CORRECTION TO

"NOTES ON NUMERICAL ANALYSIS II" ${ }^{[1]}$
Hans Schwerdtfeger

On the occasion of a talk at the 4 th Gatlinburg Symposium on Numerical Algebra (April 1969), Dr. J.D. Powell drew my attention to an error in the representation of the coefficients c_{3}, c_{4}, \ldots by means of the divided differences as given on p. 43 (bottom lines) of my paper referred to in the title of this note. He pointed out that if $f(x)$ was a sectionally linear interpolation of a quadratic function, then the values c_{3}, c_{4}, \ldots would all be zero which is impossible.

Although the values of the c_{j} are not actually used in the course of the paper, their correct values in terms of the divided differences may now be indicated for $j=3,4,5$. They can be calculated successively from the formulae

$$
\begin{aligned}
& f\left(x_{0}\right)=c_{0}, f\left(x_{1}\right)=c_{0}+c_{1}\left(x_{1}-x_{0}\right) \\
& f\left(x_{2}\right)=c_{0}+c_{1}\left(x_{2}-x_{0}\right)+c_{2}\left(x_{2}-x_{1}\right) \\
& f\left(x_{3}\right)=c_{0}+c_{1}\left(x_{3}-x_{0}\right)+c_{2}\left(x_{3}-x_{1}\right)+c_{3}\left(x_{3}-x_{2}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& c_{1}= f\left(x_{0}, x_{1}\right), c_{2}=f\left(x_{0}, x_{1}, x_{2}\right)\left(x_{2}-x_{0}\right) \\
& c_{3}=\left(f\left(x_{0}, x_{1}, x_{2}\right)+f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\left(x_{3}-x_{0}\right)\right)\left(x_{3}-x_{1}\right) \\
& c_{4}=\left(f\left(x_{0}, x_{1}, x_{2}\right)+f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\left(x_{4}-x_{1}+x_{3}-x_{0}\right)\right. \\
&\left.\quad+f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)\left(x_{4}-x_{0}\right)\left(x_{4}-x_{1}\right)\right)\left(x_{4}-x_{2}\right) \\
& c_{5}=\left(f\left(x_{0}, x_{1}, x_{2}\right)+f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\left(x_{5}-x_{2}\right)\right. \\
&+ f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)\left(x_{5}-x_{1}\right)\left(x_{5}-x_{2}\right)+\left(x_{4}-x_{0}\right)\left(x_{5}-x_{2}\right) \\
&\left.+\left(x_{4}-x_{0}\right)\left(x_{4}-x_{1}\right)\right)
\end{aligned}
$$

REFERENCE

1. Hans Schwerdtfeger, Notes on numerical analysis II. Canad. Math Bull. 3 (1960) 41-57.
