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UNIPOTENT ORBITAL INTEGRALS 
OF HECKE FUNCTIONS FOR GL(n) 

REBECCA A. HERB 

ABSTRACT. Let G = GL(n, F) where F is a p-adic field, and let 9J{G) denote 
the Hecke algebra of spherical functions on G. Let u\,..., up denote a complete set 
of representatives for the unipotent conjugacy classes in G. For each 1 < / < p, let 
\ii be the linear functional on 9~[{G) such that //;(/") is the orbital integral of/ over 
the orbit of «,-. Waldspurger proved that the /z,-, 1 < i < p, are linearly independent. 
In this paper we give an elementary proof of Waldspurger's theorem which provides 
concrete information about the Hecke functions needed to separate orbits. We also prove 
a twisted version of Waldspurger's theorem and discuss the consequences for SL(«, F). 

1. Introduction. Let F be a locally compact, nonarchimedean local field of char­
acteristic zero. Let G = GL(n, F) and let K = GL(AZ, R) where R is the ring of integers of 
F. Let C™(G) denote the set of locally constant, compactly supported, complex-valued 
functions on G and let 9{(G) denote the Hecke algebra of functions in Q°(G) which are 
K bi-invariant. 

For any 7 E G we let G7 denote the centralizer of 7 G G and let 

be the orbital integral off over the orbit of 7. Thus for each 7 G G we have a linear 
functional 

/ ^ A ( f , 7 ) , / e C ( G ) . 

Write /x7 for the restriction of this linear functional to ?H(G). 
Let u\,..., up be a complete set of representatives for the unipotent conjugacy classes 

of G. Then it is well known that the linear functionals 
f^A(f,Ui\ feC?(G), l < ï < p , 

are linearly independent. In [W2], Waldspurger proved that they are still linearly inde­

pendent when restricted to the Hecke algebra. 

THEOREM 1.1 (WALDSPURGER). 

{MM|-,1 < i<p} 

is a linearly independent set of functionals on Of{G). 

As a consequence of Waldspurger's result, there exist </>i,..., <f>p G 9f(G) so that 
A(</>;, Uj) = 8y, 1 < ij < p. Using the results of [V] we obtain the following germ 
expansion. 

Supported by NSF Grant DMS 9007459. 
Received by the editors October 5, 1992. 
AMS subject classification: 22E35. 
© Canadian Mathematical Society 1994. 

308 

https://doi.org/10.4153/CJM-1994-015-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-015-3


ORBITAL INTEGRALS 309 

COROLLARY 1.2. Letu\,...,up,<l>u...9 <\>p be as above. Letf G C™(G). Then there 
is a neighborhood Uofl in G so that for all 7 G £/, 

A(/,7) = fA( f , M / )Afc7) . 

In this paper we will give an elementary proof of Waldspurger's theorem which pro­
vides more concrete information about the Hecke functions needed to separate the unipo-
tent orbits. In particular, we will produce diagonal matrices <z/, 1 <i< p, so that if t/>/ is 
the characteristic function of the double coset KatK, then the matrix with entries AO0/, m) 
is upper triangular with non-zero diagonal entries. We also prove the following twisted 
version of Waldspurger's results. 

Let n be an unramified unitary character of Fx such that nn = 1. Extend K to a 
character of G by «(g) = /c(det g) and let G0 = {g G G : «(g) = 1}. Let 7 G G. Then if 
G7 C Go, let 

A«(A7) = f J(x-llxMx)dx, f G C?(G), 

be the twisted orbital integral off over the orbit of 7. If G7 (£. Go, set AK(f, 7) = 0 for 
a l l / e C?{G). 

THEOREM 1.3. Let v\,..., vq be a complete set of representatives for the unipotent 
conjugacy classes in G such that GV/ C Go. Then there are (j)\,..., (j)q G 0~[(G) such that 

K ., , f l , ifl<i=j<q; 

As in the untwisted case, Theorem 1.3 is proven by constructing characteristic func­
tions i/ji of double cosets so that the matrix with entries A«(t/>/, Vj) is upper triangular 
with non-zero diagonal entries. An easy extension of germ expansions to the twisted 
case yields the following corollary. 

COROLLARY 1.4. Let vu . . . ,vq, <j>\,... ,<j>q be as above. Letf G C™(G). Then there 
is a neighborhood Uofl in G so that for all 7 G U, 

AK(f^) = J2AK(f,vi)AK(fr,n 

In [Wl], Waldspurger proved a weaker version of Theorem 1.1, namely that unipotent 
orbital integrals are linearly independent when restricted to the Iwahori Hecke algebra. 
Hales then used this result and twisted analogues to produce the following linear in­
dependence result for SL(n,F) [H]. Let G = GL(n,F),G{ = SL(n,F), and Gu = {g G 
GL(rc, F) : det g G Rx }. Let B C K be the Iwahori subgroup of G and Kx = KnGuBx = 
B PI G\. Let H(G\, K\ ) be the Hecke algebra of K\ bi-invariant functions in C£°(Gi ) and 
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9{(G\,B\) the Iwahori Hecke algebra of B\ bi-invariant functions. If n\,ri2 G G\ are 
unipotent elements which are conjugate via an element of GM, it is easy to see that the lin­
ear functionals /xn., / = 1,2, coming from restricting the corresponding orbital integrals 
to 9{{G\, B\ ) are equal up to a scalar. Thus it is at most possible to separate Gu conjugacy 
classes of unipotent elements of SL(rc, F) using functions in !H(G\ ,B\). Hales proves that 
in fact, if n\,..., ns are a complete set of representatives for the GM-conjugacy classes of 
unipotent elements of SL(n, F), then the linear functionals \in. are linearly independent 
on 9{(G\,B\). However, Hales argument does not extend to the case of ïH(G\,K\). In 
the last section we will show that {/zWi., 1 < / < s}, are not linearly independent when 
restricted to tt{G{,K\) in the case that G\ = SL(3,F). 

I would like to thank Tom Hales for his helpful suggestions. 

2. Unipotent orbital integrals. Let F be a locally compact, nonarchimedean local 
field with ring of integers R. Let r be a generator of the prime ideal P of R. Thus R/P is 
a finite field with q elements for some prime power q and \T\F = q~x. Let G = GL(n, F) 
and K — GL(n,R). Let C™(G) denote the set of locally constant, compactly supported, 
complex-valued functions on G and let fH — {</> G C^(G) : (j){k\gki) = <t>{g),g G 
G, k\, k2 e K}. For any 7 G G we let G7 denote the centralizer of 7 G G and let 

A(f^ = L ,J(x-hx)dx9 f G C?(G\ 7 G G 

be the orbital integral off over the orbit of 7. 
Unipotent conjugacy classes in G can be indexed by partitions of n as follows. Let 

P = Pn be the set of all partitions of n, that is the set of all P̂ = (p\,... ,pn),p\ >pi> 
• ' - > Pn > 0 withpi + •••+/?„ = «. We will write /(îP) for the number of non-zero 
entries in P̂, and will sometimes also write (P = (/?i,... ,pt) where t = /(^P). Given 
Q, = (#i , . . . , qt) G P, t = KQJ, let NQ be the set of block upper triangular matrices in 
G of the form 

/ / „ Yl2 ... YU\ 
_ 0 /,2 . . . Y2t\ 

\ 0 0 . . . / „ / 

where the blocks are of sizes qt x qj, 1 < ij < t, Iq. G M(qt, qi, F) is the identity matrix 
for all 1 < / < r, and Y y G M(g/, qj, F) has arbitrary entries in F for / < j . Now if 
Q, <-> WQ, then w^ G N Q and for all <f> G ?{, 

K(<J>,UQ) = f <j>(n)dn. 
^ jNd 

(See [A-C, 3.10].) 
We will also index certain Hecke functions by partitions. For (P = (p\,... ,pn) G P 

as above, let dp be the diagonal matix in G with diagonal entries iPx ~l, r^2" *,... , T^7- {. 
Let (/>£> be the characteristic function of the double coset Ka<pK. Then <j><p G ^ and 
A(</>rp, WQ) is equal to the measure of Ka<pK Pi JVQ. 
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Let T = (pu... ,pn), ¥' = (p[,... ,p'n) G P where as usual px >p2>m->pn>0 
andp\ > p'2 > - - - > p'n > 0. Then we say fP < (P' if there is 1 < k < n so that/?/ = /?•, 
1 < i < k — 1, and/?£ < /?£. We also say <P <¥' \l there is 1 < /: < rc so that/?/ = /?•, 
fc + 1 < * < n and /?£ < /?[. 

Finally we define the transpose *F: P —-> P as follows. Let îP G P and write P̂ = 
(/?!,... ,/7„),/?i > /?2 > • • • > Pn > 0. For each 1 < i < n, write m((Pj) for the 
multiplicity of / in P̂, that is the number of indices j G {1,2, . . . , n} such that pj = 
/. Then we define ^((P) = Q = (qi,...,qn) where for 1 < / < n,qi = m(fP,ï) + 
ra(lP, /+1)+- • -+ra(fP, n). Then ^ > q2 > • • • > qn > 0 and £?=, # = £?=1 ^(^P, *)/ = /i. 
Thus Q, G P. Further, *F is injective since if T, <P' G P with *F(2>) = *F(2") it is easy to 
see that m(P, i) = m(P\ i) for all 1 < / < n so that P = T1. Thus ¥ is a bijection. It is 
also easy to prove that *F2 is the identity map. 

We want to prove the following theorem. Number the elements of P so that <P\ < 
¥2 < * • • < ^m, and let U[ — u^^ G M p ^ , 1 < / < ra, represent the unipotent 
conjugacy classes. Let </>; be the characteristic function of Ka<pK. 

THEOREM 2.1. For all 1 <j<i<mwe have A(0/,wy) = 0. Further, A(</>;, w;) ^ 0 
for all \ <i<m. 

LEMMA 2.2. If<P< <P', then *¥(T) < *F(2"). 

PROOF. Suppose that T < P'. Write ^(T) = Q, = (?i, •. •, 4*) and *F(2") = Q/ = 
(^1,...,q'n). Then there is 1 < k < n so that miP : i) = m{<P' : i),k + 1 < / < rc, and 
m(2> : it) < m((P' : it). Thus qt = q't for k + 1 < / < n and ^ < ^ . Thus 0 , ^ 0 , ' . • 

PROPOSITION 2.3. Létf 2\ Q, G P. Then KapKHN^ = 0 unless W((P) < Q,. Further, 
KacpK r\N^m ^ 0. 

Proposition 2.3 will be proven in a series of lemmas. However, before beginning the 
proof of Proposition 2.3, let us see how it implies Theorem 2.1. 

PROOF OF THEOREM 2.1. If y < i we have Pj < % so that by Lemma 2.2 *F(2}) -< 
^(Pi). Now using Proposition 2.3, Ka<pK H Mp(<p.) = 0, so that A(0/, Uj) which equals 
the measure of Ka^KH My(<p) is 0. Further, for each /, the measure of Ka^KPi My^.) is 
non-zero since Ka<pK DMy^.) is a non-empty open subset of N^rp.y Thus A(</>;, w/) ^ 0 
for all /. • 

LEMMA 2.4. Let G\ be the set of all g G G such that \ detgl^ = 1 and \\g\\oo — 
suPi<ij<n \gij\F G {1,^}. Then Gx = UrpePKapK 

PROOF. Note that for every Œ* G P, deta^p = 1. Further, || a unless ¥ — 
( 1 , . . . , 1) in which case ||tfrp||oo = 1. Thus U<peFKafpK Ç G\. Conversely, every g G G\ 
is in some double coset KaK where a is a diagonal matrix with diagonal entries at — 
T"'', 1 ^ i < n, where then; are integers. But now a G KgK impies that | det a\f = | detg|/7 
and ||tf||oo = Iklloo ^ {1^}- Thus E«i = 0 andinfw/ G {—1,0}. It is easy to see that 
up to permutation of the diagonal entries, the a$>, (P G P are the only a's with these 
properties. • 
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We will prove Proposition 2.3 by induction on n. Write 

n = n - 1, P' = P„, G' = GL(n',F), K' = GL(n\R) 

mdG[ = {gf G G' : | det^ |F = 1, ||g'||oo G {l,<?}}.Fix Q, = (q\,q2,---,qt) e P 
where f = /(Q,) and gi > #2 > • • • > g? > 0 and write Qj. = (#1, . . . , ^ - l ) G P ' . 
Suppose that Y G NQ,. Note that Y G Gi just in case all blocks Ytj G M{quqhF), 1 < 
i <j < t, have entries in P _ 1 = {JC G F : |jc|f < g}. Thus we can write Y G NQ, D GI in 
block form as 

F = ' o 1 

where Yf eN^D G[,Y\2e M(n', 1, P_ 1), and 0 G M(l, ri, F) denotes the zero matrix. 
For x,y G G, we will write x ~ y if Kx̂ C = Aj/£. 

LEMMA 2.5. Suppose that Y G A^ H Gi as above. Then there are Q' G P7 and 
WneM(ri,l,p-l)sothat 

acpi W i 2 > 

0 1 

PROOF. Since Y' G G[, by Lemma 2.4 there are A7,£7 G K' and ^ G P7 so that 
A'Y'B' = ar. Now 

'A7 0\(Y' Yn](Bf 0\ = ( a^ Wn 
0 1 0 1 0 1 0 1 

where Wn = A'Y\2. • 
Let Œ" — (pi, . . . ,pr} G P7 as in Lemma 2.5 where /(îP7) = r so that a^ has diagonal 

entries a\ — TPl~\a2 = r^2 - 1 , . . . ,ar — r ^ - 1 G R and ar+\ = r" 1 , . . . ,<v = r""1. Write 

A 0 
^ - | 0 r - i 7 

where A G M(r, r, F) is the diagonal matrix with entries a\,..., ar and / G M(V — r, 
n' — r,F) is the identity matrix. 

LEMMA 2.6. W*7/z notation as above, there is X13 G M{r, 1, P_1) so that 

(A 0 X,3 \ 
r ~ 0 r - 1 / 0 . 

\ o 0 1 / 

PROOF. Let X{3 G M(r, l,/3-1) denote the first r rows of WX2 and let X23 G 
M(V — r, 1, P~l) denote the last n! — r rows of W12. Then 

/ / 0 0 \ 
0 / -rX2 3 G AT 

\ 0 0 1 / 
and 

/A 0 X13\ / / 0 0 \ (A 0 X13\ 
0 T" 1 / X23 0 / - T X 2 3 = 0 r - 1 / 0 . 

\ 0 0 1 / \ 0 0 1 / \ 0 0 1 / 
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LEMMA 2.7. Suppose that the notation is as above. IfX^ G M(r, l,R), then Y G 
Ka<pK where Œ* — (p\,... ,/?r, 1). IfX\3 $ M(r, l,R), then there is I < i < r so that 
Y G KacpK where <P = (pu... 9pi-\,pi + l,/?,-+i,... ,pr). 

PROOF. X^ has entries w\,...,wr G P~l.By permuting the indices if necessary, 
we can assume that there is 0 < s < r so that w\,...,ws $ R and ws+\,..., wr G R. 
Write X\4 G M(s, l,P~l) for the matrix with entries w\,...,ws andX24 G M(r — s, 1,/?) 
for the matrix with entries w5+i, . . . , wr. Write A\ G M(s, s, R) for the diagonal matrix 
with entries a\,...,as and A2 G Af (r — s,r — s,R) for the diagonal matrix with entries 
a5+i,..., ar. Note that since we have permuted the entries we can no longer assume that 
P\ > Pi > • • • > pr- We can and will assume however that/?i > p2,...,ps- Now 

0 0 0 
/ 0 -X24 

0 / 0 
0 0 1 

0 

\ 
EK 

I 
and 

/ ' 0 0 0 
0 / 0 —^24 

0 0 / 0 
\ 0 0 0 1 

1 ' 0 
0 

\ 0 

0 
A2 

0 
0 

0 
0 

TlI 

0 

* I 4 ^ 

•^24 

0 
1 / 

(A{ 0 0 Xu\ 
0 A2 0 0 
0 0 T - 1 / 0 

\. 0 0 0 1 / 

In particular, we now see that if s — 0, then 

(A 0 0 \ 
y - o r"1/ o 

\o o 1/ 

a<p< 0 
0 1 

Up to a permutation of the diagonal entries, this last matrix is equal to a^ where & — 

(pi,...,prA)> 
Now assume that s > 0. For 1 < / < s we can write w/ = u(r~l where w, G 7?x is 

a unit. Let £/ G M(s, s, F) be the diagonal matrix with diagonal entries u\,...9us. Then 
U~lX\4 =T~X G M(5,l,/*-1) has every entry equal to r_1 . Since 

and 

' 0 
0 

\ 0 

U 0 0 ON 

7 0 0 
0 0 / 0 

0 0 1/ 
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we now have 

(Al 

0 
0 

0 0 

y ~ 
(Al 

0 
0 

A2 0 
0 T"1/ 

\o 0 0 

inally, write 

Ai 
(ax 0 
VO A3 

0 
1 / 

where A3 G M(s — 1,5 — 1,/?) is the diagonal matrix with diagonal entries a^ . . . 9as. 

Recall that we are assuming that at = TPI~X where p\ > p2,... ,ps. Thus if we write 

a 1 G M (s — 1,1, R) for the matrix with all entries equal to a \, then A^ l a \ G M (s —1,1,7?) 

~Pi, 2 <i < r. Thus we have 

C 

and 

C 

/ T 0 0 0 - 1 \ ( 1 0 0 0 0\ 
- 1 / 0 0 0 V f l i / 0 0 0 
0 0 / 0 0 , D = 0 0 / 0 0 
0 0 0 / 0 0 0 0 / 0 

\ 1 0 0 0 0 / \ —ra\ 0 0 0 1/ 

/ f l 1 0 0 0 T " ^ 1 ra\ 0 0 0 0 

c ) A3 0 0 T - 1 0 A3 0 0 0 

c ) 0 A2 0 0 D = 0 0 A2 0 0 

c ) 0 0 T - 1 / 0 0 0 0 T~lI 0 

\c ) 0 0 0 1 / \ 0 0 0 0 r -

eK 

Thus Y ~ acp where P̂ has non-zero entries p\ + l,/?2, • • • ,Ps>Ps+\ » • • • >/?#-• However, we 

do not know that/?i is the largest of thep/ 's , just that it is the largest among p\,... ,ps. 

Thus we just know that /(fP) = /(fP7) and that one non-zero entry /?/ in (Pf has been 

replaced by pl• + 1. • 

LEMMA 2.8. Suppose that T, Q, G P with KarpKHN^ ^ 0. Then l(QJ > /(*F(!P)). 

PROOF. Suppose that Y G Ka^KON^. Then Y~l G NQH KCT^K. Suppose that 

px is the largest entry in î \ Then /(^(fP)) = pi and H ^ I U = \r~Pi+{ \F = qP]~l. Thus 

|| Y~~l ||00 = ^ 1 _ 1 . But if l(Q) = f, then Y is a t x t block upper triangular matrix with 

identity matrices on the diagonal and entries above the diagonal in P _ 1 . Now it is easy 

to see that || F_1||oo < q*~l- Thusp\ <t. m 

LEMMA 2.9. Suppose that 2>, Q, G P witfi A T a ^ H ^ ^ 0. TTzerc *¥(&) < Q-

PROOF. By Lemma 2.8 we know that /(^(fP)) < /(QJ. Now if 1^¥{T)) < l(Q), 

then *F(!P) -< d. Thus we may as well assume that l^¥(T)) = /(QJ-

The proof of the lemma is by induction on n. It is clearly true for n = 1 since there is 

only one partition. Assume that n > 1 and that the lemma is true for n' = n — 1. Suppose 

that F G ATflrp̂ T H NQ where g = (#1, • • •,%) and as before let Qj = (q\,..., qt — 1). 
Note that 

f, i f ^ > l ; 
f — 1, if <7r = 1. KQÙ 
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Then Y G NQ HI G\ SO we can write Y as before as 

where Y' G NQ D G\, Yn G M(n', 1,P-1), and 0 G M(l,rc',F) denotes the zero matrix. 
Now there is 2" G P' such that F' G K'a^K'. Thus Â ^ À * H A ^ ^ 0, so by the 
induction hypothesis, we have ¥(2") < d - We will use Lemma 2.7 to see that this 
implies that *¥(¥) < d -

CASE 1. Suppose that we are in the case of Lemma 2.7 that Zn G M(r, 1, /?). Thus in 
this case if (P' = (pu... ,/>r) we have fP = (/?i,... ,pn 1). Thus /(*F(!P)) = /(¥(# ')) = 
pi. Now *F(2") ^ d implies that Z(*F(2")) < / ( d ) . But then /(¥(!?)) = /(^(fP7)) < 

/ ( d ) < KQJ = /(VF(^)). Thus /(¥(£")) = / ( d ) and / ( d ) = /(d)- Thus * = Px 

and <?, > 1. Now m{<2, 1) = m(2", 1) + 1 and m(Œ>J) = m(P\i) for i ^ 1. Note 
m(!P,rc) = 0 since 1 G 2>. Thus if we write ¥ ( # 0 = (mi,m2,... ,m,), then *F(!P) = 
(mi + l,m2 , . . . ,m,). Recall that d = to,...,^),Qi = ( t f i , . . . , ? , - 1). Now ¥ ( # ' ) ^ 
d impies that mt < qt - 1 < <?f. Thus *F(!P) -< Q, unless f = 1 in which case ^F(fP) = 

d = (i). 

CASE 2. Suppose that we are in the case of Lemma 2.7 that X13 $ M{r, 1, /?). Write 
fP' = (pi, . . . ,pr) as above. Then there is 1 < / < r so that P̂ is obtained from 2" 
by replacing /?; with /?; + 1. That is there is 1 < b = pt < n — 1 so that m((P,b) = 
m(fP',b) - 1, m(¥,b+ 1) = m(P\b+ 1)+ 1, and m(fPJ) = m(<P\j)J ^b,b+l. Thus if 
we write ^(îP') = (mi,.. . ,mk), then ^(fP) = (mi,...,m^,m^+i + 1,...,mk). Note that 
/(¥(!?)) = /(¥(# ')) = ife unless b = it, in which case /(¥(#)) = /(*?(!P')) + 1. We 
divide further into cases according to whether qt = 1 or #, > 1 and b = k or b < k. 

CASE 2A. Suppose that qt=lmdb = k. Then * = / (d) = / ( d ) + 1 = / ( ^ W ) = 

l^¥(T')) + 1 = 6 + 1 . Thus d 0x^(^1 ^(fP') have the forms: 

d = (^ i , . . . , ^ - i , l ) , d = (<7i,...,g?-i), 

*F(!P) = (mi,... ,m,_,, 1), W ) = (mi,... ,m,_i). 

Clearly *F(!P') ^ d implies that H*((P) < d-

CASE 2B. Suppose that qt = 1 and b < k. Then l^¥(¥)) = / (¥(# ' )) < / ( d ) < 
/(d)- This contradicts our assumption that /(H'(fP)) = /(d)- Thus this case doesn't 
occur. 

CASE 2C. Suppose that qt > 1 and b = k. In this case Q = (q\,...9qt) and ^(fP) = 
(mi,... ,m,_i, 1). Since 1 < qt we have ¥(2*) -< d-

CASE 2D. Suppose that ^ > 1 and b < k. Now / (d ) = / ( d ) = /(^(fP')) = 
/(*FCP)). Thus f = & and ¥ (# ' ) ^ d implies that mt < qt - 1 < #,. This implies that 
"¥(T) < d unless t = k = b + 1 so that Q,» 0x^(^1 *F(2") are of the form 

d = iqu-.^qt-uqi), d = (lu - - - ,qt-uqt - 1) 
*F(fP) = (mi,... ,mt-umt + 1), X¥((P/) = (mi,.. . ,m,_i,m,). 
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Again it is clear that ¥(2") < Qi implies that *F(2>) r< Q,. • 

LEMMA 2.10. For any ¥ G P, N^m n JfajpA' ^ 0. 

PROOF. For any m > 1 let lPm = (m) G Pm and write fl(ra) = a$ G GL(m, F)- Thus 

/ 

tf(m) = 
0 \ 

\ 0 - 1 / 

Write 

/ 0 1 0 . . . 0 
0 T 1 .. . 0 

o\ 
0 

/ (-îr-1 

( - l ) m - 2 T 
0 . 
1 . 

. 0 

. 0 0 

0 0 0 . . . 1 
0 0 0 . . . r 

\ 1 0 0 . . . 0 

0 
1 
r) 

, B = 
__Tm-2 

\ rm~1 
0 . 
0 . 

. 1 

. 0 
0 
1/ 

fm and Aa(m) = u(m) Bv 

/ I 
0 

^here 

1 .. 
. 0 0 \ 
. 0 0 

u(m) = 

0 
\ 0 

0 .. 
0 .. 

. 1 Til 

. 0 1 I 

is the unipotent matrix with all superdiagonal entries equal to r~l. 
Now let (P = (p\,... ,/?r) where/?i > • • • > pr. Then a$ is conjugate via a permuta­

tion matrix in K to a block diagonal matrix with diagonal blocks a(p\),..., a(pr). Thus if 
we let u(^P) be the block diagonal matrix with diagonal blocks u(p\),..., u(pr), then by 
the above we have u((P) G KarpK. Finally, we claim that there is a permutation matrix 
AGi^so that Au(<P)A-[ G M ^ . This would show that Au((P)A~[ G M ^ H À ^ £ . 

We have <P=(pu... ,pr),Pi > • • • > p r and £ = *F(2>) = foi,... ,^),<7i > • • • > 
qt. WriteM0 = N0 = 0,M,\= Pi + • • •+A, 1 < i < r,Nj = q\ +• '- + qjA <j < t. Now 
for each 1 < m < n there are unique 1 < k < r and 1 < / < pk such that m — Mk_\ + /. 
Similarly there are unique 1 <i <t and 1 < k < qt so that m = Ni-\ +k. Now we define 
a permutation a of {1,2, . . . ,«} by setting cr(Mk_\ + /) = Af/_i + /: where 1 < & < r and 
1 < i < Pk- Note that since / < pk, we have #; > k. 

Now 
r /?*- l 

u{<P) = / + E E T-'EiM^+iMk-i + i + l ) 
/ k = l i = l 

where / denotes the identity matrix and £(/,./) denotes the matrix with 1 in the (ij) place 
and zeroes elsewhere. Now if A G K corresponds to the permutation a defined above, 

Au((P)A~ / + £ J2T-lE(N^l+k,Ni + k). 
k=\ i=l 

https://doi.org/10.4153/CJM-1994-015-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-015-3


ORBITAL INTEGRALS 317 

Now NQ is the set of all block matrices of the form 

/ / * * 2 

Y = 
0 /, qi 

\ 0 0 

where the block Fy is of size qi x g7,1 < / J < t. But for each 1 < k < r, 1 < / < p* — 1, 
we have A: < qi+\ < qt. Thus Af/_i + 1 < N;_i + k < N( and Nt + 1 < Nt + k < Ni+\ so 
that £(7V/_i + A:, M + k) is in the qt x #+i block F^+i. Thus Au(^P)A~l ENQ. u 

This completes the proof of Proposition 2.3, and hence of Theorem 2.1. In order to 
prove a twisted analogue of Theorem 2.1, we will need the following lemmas. 

Let 2\ Q, = (qu...,qt) G P„ and let Y G KacpK n A^. As before we let v! = 
n — 1, Qj, = (#i , . . . , qt — 1) G Pn/ and write 

r = 
Y9 Yn 
0 1 

where Yf eN^H G\ and Fi2 G M{n', l,P~l). 

LEMMA 2.11. Write Y G Ka<pK n N Q as above and suppose that Y' G K'a<p,K'. If 
d = *F(!P), then Ch = ¥(2>'). 

PROOF. Using the notation of the proof of Lemma 2.9 we recall that there is 0 < 
b<kso that ¥(2>), ¥ (# ' ) , Q,, Qi have the forms 

¥CP): 

d = (^ i , . . . , ^ ) , Qj = (qu...,qt- 1), 

(mi9...,mb,mb+\ + l,...,m*), ¥(2>/) = (mu...9mk). 

Now since we are assuming that Q, = *F(fP) we have Q± = (w*i, • • •, ̂ ^, mb+i + 1, • • •, 
mk — 1). Further, since F' G K'apK'nN^, we know that ¥(fP') < Qj • This is impossible 
unless k = Z? or b + 1 so that 

¥(2*') = (m\,...,mb,mb+i), Qj = (mi,.. . ,mb,mb+i + 1 - 1 ) . 

Let fP, Q, G Pn and write Q, = (#i , . . . , ?,), q\ > qi > - ' > qt> Write y G /fo<p£ H 
A/Q in block form as 

I1* 
0 

^12 

V o o 

^2r 

V 
where the blocks are of sizes qt x qj, 1 < ij < t and Yy 6 M(^„ ^7, F ') for i < j . Let 
1 < i: < t — 1. Then since K,,+i G M(qi9qi+uP-l)9 we have TF^+I G M(qhqi+UR). Write 
W^+i for the image of TF^+I in M(qi9qi+uR/P). 
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LEMMA 2.12. Suppose that Q — ^(fP). Then with notation as above, 

Wu+{ eM(qhqi+l9R/P) 

has rank qt+\ for all 1 < i < t — \. 

PROOF. The proof is by induction on n. The statement in vacuous when n— 1 so we 
can assume that it is true for n' = n — 1. Now if we write 

Y1 Y]2 

0 1 

as before, we know from Lemma 2.11 that Y' G NQ H K!a<p,K! where Q, = ^(T'). 
Write Y' in block form as 

Y' 
0 Ia, 

\ 0 0 

Y[ 

V i / 

and for 1 < / < t — 2, let Wii+l be the image of rY'ii+l in M(qt,qi+\,R/P). Then by the 
induction hypothesis, W-i+l has rank qi+\. But W^+\ = W-i+l for 1 < i <t — 2. Thus we 
need only show that Wt-\>t has rank qt. 

Write P̂ = (pi, . . . ,pn),p\ > pi > • • • > pn > 0. Now since Q = *F(!P), we have 
t = p\ and <7r = m(T,p{). Since y - 1 G Ka^lK, there are A, 5 G # so that K"1 = Aa^xB. 
But a^ is a diagonal matrix with entries T~P]+\ . . . ,T~Pn+l. Since t = p\ > pv for all 
1 < / < n, we have rt~xa~(p

X G M(n,n,R). Further, since exactly gr of the diagonal 
entries of rtXa^x are equal to 1 while the rest are in P, we see that the image of rt~xa^x 

in M{n, n, R/P) has rank qt. Now since A, B G K, the image of rt~xAaŒ,xB in M(«, ft, /?/P) 
has rank qt also. Now write Y~x in block form as 

0 
*12 

\ 0 0 

x2, 

IJ 
It is easy to see that X(j G M(qhqjyF~j) for all 1 < i < j < t. Thus Tt~xY'x G 
M(n,n,R) and its image in M(n,n,R/P) has the same rank as the image of rf~xX\t in 
M(q\,qt,R/P). Thus since r ' - 1 ) 7 - 1 = r^Aa^1 /? , we see that the image of rt~xX\t in 
M(quqt,R/P) has rank qt. ButTJ~lXu = (-1)'"1 (^12X^23) • • - (^- i , r ) plus a sum of 
terms mM(q\,qt,P). Thus the image of rYt-\tt inM(qt-\,qt,R/P) has rank <?,. • 

Now let « be an unramified unitary character of Fx of order d, d a divisor of /?. Extend 
K to a character of G, and let Go be the kernel of K in G. For any 7 G G with Ĝ  C Go, 
let 

K(f,l) = / . / ( J T ^ M * ) * / * , / G Cr°°(G), 
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be the twisted orbital integral off over the orbit of 7. For 7 G G with G1 <f_ Go we set 
Kif, 7) = 0 for al l / G C™(G). 

As before, for Q G P„, let UQ G NQ represent the orbit corresponding to Q,. If 
Q, = (qu...,qt\q\ > qi > ' " > qt, we can take 

4d 

IU\ Mi 

\ o o 

U2t 

iJ 
where Uy = 0 forj > / + 2 and for 1 < / < t — 1, 

W/./+1 
r-1/,. 

Let P* = {Q, G P„ : d|ro(CkO, 1 < * < «}• 

LEMMA 2.13. Suppose that Q, ^ Pf. Then GU(l <£_ G0. 

PROOF. Write Q = ¥(2*), (P = (pu... ,pr). Now Q, £ Pj( implies that there is at 
least one / such that d does not divide/?/. Now as in Lemma 2.10, UQ is in the same orbit 

as w(lP) where 

W(2>) = 

(u(p\) 0 
0 w(p2) 

\ 0 

0 \ 
0 

U(pr)/ 

Here as before for m > 1, 

u(m) 

/ I T - 1 . . . 0 0 \ 
0 1 .. . 0 0 

0 0 .. . 1 rLl 

\ 0 0 .. . 0 1 / 

is the m x m unipotent matrix with all superdiagonal entries equal to r l. Now let 

/a\Ip 0 
0 a2Ip 

\ 0 

^ 

... arIPr I 

where at G F x , 1 < / < r. Then a centralizes u(^) and K(CL) = n[=i K(aifl- Now 
since there is / such that d does not divide/?/, we can choose a so that K(O) ^ 1. Thus 
GU((P) 't- Go> and since WQ is conjugate to u((P), we also have Gu (£ GQ. m 
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LEMMA 2.14. Let Q, G P^ and write Q, = ¥ ( # ) . # * G G withx^UQX G ÂTâ AT, 

£/Î£/Î /c(x) = 1. 

PROOF. Let PQ be the parabolic subgroup of G with unipotent radical NQ. Let x G G 

and writex = kp,k G K,p G P ^ . T h e n x ^ W Q * G A^/pA^ifandonlyif/^WQ/? G KacpK. 

Further, since we have assumed that K is unramified, K,(k) — 1 for all k £ K. Thus 

«(x) = n(p). Thus we may as well assume that x = p G P Q . 

Since Q, G Pf, we can write Q = ( m i , . . . , m\, ra2,..., m2,..., m^ , . . . , m^) where 

tf*i > m2 > • • • > m^ > 1 and each m* appears d times. For any m > 1 write u(m) G 

GL(raJ, F) for the matrix 

//m T - 1 ^ 0 
0 Im T~Xlm 

u(m) 

0 0 

\ 0 0 

Now we can write wn in block form as 
a-

I u{m\) * 
0 w(m2) 

\ 0 0 

We also write p G P Q in block form as 

0 \ 
0 

* \ 
* 

P = 

(P(m\) * 
0 p(m2) 

\ 0 0 

w(m*) / 

* \ 
* 

P(mk) I 

Now 

/p(mi) lu(m\)p(m\) 
0 

P "QP = 
/?(m2)

 lu(m2)p(m2) . . . 

\ 0 0 . . . p(mk)
 lu(mk)p(mk)/ 

Assume that p~xuqp G Ka^K. We want to prove that n(p) — 1. Since det/7 

nf=i detp(m/), it is enough to show that ft(detp(m;)) = 1,1 < i < k. 

Fix m = m/, 1 < i < k, and write 

POO 

/ P i * ••• * \ 
0 P2 . . . * 

Vo o ... Pd) 
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Then 
/ /m 

0 
T 1PT 

In, 

lP2 • 
* 

m) lu(m)p(m) = 

0 
\0 

0 
0 

. T XPd-\Pd . 

In, 1 

Now we are assuming that p~xuqp G Ka<pK. It is also in NQ, Q, = ¥(!?) since P Q 

normalizes NQ. Thus by Lemma 2.12, for 1 <i<d— l,p^lpi+\ G M(m,m,R) and the 

image o f / ^ / ^ l in M(m,m,R/P) has rank ra. Thus Ai+\ = pJxpi+\ G GL(m,R). Thus 

Pi+i = /7|A|+i = p\A2 • • • Ai+i = p\A'M,A'i+x = A2 • • -A|+i G GL(m,fl). Thus 

and so «:(det/?(m)) = 1. 

<j>i = </><p, 1 < / < k. 

det p(m) = (detp\)ddetA'2 • • -detA^ 

• 

< C&. Write Ci = *F(2*) and let ut = UQ., 

THEOREM 2.15. Let u\,..., w ,̂ (j>\,..., </>£ &£ «s above. Then 

0, (ft < i; 

7^0, 1/1=7. 
AK(<f>i9Uj) 

PROOF. For any ij, 

AK(6i,Uj) = / <j>i(x Ujx)n{x)dx — 0 
JGU.\G JGUJ\G 

unless there is x G G such that ^_1w/x G Ka<pK. Write x = /?£,/? G P Q , & G # . Then 

x~lUjX G KacpK if and only if p~]Ujp G Ka^KDNa. 

Suppose that y < /. Then Qif<QL= ¥(2*) so that by Lemma 2.9, Ka^KHNq. = 0. 

Thus in this case A«(0/, My) = 0. 

Now suppose thatj = /. Then by Lemma 2.14, x~xU[X G KacpK implies that K(X) — 1. 

Thus K(X) — 1 for all x G G such that <j>i(x~xUix) ^ 0, so that 

AK((/>/, ii/) = A(0|,W|) ^ 0 

by Lemma 2.10. 

3. Examples for SL(/i,F). Let G = GL(n,F),Gi = SL(n,F), and Gw = 

{g G GL(w,F) : detg G / ? x } . Let K{ = SL(n,/?), and let Bx = {b G Kx : Z^ G 

r/? V/ > . /}• Let 5{{G\, K\) be the Hecke algebra of K\ bi-invariantfunctions in C^(G\) 

and let 9i(G\, # i ) be the Iwahori Hecke algebra of B\ bi-invariant functions in C£°(Gi ). 

Since B\ C K\9 we have 9{(G\,K\) C 9l(G\,B\). For any unipotent element n G G\, 

let fin be the distribution on 9{(G\, #i ) defined by 

Vn(f) 
JCGl (n)\Gi 
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If m,ni G G\ are unipotent elements which are conjugate via an element of GM, it 

is easy to see [H, 3.11 that the linear functionals /xw., / = 1,2, are equal up to a scalar. 

Thus it is at most possible to separate Gu conjugacy classes of unipotent elements of 

SL(n,F) using functions in 9f(G\,B\). Hales proves that if n\,... ,ns are a complete 

set of representatives for the Gu conjugacy classes of unipotent elements of G\, then 

/ i n i , . . . , [ins are linearly independent on 9f(G\, B\ ). His proof involves showing that for 

each unramified character K, of Fx, the /c-twisted orbital integrals AK (f, m) defined as in §2 

are linearly independent on 9f{G\ , #i ) as the U[ run over a complete set of representatives 

for G-conjugacy classes of unipotent elements of Gi satisfying CG(UJ) C Go = {g G G : 

fi(detg) = 1}. By the results of §2 we know that this is also true for the smaller Hecke 

algebra 9f{G\,K\). However, Hales must also show [H, 3.3] that linear independence 

for each K implies linear independence for / i W ] , . . . , /i„v. The proof of this result does not 

generalize to 9i(G\, K\). In fact the analogue of Hales theorem is not true for 9f(G\, K\ ) 

in the case that/? = 3. 

In the case that n = 2, the Gu-conjugacy classes of unipotent elements of Gi = 

SL(2, F) can be represented by the elements 

« W = ( J {J , *e{0,T-',T-2}. 

The n(x),x ^ 0, lie in a single G-conjugacy class, but n(x)yn(xr) lie in the same Gu-

conjugacy class just in case val(x) = val(V)(rnod2). Here for x G Fx, val(x) = m G Z 

if x = UT"1^ G R X . For m G Z, m > 0, let a(m) denote the diagonal matrix in G\ 

with entries 7m,r~m. Then for m = 0, n{x) G ^ i 0(0)^1 = K\ just in case x G /?. For 

m > 0, AZ(JC) G K\a(m)K\ just in case val(x) = —m. Let <̂>m be the characteristic function 

of K\a(m)K\. Then we can separate the Gw -conjugacy classes using <t>m,m = 0, 1,2. 

First, n0 = n(0) G Kxa(0)Kun\ = n{r~x) G K{a(\)Ku and n2 = " ( r" 2 ) G Kxa(2)K\. 

Thus /iw.(0i) ^ 0,0 < / < 2. But /xWo(0/) = 0, i = 1,2, and /i„,(<^) = °> ! < ^ i < 2 -

Thus we have independence for SL(2, F). 

Now suppose that n = 3 so that Gi = SL(3, F). For x,y,z G F, write 

/ I x yX 
n(x,y,z)= 0 1 z . 

\ 0 0 1 / 

Then the regular G-orbit of elements with x ^ 0, z ^ 0 splits into three Gu -orbits deter­

mined by the image of valiez"1) in Z / 3 Z . Thus the three orbits can be represented by 

ni = n{r\ 0, 1), / = 0,1,2. Write \im — jiUm, m— 1,2. 

PROPOSITION 3.1. There is a constant c ^ 0 so that /ii((/>) = C/X2WO for all (p G 

rt{GuKx). 

PROOF. Let N = {n(x,y,z) : x, v,z G F} and fix a Haar measure v on Af. For m = 

1,2, let Â m = {n(x,y,z) : val(xz_1) = ra(mod3)}. For any diagonal matrix a in G\, let 

https://doi.org/10.4153/CJM-1994-015-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-015-3


ORBITAL INTEGRALS 323 

(j>a be the characteristic function of K\aK\. Then for m — 1,2 there is a positive constant 
cm such that fim(4>a) — cmv(NmC\K\aK\). Define^- G\ —> G\ by ijj(g) = (wgw-1)'where 

w • 

represents the longest element of the Weyl group and the superscript t denotes transpose. 
Then i/j(n(x,y,z)) = n(z,y,x) so that ijj is a measure preserving transformation of TV 
with ip(N\) = ^2,^(^2) = N\. Further, i/j(K\aKi) — K\aK\ for every diagonal matrix 
a G G\. Thus 

u(N2nKlaKl) = z/(V(Ni C\KxaK\j) = v(NxnKxaKx) 

for all a. m 
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