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K. W. Chang generalizing a result of Lazer [3], proved in [4] the
following

THEOREM 1. Suppose that f :I ->• R+ = (0, +00), / = [t0, +00),
t0 ^ 0, is a non-decreasing function whose derivatives of orders :gi 3 exist and
are continuous on [t0, +00). Moreover, limt_+oo/(t) = -f 00 and for some a,
1 g; a ^ 2, and F = /-1/"

r+00J, \F"'(t)\dt<+00;
'0

then every solution x(t) of the equation

(*) x"+f(t)x = 0

tends to zero as t -> +00.
Here we extend the above theorem to a nonlinear equation of the form:

(**) x"+p(t)g(x)h(x') = 0.

As solutions of (**) we consider only functions x(t) e C2[t0, +00),
t0 S; 0, which satisfy (**) on the whole interval [t0, +00). By an oscillatory
solution of (**) we mean a solution with arbitrarily large zeros. We suppose
also that the only solution y(t) of (**) satisfying the initial conditions
y(a) — 0, y'(a) = 0 for any a S: t0 is the trivial solution y(t) = 0,
te [t0, +co).

We prove the following:

THEOREM 2. Consider (**) with the assumptions:
(i) p : I -> R+, I = [t0, +00), t0 3; 0, non-decreasing with continuous

derivatives of orders ^ 3 on [t0, +00). Moreover, limt_+00 p (t) = + 00, and

\P'"(t)\dt<+CO,

with P(t) = \j>(t)~\~1la, a. a positive constant greater than 1;
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(ii) g:R—>R, g'(x) exists and is continuous on R, xg(x) > 0 for
x ^ 0, g(—x) = —g{x), and ]im[x\_+0oG{x) = +co, where

(iii) h : R -> R+, continuous, even and such that

(S) 2^(2/)/(a-l)+/»(O(g2(x)A(2/)-2G(x))-? '(a ;)2/^O( ( ( , ^ ) e / x R 8 ,

ze^ere H(y) = fv udujh(u)

(H(y) is non-negative and finite valued); then if x(t) is a nontrivial solution
of (**), we have limt^+cox(t) = 0.

PROOF. For the sake of completeness we shall give the whole proof of
the theorem, although the boundedness of the solutions can be traced in
Bihari's Theorem 1, in [1].

First we show that all solutions of (**) are bounded. In fact, by differ-
entiation of the function

(1) V = V(t) = H{y(t))+p(t)G{x(t)) {y(t) = x'{t))

where x(t) is a solution of (**), we find

( 2 ) V'(t)=p'{t)G(x{t))

which by integration from t0 to t (t ̂  t0) and application of a well known
inequality gives

V(t)^V(to)+\tU>'(s)lp(s)]V(s)ds

and

(3)

Thus, G(x(t)) ^ V(to)lp(to), and consequently, x(t) is bounded on
[to, +°o).

Now we prove that all solutions of (**) are oscillatory. The proof is
by contradiction. Let x(t), t e [t0, +oo) be a solution of (**) which is non-
oscillatory. Then, since for every solution x(t) of (**), —x(t) is alsc a
solution, we may (and do) assume that x(t) > 0, te\tlt -f-oo), tx ^ t0.
It can be easily seen that x(t) must be concave and strictly increasing on
[tlt +oo) (x"(t) < 0), while its derivative has to be positive and strictly
decreasing on the same interval. Thus, if liirij_+ooa;(£) = A ( 0 < A < +co),
then since \imt^+aox'(t) = 0, given a positive number e < min {g(A), h(0)},
there exists a t2 ^ t1 such that
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U) )-e < g(x{t))
[ A(0)-6 < h(x'(t)) < h(0)+s

for every t S: t2. From (**) by use of (4) we get

x"{t) = -p{t)g(x{t))h(x'(t))
(5) < -L[g{X)-e][h(0)-e]

= —L* < 0

where p(t) S: L for t S; t2. Obviously (5) implies x(t) ->- — oo as t -> +oo,
a contradiction. Thus, every solution of (**) is oscillatory.

To show the decrease of the amplitudes, let x(t) be any solution of (**)
with x'(a) = x'(c) = 0 and x(b) = 0 where t0 ^ a < b < c. Then after a
simple manipulation we obtain from (**):

H{y(b))IP(b) = - jb
aH(y(t))[J>'(t)lPHt)]dt+ j*wg(u)du,

-H(y(b))lp(b) = - j'tH(y(t))!p'(t)lp*(t)]dt- j * W g(u)du

from which, by adding the corresponding sides we get

(7) f'aH(y(t))[j>'(t)lp>(t)]dt = jX
x^g(u)du.

Since g is an odd function, (7) implies that \x(c)\ rg |#(«)|, which proves
the decrease of the amplitudes. Now we are ready to show that all nontrivial
solutions of (**) tend to 0 as t -> +°O- In fact, let x = x(t) be a solution
of (**); then by differentiation of the function

(8) W = W{t) = 2G(x)[2Pi-*l(oL-l)+P"]-2g(x)yP'+4:H(y)PI(x-l)

where y = y(t) = x'(t), we find

W = W'{t) = 2G(z)P'"{t)

(9) +2[2H(y)l(x-l)+p(t)(g*(x)h(y)-2G(x))-g'(x)y*}P'
^ 2G(x)P'"(t)

which, by integration from tx to t (t ̂  tx) yields

( ) ^ ( 1 ) + (())\
(10) l

< W(t1)+2[V(t1)lp(t1)] J+°° P'"(s)\ds = K (say).

Now, following Chang's proof, since P" is bounded as t -> +oo, given
any e > 0, let T ^ tx (T = T{s)) be such that

(11) K/e < 2 [P ( r ) ] i - / ( a - l ) + P"(r) , x'(T) = 0.

Then, finally, G(a;(£)) < s for every t ^ T. This implies that
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limt_+0O G[x{t)) = 0. Suppose now that there exists a sequence {tn} such that
tn ^ tlt Hmn^+oo tn = + oo, and limn_+00x(tn) ^ 0. Then limn^+oo G(a:(*n)) > 0,
a contradiction. Thus, limt_+ooa;(£) = 0 and the theorem is proved.

REMARK 1. From (9) it turns out that we can replace the integral
condition on P'" by the condition P"'(t) ^ 0 fcr all large t. In fact,
this implies that P"(t) 2̂  0 for all large t (otherwise we would have
limt_+00 P(t) = — oo) so that P"(t) is bounded on some interval [c, + oo).

REMARK 2. The condition (S) in (iii) of Theorem 2, is quite artificial
and can be replaced by the following one:

(S') g2{x)h{y) ^ 2G(x) for all (a;, y) e R2,

y(t) = x'(t) is bounded for all solutions x(t) of (**), and

In fact, if we take into account (S'), then from the first of (9) we obtain

W'(t) £ 2G(x(t))\P'"(t)\ + \g'(x(t))\y*(t)\P'(t)\
and

W(t) ^K+ f+0°'\g'{x{t))\y*{t)\P'{t)\dt < +oo.

The author expresses his thanks to the referee for his remarks.
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