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Introduction. A vector measure (countable additive set
function with values in a Banach space) on a field may be extended
to a vector measure on the generated o-field, under certain hypo-
theses. For example, the extension is established for the bounded
variation case [2, 5, 8], and there are more general conditions
under which the extension exists [1]. The above results have as
hypotheses fairly strong boundedness conditions on the norm of
the measure to be extended. In this paper we prove an extension
theorem of the same type with a restriction on the range, sup-
posing further that the measure is merely bounded. In facta
vector measure on a o-field is bounded (III. 4.5 of [3]) but it is
conceivable that a vector measure on a field could be unbounded.

The proof of the extension theorem of this paper will depend
on the following theorem of B.J. Pettis [3]:

"A weakly countably additive vector valued set function on
a o-field is countably additive, thatis, a vector measure''.

To indicate that a union is disjoint we will write E'1 + E2 + ...

instead of E U E U ... and ZE instead of UE
1 2 n n

Extension theorem. A bounded vector measure on a field,
taking its values in a reflexive Banach space, extends uniquely to
a vector measure on the generated o-field.

Proof. Let p be a bounded vector measure on a field =,
taking its values in a reflexive Banach space X . Let Z' denote
the o-field generated by = and let X* denote the dual space of
X . Denote by x the natural isomorphism of X onto X*H (dual
space of X*):
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¥ (x) x* = x¥x (xeX, x*sX*) .
For each x*eX* the scalar set function
¥ 1 E > £ (E) (Eex)

is a scalar measure on X and so has a unique extension to a
scalar measure, denoted ;C_'!p , on X' .

With each EeX' we associa\te1 the scalar function fE on

x* .

fE(X*) = ;FH(E) (x*ex¥) .

It follows, from the uniqueness of the scalar measure extensions,
that fE is a linear functional on X* . In fact, for x*, Y*CX*

and scalars o, B,
(ax® + By*)u = ax¥p + B y*p

because each member is a scalar measure on X', and they
coincide on X . Therefore

1]

£(oxk + By*) = (a3 ¥ ByF)n (E)
ax*p (E) + B y*p (E)

afE(x*) + ﬁfE(x*) .

"

n

We next show that, for any EeZ', the linear functional fE

is continuous. For arbitrary x¥eX¥,\ = x¥u is a finite

scalar measure. Let )\1, ey )\4 be the positive finite

measures such that )\1 - )\2, )\3 - )\4 are the Jordan

decompositions of the real, imaginary parts, respectively of X\.
Let Ae X', ¢ >0 be arbitrary. It is clear from the proof of
13, D[G] that there exists a Be X such that, simultaneously,

N(A-B) +).(B-A) =\ (AAB)<¢ (i=1,...,4). Then,
4
| MA-B)|< Zr (A-B) < —‘2- and |\(B-4)| < % so that

[Ix(a)] - In®)] ] < Ix(A)-A(B)]) < |NA-B)] + |\(B-A)] < .

as suggested to the author by Professor E. Granirer
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Since ¢ is arbitrary, it follows that, for all x%*eX¥*,

sup [xkp(A)| = sup [xkp(A)]
Ae2! AcZ

Hence, for fixed EeX!' ,

[£.Ge)| = |3 (B)] < sup [ (A)]
AeZ!

= sup [ ¥*p (A)| = sup [x+p (A)]
AeZ Az

< [l sup [u(a)] .
AeX

The continuity established, for each EeX!', fE is an element of

X** | So we have the set function v on =', with values in X¥¥ :

UE) = fE (EeZ') .
For disjoint sets E , F belonging to Z',

(%) = xku (E+F) = x¥p (E) + xFp (F)
fE(x*) + fF(x*) .

L E+m)

"

This holding for all x*eX* , we have

v(E+F) = f +fF=v(E)+v(F).

fEwr) " 'E

Thus the set function v is finitely additive.

00
Let E=X E (E ¢2X') and let x* be an arbitrary element
n n
1
of X* :
o0
V(E)x = £_(x%) = ¥ (E) = S5y (E_)
E n
1
00 0
= ZfE (x¢) = Z v(En) x¥&
1 n 1

Let @ be the set function on Z' with values in X , defined:

B(E)

I

X_1 v(E) (E€Z') . Then the last equation becomes
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00
Since this equation holds for all xkeX® whenever E =3 En
1
(E €2') , the theorem of Pettis asserts that § is a vector measure
n

on X'.
Let EeX ; then for arbitrary x¥eX™

xt B(E) = v(E) 3% = {_(x¥) =% (E) = x* p(E) .

Therefore p(E) = w(E) for all EeX . The existence of the exten-
sion established, it remains to prove its uniqueness. Let [ be

a second vector measure on X' extending w . By the uniqueness
of the scalar measure extensions,

Xy = X[, all xkeX™ |
So for given EeX', xtp(E) = x¢[(E) for all x*eX’ , and therefore
(4% —
¥(E) = B(E) .
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