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UNIPOTENT ORBITAL INTEGRALS
OF HECKE FUNCTIONS FOR GL(n)

REBECCA A. HERB

ABSTRACT. Let G = GL(n, F) where F is a p-adic field, and let H(G) denote
the Hecke algebra of spherical functions on G. Let uj,...,u, denote a complete set
of representatives for the unipotent conjugacy classes in G. Foreach 1 < i < p, let
u; be the linear functional on % (G) such that y;(f) is the orbital integral of f over
the orbit of u;. Waldspurger proved that the p;, 1 < i < p, are linearly independent.
In this paper we give an elementary proof of Waldspurger’s theorem which provides
concrete information about the Hecke functions needed to separate orbits. We also prove
a twisted version of Waldspurger’s theorem and discuss the consequences for SL(n, F).

1. Introduction. Let F be a locally compact, nonarchimedean local field of char-
acteristic zero. Let G = GL(n, F) and let K = GL(n, R) where R is the ring of integers of
F. Let C°(G) denote the set of locally constant, compactly supported, complex-valued
functions on G and let H (G) denote the Hecke algebra of functions in C2°(G) which are
K bi-invariant.

For any ¥ € G we let Gy denote the centralizer of ¥ € G and let

A = | SE W dx f e CRO),

be the orbital integral of f over the orbit of 7. Thus for each ¥ € G we have a linear
functional

f=AFfY, feCr0).
Write y for the restriction of this linear functional to H (G).

Let uy, ..., u, be a complete set of representatives for the unipotent conjugacy classes
of G. Then it is well known that the linear functionals

f—Af,u), feCG),1<i<p,

are linearly independent. In [W2], Waldspurger proved that they are still linearly inde-
pendent when restricted to the Hecke algebra.

THEOREM 1.1 (WALDSPURGER).

{1 <i<p}
is a linearly independent set of functionals on H(G).

As a consequence of Waldspurger’s result, there exist ¢1,...,¢, € H(G) so that
A(pi,uj) = 6,1 < i,j < p. Using the results of [V] we obtain the following germ
expansion.
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COROLLARY 1.2. Let uy,...,up, ¢1,..., ¢, be as above. Let f € C°(G). Then there
is a neighborhood U of 1 in G so that for all Y € U,

AGY) = jilA(f, A Y).

In this paper we will give an elementary proof of Waldspurger’s theorem which pro-
vides more concrete information about the Hecke functions needed to separate the unipo-
tent orbits. In particular, we will produce diagonal matrices a;, | < i < p, so that if v; is
the characteristic function of the double coset Ka;K, then the matrix with entries A(1;, u;)
is upper triangular with non-zero diagonal entries. We also prove the following twisted
version of Waldspurger’s results.

Let x be an unramified unitary character of F* such that K" = 1. Extend & to a
character of G by k(g) = x(detg) and let Gy = {g € G : k(g) = 1}. Lety € G. Then if
Gy C Gy, let

AN = [ SO WRM - f € CROG),

be the twisted orbital integral of f over the orbit of V. If Gy ¢ Gy, set A.(f,7Y) = 0 for
allf € C2(G).

THEOREM 1.3.  Let vi,...,v, be a complete set of representatives for the unipotent
conjugacy classes in G such that G,, C Gy. Then there are ¢1,..., ¢, € H(G) such that

(L f1<i=j<q
An(¢i’vj)— 0, lflgl#‘lsq

As in the untwisted case, Theorem 1.3 is proven by constructing characteristic func-
tions v; of double cosets so that the matrix with entries A, (1, v;) is upper triangular
with non-zero diagonal entries. An easy extension of germ expansions to the twisted
case yields the following corollary.

COROLLARY 1.4. Letvi,...,vg,¢1,...,¢4 be as above. Let f € C°(G). Then there
is a neighborhood U of 1 in G so that for all Y € U,

q
An(fa ’y) = Z AN(f» Vi)An(Qbi, ’y)
i=1

In [W1], Waldspurger proved a weaker version of Theorem 1.1, namely that unipotent
orbital integrals are linearly independent when restricted to the Iwahori Hecke algebra.
Hales then used this result and twisted analogues to produce the following linear in-
dependence result for SL(n, F) [H]. Let G = GL(n, F),G; = SL(n,F),and G, = {g €
GL(n,F) : detg € RX}. Let B C K be the Iwahori subgroupof Gand K; = KNGy, B; =
BNG,. Let H (G, K|) be the Hecke algebra of K bi-invariant functions in C°(Gy) and
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H (G, B)) the Iwahori Hecke algebra of B; bi-invariant functions. If n,n, € G, are
unipotent elements which are conjugate via an element of G,, it is easy to see that the lin-
ear functionals y,,,i = 1,2, coming from restricting the corresponding orbital integrals
to H (G4, B)) are equal up to a scalar. Thus it is at most possible to separate G, conjugacy
classes of unipotent elements of SL(n, F) using functions in H(G,, B,). Hales proves that
in fact, if ny, ..., n; are a complete set of representatives for the G,-conjugacy classes of
unipotent elements of SL(n, F), then the linear functionals j,, are linearly independent
on H(G,, B;). However, Hales argument does not extend to the case of H(G,,K)). In
the last section we will show that { pn, 1 < i < s}, are not linearly independent when
restricted to H (G, K) in the case that G, = SL(3, F).
I would like to thank Tom Hales for his helpful suggestions.

2. Unipotent orbital integrals. Let F be a locally compact, nonarchimedean local
field with ring of integers R. Let 7 be a generator of the prime ideal P of R. Thus R/P is
a finite field with ¢ elements for some prime power g and ||z = g~ '. Let G = GL(n, F)
and K = GL(n, R). Let C2°(G) denote the set of locally constant, compactly supported,
complex-valued functions on G and let H = {¢ € CX(G) : ¢lkighkr) = ¢(g),8 €
G,k k; € K}. For any ¥ € G we let G, denote the centralizer of ¥ € G and let

A7) = /Gw\Gf(x*lWx)dx, fECXG), YEG

be the orbital integral of f over the orbit of 7.

Unipotent conjugacy classes in G can be indexed by partitions of n as follows. Let
P = P, be the set of all partitions of n, that is the set of all P = (py,...,pu),p1 > p2 >
-oo > pp > 0withpy + -+ + p, = n. We will write [(P) for the number of non-zero

entries in P, and will sometimes also write P = (pi,...,p,;) where t = [(P). Given
Q =(q1,...,q:) € P,t = 1(Q), let Ng be the set of block upper triangular matrices in
G of the form
I‘Il Y]z Y Ylt
- 0 I, ... Yy
0 0 ... I

where the blocks are of sizes g; X g;,1 <1i,j <t,1,, € M(q;,q;, F) is the identity matrix
forall 1 < i <t and Y; € M(q;,qj, F) has arbitrary entries in F for i < j. Now if
Q —uq,thenug € Nq and forall ¢ € H,

A(d),uq) = [VQ o(n) dn.

(See [A-C, 3.10].)

We will also index certain Hecke functions by partitions. For P = (py,...,p,) € P
as above, let ap be the diagonal matix in G with diagonal entries 7' =, 772~ ... 771,
Let ¢p be the characteristic function of the double coset KapK. Then ¢ € H and
A(¢p,uq) is equal to the measure of KapK M Ng .
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Let P = (p1,....pn), P = (P},...,p,) € Pwhereasusualp; >p, >--->p, >0
and p| > p > --- > p; > 0. Then we say P < P’ if there is 1 < k < n so that p; = p/,
1 <i<k—1,and p; < p;. We alsosay P < P" if there is 1 < k < n so that p; = p|,
k+1<i<nandp; <pj.

Finally we define the transpose W: P — P as follows. Let P € P and write P =
»i,..., pn)pt > p2 > --- > p, > 0.Foreach 1 < | < n, write m(P, i) for the
multiplicity of i in P, that is the number of indices j € {1,2,...,n} such that p; =
i. Then we define WY(P) = Q = (q1,...,g,) where for 1 < i < n,q; = m(P,i) +
m(P,i+1)+ - +m(P,n). Theng, > g > --- > g, > 0and T}, ¢; = =, m(P,i)i = n.
Thus Q, € P. Further, W is injective since if P, P’ € P with ¥(P) = W(P') it is easy to
see that m(P, i) = m(P’,i)forall 1 <i < n sothat P = P’. Thus ¥ is a bijection. It is
also easy to prove that W? is the identity map.

We want to prove the following theorem. Number the elements of P so that P; <
P < -+ < By, and let u; = uypy € Nyepy, 1 < i < m, represent the unipotent
conjugacy classes. Let ¢; be the characteristic function of KapK.

THEOREM 2.1.  Forall 1 <j <i < mwe have A(¢;,u;) = 0. Further, A(¢;, u;) # 0
foralll <i<m.

LEMMA 2.2. IfP < P, then Y(P) < ¥(P).

PROOF. Suppose that P < P’'. Write ¥(P) = Q = (q1,....q,)and P(P) = Q' =
(g},---,q,)- Then there is 1 < k < nsothatm(P : i) =m(P :i)k+1 <i<n,and
m(P:k)y <m(P' :k).Thusg; =g/ fork+1 <i<nandg <gq;-ThusQ <Q'. =

PROPOSITION 2.3.  Let P, Q € P. Then KapKNNq = D unless '¥(P) <X Q. Further,
KGTKQNW(T) # 0

Proposition 2.3 will be proven in a series of lemmas. However, before beginning the
proof of Proposition 2.3, let us see how it implies Theorem 2.1.

PROOF OF THEOREM 2.1. If j < i we have P; < Z; so that by Lemma 2.2 ¥(%F) <
Y(%,). Now using Proposition 2.3, KapK N N\y(Tj) = (), so that A(¢;, u;) which equals
the measure of Kap K M Ny, is 0. Further, for each i, the measure of KapK NNy (p) is
non-zero since Kap K M Nyp, is a non-empty open subset of Nyp,. Thus A(¢;, u;) # 0
for all i. (]

LEMMA 24. Let Gy be the set of all g € G such that |detg|r = 1 and ||g||oo =
SUP)| <;j<n lgilF € {1,q}. Then G, = UppKapK.

PROOF.  Note that for every P € P, detap = 1. Further, ||ap||coc = ¢ unless P =
(1,...,1) in which case ||ap||c = 1. Thus UppKapK C G,. Conversely, every g € G,
is in some double coset KaK where a is a diagonal matrix with diagonal entries a; =
7,1 < i < n,where the n; are integers. Butnow a € KgK imples that | deta|r = | detg|r
and ||all = |/gllso € {1,¢}. Thus = n; = 0 and infn; € {—1,0}. It is easy to see that
up to permutation of the diagonal entries, the ap, P € P are the only a’s with these
properties. =

https://doi.org/10.4153/CJM-1994-015-3 Published online by Cambridge University Press


file:///gij/F
https://doi.org/10.4153/CJM-1994-015-3

312 REBECCA A. HERB

We will prove Proposition 2.3 by induction on n. Write
W=n—1, P =P,, G =GLW%,F), K =GLu,R)

and G| = {g € G : |detg'|r = L,||g'|lo € {L.g}}. Fix Q = (q1.92,....q) € P
where t = I(Q)and q; > g2 > -+ > q; > 0 and write Q; = (q1,...,q. — 1) € P'.
Suppose that Y € N . Note that Y € G just in case all blocks ¥; € M(q;,q;, F), 1 <
i <j <t haveentriesin P! = {x € F : |x|r < q}. Thus we can write Y € Ng NG in

block form as
y - Y Y,
Lo 1

where Y’ € Ng N G),Y1, € M(n',1,P~"),and 0 € M(1,#’, F) denotes the zero matrix.
For x,y € G, we will write x ~ y if KxK = KyK.

LEMMA 2.5. Suppose that Y € Ny N G, as above. Then there are P € P’ and
Wi, € M(',1,P7") so that
~ (2877 W12
v (e ).

PROOE. Since Y’ € G}, by Lemma 2.4 there are A’, B’ € K’ and P' € P’ so that
A'Y'B' = api. Now

A/ 0 Y/ Y12 B/ 0 o aap: W|2
0 1 0 1 0 1) {0 1

where W12 = A/le. ]
Let P" = (p1,...,p,) € P/ as in Lemma 2.5 where I(P") = r so that ap has diagonal
entriesa; =™ Lay ="' .. a, ="' e€Randa, =7",...,a, =7 . Write
g — (A 0 )
0 1
where A € M(r,r, F) is the diagonal matrix with entries a,,...,a, and I € M(n' — r,

n' — r, F) is the identity matrix.
LEMMA 2.6. With notation as above, there is X;3 € M(r,1, P~!) so that
A 0 X3
Y~ (O 10 ) .
0 0 1

PROOE. Let X;3 € M(r,1,P™") denote the first r rows of W), and let Xo3 €
M@ — r,1,P~") denote the last n’ — r rows of W,. Then

{I 0 0
0 I —1X»n | ek

\o 0o 1

and .
A 0 X13 I 0 0 A 0 X13
(0 1 X23) (0 1 —TX23) = (O v 0 )
0o 0 1 0 0 1 0o 0 1
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LEMMA 2.7.  Suppose that the notation is as above. If X153 € M(r,1,R), then Y €
KapK where P = (py,...,pr, 1). If X135 & M(r,1,R), then there is 1 < i < r so that
Y € KapK where P = (p1,...,pi—1,Pi + 1, Pis1s- .- »Pr).

PROOF. X)3 has entries wy,...,w, € P\ By permuting the indices if necessary,
we can assume that there is 0 < s < rso that wy,...,w; ¢ R and wgyy,...,w, € R.
Write X4 € M(s, 1, P~") for the matrix with entries wy, ..., w; and Xo4 € M(r — s, 1, R)
for the matrix with entries wyp,...,w,. Write A| € M(s, s, R) for the diagonal matrix
with entries a),...,a; and Ay € M(r — s,r — s, R) for the diagonal matrix with entries
ag41, . - ., a,. Note that since we have permuted the entries we can no longer assume that
p1 = p2 > -+ > pr. We can and will assume however that p; > p»,...,ps. Now

I 00 0

0 I 0 —Xpu

001 o |SK

0 0 0 1

and

I 0 0 0 A 0 0 Xu A O 0 Xu
0 I 0 —Xyu 0 A 0 Xu| |0 A 0 O
0011 0 O 0o 7 o~ {10 O 777 o0
0 0 0 1 0 0 0 1 0 O 0 1

In particular, we now see that if s = 0, then

A 0 0 w0
YN(O 1 0):( g” 1).
0 0 1

Up to a permutation of the diagonal entries, this last matrix is equal to ap where P =

(plv e 9pr’ 1)
Now assume that s > 0. For 1 < i < s we can write w; = u;7 ! where u; € R* is
a unit. Let U € M(s, s, F) be the diagonal matrix with diagonal entries uj, ..., u;. Then

U~ 'X14 =77' € M(s,1,P~") has every entry equal to 7. Since

U 0 0 0
0O 7 0O
001 oflFK
0 0 0 1
and
uU=' 000 A 0 0 Xu U 0 0 0
0O I 0O 0 A, 0 O 0 71 0 0f_
0O 0 I O 0 0 77 0 0 01 0f
o 00 1/\0 O O 1 0 0 0 1
A]OOU*IXM
0 A O 0
0 0 1 0 ’
O 0 O 1
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we now have

Ay 0 0 71
y 0 A 0 0
0 o0 71 o
0 0 0 1
Finally, write
[ ar 0

Ar= ( 0 A3)
where A3 € M(s — 1,5 — 1, R) is the diagonal matrix with diagonal entries ao, ..., ay.
Recall that we are assuming that a; = 7~ where p, > p2,...,ps. Thus if we write

a; € M(s—1, 1, R) for the matrix with all entries equal to a;, then A; lay e M(s—1,1,R)
since it has entries ai’lal = 77Pi ) <j<r Thus we have

T 0 0 0 -1 1 0 0 0 O
-1 7100 0 As'a; 1 0 0 0
cC=]10 01 0 O0/|, D= 0 0 I 0 0|€eK
0O 0 0 I O 0 00 I O
1 0 0 0 O —1a; 0 0 O 1
and
a 0 0 0 7! Ta;, 0 O 0 0
, 0 A3 O 0o ! 0 A; O 0 0
cCl0o 0 A O O |ID=] 0 0 A O 0
0 0 o 771 o0 0 0 0 71 o
\ 0O 0 O 0 1 \ 0O 0 O 0o 7!
Thus Y ~ ap where P has non-zero entries p; + 1,pa, ..., ps, Ps+i» - . ., pr. However, we
do not know that p; is the largest of the p;’s, just that it is the largest among p,...,p,.
Thus we just know that /(P) = I(P') and that one non-zero entry p; in P’ has been
replaced by p; + 1. : =

LEMMA 2.8.  Suppose that P, Q € P withKapKNNq # 0. Then (Q) > I(*V(P)).

PROOF.  Suppose that Y € KapK NN . Then Y~' € Ny M Kagy'K. Suppose that
pi is the largest entry in . Then [(\¥(P)) = p; and [|ag' || = [77*!|s = ¢ . Thus
IY "o = ¢ '. Butif (Q) = 1, then Y is a ¢ x ¢ block upper triangular matrix with
identity matrices on the diagonal and entries above the diagonal in P~!. Now it is easy
to see that | Y !||oo < ¢! Thusp; <t. "

LEMMA 2.9.  Suppose that P, Q € P with KapK "Ng # 0. Then ¥(P) < Q..

PROOF. By Lemma 2.8 we know that /(‘¥(?P)) < I(Q). Now if [(\¥(P)) < Q).
then \W(P) < Q.. Thus we may as well assume that l(‘P(T)) =1Q).

The proof of the lemma is by induction on n. It is clearly true for n = 1 since there is
only one partition. Assume that n > 1 and that the lemma is true for n’ = n— 1. Suppose
that Y € KapK NNy where Q = (q1,...,q:) and as before let Q =(q,...,q. — 1).

Note that
ifg, > 1;

t?
Q)= {t— 1, ifg, =1.
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Then Y € NQ M Gy so we can write Y as before as
(Y Y,
r=(o 7
where Y’ € No NGy, Yia € M(#, 1,P~ 1), and 0 € M(1,n’, F) denotes the zero matrix.
Now there is P* € P’ such that Y’ € K'apK'. Thus K'apK' N Ng # 0, so by the
induction hypothesis, we have W(P’) < Q. We will use Lemma 2.7 to see that this
implies that ¥(P) < Q..

CASE 1. Suppose that we are in the case of Lemma 2.7 that X3 € M(r, 1, R). Thus in
this case if P’ = (py,...,p,) we have P = (pi,...,pn, 1). Thus I[(W(P)) = I(W(P")) =
p1- Now W(P') < @ implies that I(W(?")) < I(Q). But then I(W(P)) = I(¥(P)) <
Q) < U(Q) = I(¥(P)). Thus [(¥(P)) = KQ) and (Q) = Q). Thus t = p
and g, > 1. Now m(P,1) = m(P',1) + 1 and m(P,i) = m(?P,i) fori # 1. Note
m(P,n) = 0since 1 € P. Thus if we write ¥(P') = (my,my,...,m,), then ¥(P) =
(my +1,my,...,my). Recall that Q = (q1,...,9,), Q = (q1,...,q: — 1). Now P(P') <
Q, imples that m; < g, — 1 < g;. Thus ¥(P) < Q unless t = 1 in which case ¥(P) =
Q = (n).

CASE 2. Suppose that we are in the case of Lemma 2.7 that X;3 & M(r, 1, R). Write
P = (p1,...,p,) as above. Then there is 1 < i < r so that P is obtained from P’
by replacing p; with p; + 1. That is there is 1 < b = p; < n — 1 so that m(‘P,b) =
m(P',b)—1,m(P,b+1)=m(P,b+1)+1,and m(P,j) = m(P',j),j # b, b+ 1. Thus if
we write ¥(P') = (my,...,my), then P(P) = (my,...,mp,mps + 1,...,my). Note that
I(W(P)) = I(‘WY(P')) = kunless b = k, in which case [(\¥(P)) = I(W(P)) + 1. We
divide further into cases according to whether g, = lorgq;, > 1l and b = kor b < k.

CASE2A. Suppose that g, = 1 and b = k. Thent = [(Q) = [(Q)+1 = I(¥(P)) =
I(W(P)) +1=b+1.Thus Q, Q, ¥(P), ¥(P) have the forms:

lQ:(ql’“wqtfl’l)? le(qla”"qtfl)s
\P(fp):(mlw-*’mt—vl,l)$ \P(?I):(ml"--’mtfl)‘
Clearly W(P') < Q, implies that ¥(P) < Q..
CASE 2B.  Suppose that g, = 1 and b < k. Then I(W(P)) = I(W(P)) < Q) <

1(Q). This contradicts our assumption that l(‘I’(fP)) = 1(Q). Thus this case doesn’t
occur.

CASE2C. Supposethat g, > 1 and b = k. Inthiscase Q, = (qy,...,q;) and ¥(P) =
(my,...,m,_1,1). Since 1 < g, we have W(P) < Q.

CASE 2D. Suppose that ¢, > 1 and b < k. Now [(Q) = K(Q) = I(W(P)) =
I(W(P)). Thus t = k and W(P') < Q implies that m; < g; — 1 < g;. This implies that
W(P) < Q unlesst =k = b+ 1 sothat Q, Qy, ¥(P), P(P') are of the form

Q,:(q]a'-"qt—hqi)’ Q1:(CI1’-~7CIt—l»QI_1)
W(P) = (my,....m—y,m+ 1), W(P)=(mi,...,m_1,m).
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Again it is clear that ¥(P") < Qy implies that ¥(P) < Q.. .
LEMMA 2.10.  For any P € P,Nyp, N KapK # 0.

PROOF. Foranym > 1let B, = (m) € P, and write a(m) = ap, € GL(m, F). Thus

Mmoo ...0
o ' ... o0
a(my=| . Y :
0 o ... 7!
Write
g ! (1) 0 8 (—1y"1 0 00
T 0 (—1y"2r 1 0 0
000 10 AP ;
0 0 O T 1 -1 0 0 1
1 0 O 0 7
Then A, B € K,, and Aa(m) = u(m)B where
1 7! 0 0
0 1 0 0
u(m) = SR
o 0 ... 1 7!
o 0 ... 0 1

is the unipotent matrix with all superdiagonal entries equal to 7.

Now let P = (py,...,p,) where p; > --- > p,. Then ap is conjugate via a permuta-
tion matrix in K to a block diagonal matrix with diagonal blocks a(p), ..., a(p,). Thus if
we let u(P) be the block diagonal matrix with diagonal blocks u(p1), ..., u(p,), then by
the above we have u(‘P) € KapK. Finally, we claim that there is a permutation matrix
A € K so that Au(P)A™" € Ny(p). This would show that Au(P)A™" € Ny(p, N KagK.

We have P = (p1,...,p;),p1 2> -+ >prand Q = W(P) = (q1,...,9),q1 = -+ >
qr. Write Mg = No =O0,M; =p1+---+p;, 1 <i<r,Ni=gq;+---+g;,1 <j <t Now
foreach 1 < m < nthere are unique | <k <rand1 <i <p;suchthatm = M;_| +1i.
Similarly there are unique 1 <i <tand 1 < k < g;sothatm = N;_;+k. Now we define
a permutation o of {1,2,...,n} by setting o(M;_; +i) = N;_ + k where 1 <k < rand
1 <i < pi. Note that since i < py, we have g; > k.

"~ Now 1
wP) =1+ Zpkz TUEM i, My +i+ 1)
k=1 i=1
where I denotes the identity matrix and E(i, j) denotes the matrix with 1 in the (ij) place
and zeroes elsewhere. Now if A € K corresponds to the permutation ¢ defined above,
r pi—1
Au(P)A =1+ 3 77 'VE(Ni + k,N; + k).
k=1 i=1
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Now N Q is the set of all block matrices of the form

Iql Yo ... Yy
BT
0 0 .. I,

where the block Yj; is of size ¢; X gj, 1 <i,j <t Butforeachl <k <r, 1 <i<p;—1,
we have k < qiv1 < q,-.ThusN,-_l +1 <Ni_1+k<NandN;+1 < N;+k < Ny so
that E(N;—; + k,N; + k) is in the g; X gi41 block Y ;4. Thus Au(P)A~! € Nq. [ ]
This completes the proof of Proposition 2.3, and hence of Theorem 2.1. In order to
prove a twisted analogue of Theorem 2.1, we will need the following lemmas.
Let ,Q = (q1,..-,q:) € P, and let Y € KapK M Nq. As before we let n' =
n—1,Q =(qi,...,q: — 1) € Py and write

Y le)
Y:(
0 1
where Y € Ng NG/ and Y1, € M(n',1,P7).

LEMMA 2.11.  Write Y € KapK N Nq as above and suppose that Y’ € K'apK'. If
Q = Y(P), then Q = P(P").

PROOF.  Using the notation of the proof of Lemma 2.9 we recall that there is 0 <
b < k so that W(P), ¥(P'), Q, Q, have the forms

Q,:(qla~"9qt)’ Q_l:(QI,-‘-»‘It—l),
\P(fp) = (ml,...,mb,mb+1 + 1,...,mk), \P(T') = (ml,...,mk).

Now since we are assuming that Q, = W(P) we have Q; = (my, ..., mp,mp + 1,...,
my—1). Further, since Y’ € K'ap K'MN¢ , we know that ¥(P’) < Q. This is impossible
unless k = b or b + 1 so that

W(P) = (my,...,mp,mpy1), Q= (my,...,mp,mpy +1—1).

]
Let P,Q € P, and write Q = (g1,--.,91),q1 > q2 > -+ > q,. Write Y € KapK N
Nq in block form as
I, Y ... Yy
0 I, ... Yy
Y= . .
0o 0 ... I

where the blocks are of sizes g; X ¢;,1 <i,j <tand Y; € M(q;,q;,P~") fori < j. Let
1 <i<t—1.Thensince Y;;,1 € M(qi, qiv1 ,P~1), we have TYiiv1 € M(qi, gis1, R). Write
W,',,'+1 for the image of TY,',j.‘.] in M(qi, i+l R/P)
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LEMMA 2.12.  Suppose that Q = Y(‘P). Then with notation as above,
Wi € M(gi,qiv1,R/P)

has rank gy forall 1 <i<t—1.

PROOF.  The proof is by induction on n. The statement in vacuous when n = 1 so we
can assume that it is true for n’ = n — 1. Now if we write

(Y 1
=(o 7)

as before, we know from Lemma 2.11 that Y’ € Ng N K'apK' where Q = W(P').
Write Y’ in block form as

I, Y, ... Yi,
P A, (¢
0 0 ... I,

and for 1 <i<r—2,let W,,, be the image of 7Y;,,; in M(g;,gi+1, R/ P). Then by the
induction hypothesis, Wi/,i+l hasrank g;y;. But W,y = W,.’,M for1 <i <t—2.Thus we
need only show that W,_, , has rank g;.

Write P = (p1,....pn)sP1 = P2 > -+ > py > 0. Now since Q = Y¥(P), we have
t=prand g, = m(P,p;).Since Y ' € Ka,'K, there are A,B € K so that Y~' = Aa,,'B.
But a,' is a diagonal matrix with entries 7 7*',... 777! Since t = p; > p; for all
1 < i < n, we have T‘"ag,' € M(n,n,R). Further, since exactly g, of the diagonal
entries of 7' 'a' are equal to 1 while the rest are in P, we see that the image of 7'~ 'ag'
in M(n,n, R/ P) has rank g,. Now since A, B € K, the image ofT"'AaE,lB inM(n,n,R/P)
has rank g, also. Now write Y~! in block form as

I, X X1
N Xor
0 0 .. I,

It is easy to see that X;; € M(qi,q;,P"7) forall 1 < i < j < t. Thus 7 'Y ! €
M(n,n,R) and its image in M(n, n,R/P) has the same rank as the image of 71X, in
M(q1,9:,R/P). Thus since 7~ 'Y~! = 7"~'Aay'B, we see that the image of 7'~'X), in
M(q\,q:, R/ P) has rank g,. But 71X, = (=)' (7Y 12)(7Y23) - - - (1Y, 1) plus a sum of
terms in M(qy, q, P). Thus the image of 7Y, , in M(q,—1, q;, R/P) has rank g;. =

Now let k be an unramified unitary character of F* of order d, d a divisor of n. Extend
Kk to a character of G, and let G be the kernel of x in G. For any ¥ € G with G, C Gy,
let

MG = [ Fo . f € CR(G),
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be the twisted orbital integral-of f over the orbit of 7. For ¥ € G with Gy ¢ G, we set
A (f,7) = 0forall f € CX(G).

As before, for Q € Py, let ug € Nq represent the orbit corresponding to Q.. If
Q =(q1,..-,491),q1 > g2 > - -+ > gy, we can take

I, up uy;

0 qu Uy
uQ = )

0 0 I,

where u; = 0 forj > i+2andfor1 <i<r—1,

1
Uiyl = ( Oq”') .

Let P/ ={Q € P, : dm(Q,i), 1 <i<n}.
LEMMA 2.13.  Suppose that Q ¢ PZ. Then Guq ¢ Go.

PROOF. Write Q = W(P),P = (pi,...,p,). Now Q & P? implies that there is at
least one i such that d does not divide p;. Now as in Lemma 2.10, u; is in the same orbit
as u(‘P) where

upy) 0 ... 0
0 up) ... O

u(P) = ) . .

\ 0 0 ... ulpy)
Here as before form > 1,

[ 7! 0O 0

0 1 0 O

u(m) = :

0 0 ... 1 71

o 0 ... 0 1

is the m X m unipotent matrix with all superdiagonal entries equal to 7. Now let

all,,l 0 0
0 al,, ... 0

a= . .
\ 0 0 carly,

where a; € F*,1 < i < r. Then a centralizes u(‘P) and x(a) = I, x(a;)"". Now
since there is i such that d does not divide p;, we can choose a so that k(a) # 1. Thus
G ¢ Go, and since uq is conjugate to u(‘P), we also have G“Q, ¢ G. N
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LEMMA 2.14. Let Q € P4 and write Q = W(P). Ifx € G withx~ luQx € KagK,
then k(x) = 1.

PROOF.  Let P be the parabolic subgroup of G with unipotentradical N . Letx € G
and writex = kp,k € K,p € Pq.Thenx 'ugx € KagK ifandonlyifp~'uqp € KagK.
Further, since we have assumed that x is unramified, k(k) = 1 for all k € K. Thus
£(x) = K(p). Thus we may as well assume thatx = p € Pg .

Since Q, € Pﬂ we can write Q = (my,...,mi,my,..., M, ..., My,...,ny) where
my > my > -+ > my > 1 and each m; appears d times. For any m > 1 write u(m) €
GL(md, F) for the matrix

I, 71, 0 0

0 I, ', .. 0

um) = | : : T
0 0 0 Uty

\ 0 0 0 vy

Now we can write uqQ in block form as

u(my) * e *
0 u(my)
“Q = : : ) :
0 0 RPN u(mk)

We also write p € P in block form as

pmy) * *
0 pimy)
p= : : ) :
0 0 co. plmy)
Now
p(my) " tu(my)p(my) * ...
-1 0 p(m2) tu(mp)p(my) ... *
plugp = . , , :
0 0 oo pmp) ™ u(mp(my)

Assume that p‘lqu € KapK. We want to prove that k(p) = 1. Since detp =

Hf.‘zl det p(m;), it is enough to show that n(dct p(mi)) =1,1<i<k.
Fix m = m;, 1 <i <k, and write

Pi * .

0 p2 ... *
pm=1. . . .

0 0 eeo Pa
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Then
Im T_lpl_lp?_ *
0 - .. *
p(m)~ u(mp(m) = : - :
0 0 e T 'p;_' \Pd
0 0 ... In

Now we are assuming that p*]qu € KapK. Itis alsoinNg, Q = W(%P) since P
normalizes Nq. Thus by Lemma 2.12, for 1 <i<d— l,pi“pm € M(m,m, R) and the
image of p; 'pir1 in M(m, m, R/ P) has rank m. Thus A;; = p; 'pisi € GL(m, R). Thus
Pist = Piis1 = p1Az - - Ay = p1A], LAl = Az -+ -Ai € GL(m, R). Thus

det p(m) = (detp;)? det A} - - - det A,

and so #(det p(m)) = 1. .
Write Py = Q. QL QG < Q< < Q. Write Q = ¥(P)and letu; = uq,
bi = ¢p. 1 <i<k

THEOREM 2.15.  Let uy,...,u, ¢1,...,0¢ be as above. Then
N A ifj <is
Aﬁ(¢l’ uj) - {# 0’ l_fl :]

PROOF.  For any i,j,

An(dis ) = /G » oi(x ' up)K(x) dx = 0

u;

J

unless there is x € G such that x 'ux € KapK. Write x = pk,p € PQ.k € K. Then
xux e KagpK if and only it p~lujp € KapKMNq.

Suppose that j < i. Then Q, < Q, = Y(F) so that by Lemma 2.9, KapKNNq = 0.
Thus in this case A (¢, ;) = 0.

Now suppose that j = i. Then by Lemma 2.14, x 'u;x € Kagp K implies that k(x) = 1.
Thus s(x) = 1 for all x € G such that ¢;(x"'u;x) # 0, so that

A (Bisui) = A(pi,ui) # 0
by Lemma 2.10. n

3. Examples for SL(n,F). Let G = GL(n,F),G; = SL@n,F), and G, =
{g € GL(n,F) : detg € R*}.Let K; = SL(n,R), andlet B, = {b € K, : b; €
TR Vi > j}. Let H (G, K;) be the Hecke algebra of K| bi-invariant functions in CX(Gy)
and let #{(G, B)) be the Iwahori Hecke algebra of B, bi-invariant functions in CX(Gy).
Since B, C K, we have H(G|,K,) C # (G, B)). For any unipotent element n € G,
let i1, be the distribution on H (G, B)) defined by

mf)= [ flg ' ng)dg, f€H(GB).

Cg, (M\G)
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If nj,n, € G, are unipotent elements which are conjugate via an element of G,, it
is easy to see [H, 3.1] that the linear functionals y,,i = 1,2, are equal up to a scalar.
Thus it is at most possible to separate G, conjugacy classes of unipotent elements of
SL(n, F) using functions in H(G,,B)). Hales proves that if ny,...,n, are a complete
set of representatives for the G, conjugacy classes of unipotent elements of G, then
s - - » U, are linearly independent on H(G,,B)). His proof involves showing that for
each unramified character x of F*, the k-twisted orbital integrals A, (f, u;) defined as in §2
are linearly independent on H (G, B;) as the i; run over a complete set of representatives
for G-conjugacy classes of unipotent elements of G, satisfying Cs(u;) C Gy = {g € G :
r(detg) = 1}. By the results of §2 we know that this is also true for the smaller Hecke
algebra H (G, K;). However, Hales must also show [H, 3.3] that linear independence
for each ~ implies linear independence for y,,, ..., t,,. The proof of this result does not
generalize to H (G, K)). In fact the analogue of Hales theorem is not true for H(G\,K))
in the case that n = 3.

In the case that n = 2, the G,-conjugacy classes of unipotent elements of G|, =
SL(2, F) can be represented by the elements

X

n(x):((l) .l)’ xG{O,T",T'z}.

The n(x),x # 0, lie in a single G-conjugacy class, but n(x), n(x’) lie in the same G,-
conjugacy class just in case val(x) = val(x’)(mod 2). Here for x € F*,val(x) = m € Z
ifx = u™ u € R“. Form € Z,m > 0, let a(m) denote the diagonal matrix in G,
with entries 7", 7~"™. Then for m = 0,n(x) € K,a(0)K; = K just in case x € R. For
m > 0,n(x) € Kja(m)K; just in case val(x) = —m. Let ¢,, be the characteristic function
of Kja(m)K,. Then we can separate the G, -conjugacy classes using ¢,,,m = 0,1, 2.
First, ng = n(0) € K1a(0)K,,n; = n(+—") € Kyja(D)K,, and n, = n(r72) € K,a(2)K,.
Thus p,,(¢;) # 0,0 < i <2.But py(¢;) = 0,i = 1,2, and p,(¢;) = 0,1 <i#j<2.
Thus we have independence for SL(2, F).
Now suppose that n = 3 so that G|, = SL(3, F). For x,y,z € F, write

I x vy
n(x,y,z) = (0 | z) .
0 0 1

Then the regular G-orbit of elements with x # 0,z # 0 splits into three G,-orbits deter-
mined by the image of val(xz ') in Z /3Z. Thus the three orbits can be represented by
ni = n(r,0,1),i =0,1,2. Write i, = i, m = 1,2.

PROPOSITION 3.1.  There is a constant ¢ # 0 so that j1,(¢p) = cua(p) for all ¢ €
H(Gy,K)).

PROOE. Let N = {n(x,y,2) : x,y,z € F} and fix a Haar measure v on N. For m =
1,2, let Ny, = {n(x,y,2) : val(xz~') = m(mod 3)}. For any diagonal matrix a in G, let
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¢4 be the characteristic function of KjaK;. Then for m = 1,2 there is a positive constant
Cm such that i, (¢) = cu/(N,NK1aKy). Define ¢: G; — Gy by 1(g) = (wgw ')’ where

0o 0 -1
w=| 0 =1 0
-1 0 0

represents the longest element of the Weyl group and the superscript ¢ denotes transpose.
Then w(n(x, v, z)) = n(z,y,x) so that 1 is a measure preserving transformation of N
with (N)) = Np,Y¥(N,) = Nj. Further, ¥(K,aK,) = K aK, for every diagonal matrix
a € Gy. Thus

V(N2 MK aKy) = v(y(N N KiakKy)) = v(Ny O KaK))
for all a. L]
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