivial solutions of (${ }^{* *)}$ tend to 0 as $t \rightarrow+\infty$. In fact, let $x=x(t)$ be a solution of (**); then by differentiation of the function
(8) $W=W(t)=2 G(x)\left[2 P^{1-\alpha} /(\alpha-1)+P^{\prime \prime}\right]-2 g(x) y P^{\prime}+4 H(y) P /(\alpha-1)$
where $y=y(t)=x^{\prime}(t)$, we find

$$
W^{\prime}=W^{\prime}(t)=2 G(x) P^{\prime \prime \prime}(t)
$$

$$
\begin{align*}
& +2\left[2 H(y) /(\alpha-1)+p(t)\left(g^{2}(x) h(y)-2 G(x)\right)-g^{\prime}(x) y^{2}\right] P^{\prime} \tag{9}\\
\leqq & 2 G(x) P^{\prime \prime \prime}(t)
\end{align*}
$$

which, by integration from t_{1} to $t\left(t \geqq t_{1}\right)$ yields

$$
\begin{align*}
W(t) & \leqq W\left(t_{1}\right)+2 \int_{t_{1}}^{t} G(x(s))\left|P^{\prime \prime \prime}(s)\right| d s \tag{10}\\
& \leqq W\left(t_{1}\right)+2\left[V\left(t_{1}\right) / p\left(t_{1}\right)\right] \int_{t_{1}}^{+\infty} P^{\prime \prime \prime}(s) \mid d s=K
\end{align*}
$$

Now, following Chang's proof, since $P^{\prime \prime}$ is bounded as $t \rightarrow+\infty$, given any $\varepsilon>0$, let $T \geqq t_{1}(T=T(\varepsilon))$ be such that

$$
K / \varepsilon<2[P(T)]^{1-\alpha} /(\alpha-1)+P^{\prime \prime}(T), x^{\prime}(T)=0 .
$$

Then, finally, $G(x(t))<\varepsilon$ for every $t \geqq T$. This implies that
$\lim _{t \rightarrow+\infty} G(x(t))=0$. Suppose now that there exists a sequence $\left\{t_{n}\right\}$ such that $t_{n} \geqq t_{1}, \lim _{n \rightarrow+\infty} t_{n}=+\infty$, and $\lim _{n \rightarrow+\infty} x\left(t_{n}\right) \neq 0$. Then $\lim _{n \rightarrow+\infty} G\left(x\left(t_{n}\right)\right)>0$, a contradiction. Thus, $\lim _{t \rightarrow+\infty} x(t)=0$ and the theorem is proved.

Remark 1. From (9) it turns out that we can replace the integral condition on $P^{\prime \prime \prime}$ by the condition $P^{\prime \prime \prime}(t) \leqq 0$ fcr all large t. In fact, this implies that $P^{\prime \prime}(t) \geqq 0$ for all large t (otherwise we would have $\left.\lim _{t \rightarrow+\infty} P(t)=-\infty\right)$ so that $P^{\prime \prime}(t)$ is bounded on some interval $[c,+\infty)$.

Remark 2. The condition (S) in (iii) of Theorem 2, is quite artificial and can be replaced by the following one:

$$
g^{2}(x) h(y) \geqq 2 G(x) \quad \text { for all } \quad(x, y) \in \mathbf{R}^{2}
$$

$y(t)=x^{\prime}(t)$ is bounded for all solutions $x(t)$ of $\left({ }^{* *)}\right.$, and

$$
\int_{t_{0}}^{+\infty}\left|P^{\prime}(t)\right| d t<+\infty
$$

In fact, if we take into account (S^{\prime}), then from the first of (9) we obtain

$$
W^{\prime}(t) \leqq 2 G(x(t))\left|P^{\prime \prime \prime}(t)\right|+\left|g^{\prime}(x(t))\right| y^{2}(t)\left|P^{\prime}(t)\right|
$$

and

$$
W(t) \leqq K+\int_{t_{0}}^{+\infty}\left|g^{\prime}(x(t))\right| y^{2}(t)\left|P^{\prime}(t)\right| d t<+\infty .
$$

The author expresses his thanks to the referee for his remarks.

References

[1] I. Bihari, Oscillation and monotonity theorems concerning non-linear differential equations of the second order, Acta Math. Acad. Sci. Hung., 9 (1958), 83-104.
[2] L. Cesari, Asymptotic behaviour and stability problems in ordinary differential equations (Second edition, Springer-Verlag, Berlin, 1963) sect. 5.5.
[3] A. C. Lazer, A stability result for the differential equation $y^{\prime \prime}+p(t) y=0$, Michigan Math. J., 12 (1965), 193-196.
[4] K. W. Chang, A stability result for the linear differential equation $x^{\prime \prime}+f(t) x=0$, J. Austral. Math. Soc., 7 (1967), 7-8.

Department of Mathematics
Wayne State University
Detroit, Michigan
U.S.A.

[^0]: ${ }^{1}$ This research was partially supported by a N.A.T.O. grant.

