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In this article, we develop a novel high-dimensional coefficient estimation procedure
based on high-frequency data. Unlike usual high-dimensional regression procedures
such as LASSO, we additionally handle the heavy-tailedness of high-frequency
observations as well as time variations of coefficient processes. Specifically, we
employ the Huber loss and a truncation scheme to handle heavy-tailed observations,
while �1-regularization is adopted to overcome the curse of dimensionality. To
account for the time-varying coefficient, we estimate local coefficients which are
biased due to the �1-regularization. Thus, when estimating integrated coefficients, we
propose a debiasing scheme to enjoy the law of large numbers property and employ
a thresholding scheme to further accommodate the sparsity of the coefficients. We
call this robust thresholding debiased LASSO (RED-LASSO) estimator. We show
that the RED-LASSO estimator can achieve a near-optimal convergence rate. In
the empirical study, we apply the RED-LASSO procedure to the high-dimensional
integrated coefficient estimation using high-frequency trading data.

1. INTRODUCTION

With the wide availability of high-frequency financial data, researchers have
developed financial models that can incorporate high-frequency data, and empir-
ical studies have shown that these models better account for market dynamics.
For example, auto-regressive-type models have been introduced based on high-
frequency-based measures, such as realized volatility and realized beta estimators
(Andersen et al., 2006; Engle and Gallo, 2006; Corsi, 2009; Shephard and
Sheppard, 2010; Hansen, Huang, and Shek, 2012; Kim and Wang, 2016; Kim
and Fan, 2019; Song et al., 2021). Empirical studies have demonstrated that
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capturing the auto-regressive structures of high-frequency measures helps explain
financial market dynamics. On the other hand, we often employ realized volatility
estimators when analyzing regression models, such as the Capital Asset Pricing
Model (CAPM) (Sharpe, 1964; Lintner, 1965) and multi-factor models (Fama
and French, 1992). For example, market beta can be estimated by a ratio of
the realized covariance between assets and systematic factors to the realized
variance of the systematic factors (Barndorff-Nielsen and Shephard, 2004). See
Andersen et al. (2006), Mykland and Zhang (2009), and Reiß, Todorov, and
Tauchen (2015) for the related literature. Li, Todorov, and Tauchen (2017) derived
the asymptotic efficiency bound for betas in a linear continuous-time regression
model. In addition, empirical studies have shown the time-varying feature of the
beta process (Ferson and Harvey, 1999; Ang and Kristensen, 2012; Reiß et al.,
2015; Kong and Liu, 2018; Kalnina, 2022; Kong et al., 2023; Oh, Kim, and
Wang, 2024). To address this issue, Aït-Sahalia, Kalnina, and Xiu (2020) employed
time-localized regressions for the multi-factor models. Chen (2018) introduced
the general nonparametric inference for nonlinear volatility functionals of general
multivariate Itô semimartingales. These models and estimation methods have
shown that incorporating high-frequency data helps better account for the beta
dynamics in the finite-dimensional set-up.

In modern financial studies and practices, researchers have found a large
number of factor candidates (Campbell, Hilscher, and Szilagyi, 2008; Bali, Cakici,
and Whitelaw, 2011; Cochrane, 2011; Harvey, Liu, and Zhu, 2016; McLean
and Pontiff, 2016; Hou, Xue, and Zhang, 2020). Thus, we often encounter the
curse of dimensionality, and the beta estimation methods designed for the finite
dimension are neither efficient nor effective. To handle the high-dimensionality,
we often employ LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), and
the Dantzig selector (Candes and Tao, 2007) under the sparsity condition of
model parameters. However, direct application of these methods cannot han-
dle the time-varying feature of beta processes. Recently, Kim, Oh, and Shin
(2025) developed a thresholded debiased Dantzig (TED) estimator that can handle
the high-dimensionality and time variation of beta processes. Specifically, they
employed the Dantzig selector (Candes and Tao, 2007) for each time window
and estimated the integrated beta with the debiasing and truncation schemes.
They established the asymptotic properties of the TED estimator under the sub-
Gaussianity assumption on the high-frequency log-return data. However, we often
observe that high-frequency financial data exhibit heavy tails (Cont, 2001; Fan
and Kim, 2018; Mao and Zhang, 2018; Shin, Kim, and Fan, 2023). Under the
heavy-tailedness assumption, the existing estimation methods, including the TED
estimator (Kim et al., 2025), cannot consistently estimate the time-varying betas.
Specifically, they fail to control the tail behavior of the local beta estimator and
the bias adjustment term, which can lead to large estimation errors. These facts
lead to the demand for developing methodologies that can simultaneously handle
heavy-tailed observations, the curse of dimensionality, and time-varying beta
processes.
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In this article, we develop a robust integrated beta estimator based on
high-dimensional regression jump-diffusion processes. To handle the high-
dimensionality and time-varying beta, we assume that the beta processes are sparse
and follow a continuous diffusion process. To account for the heavy-tailedness of
financial data, we assume that the residual process and jump size processes satisfy
only a finite (2+ ζ )-th moment condition for an arbitrarily small ζ > 0. That is,
we assume that the sources of the heavy-tailedness are the residual process and
jump. We first estimate the instantaneous betas as follows. We employ the �1-
penalty, Huber loss, and truncation method to manage the curse of dimensionality,
heavy-tailedness of the residual process, and jumps, respectively. We show that
the proposed instantaneous beta estimator has the desirable convergence rate.
However, the instantaneous beta estimator has non-negligible biases coming from
the Huber loss and �1-penalty. Thus, to estimate the integrated beta using the
instantaneous beta estimators, we need to mitigate the biases. Since the biases are
heavy-tailed, the existing debiasing scheme cannot efficiently adjust the biases.
To tackle this problem, we propose a novel debiasing scheme and obtain an
integrated beta estimator. We show that the debiased integrated beta estimator
has a near-optimal convergence rate and outperforms the simple integration of the
instantaneous beta estimators without a debiasing scheme. However, due to the bias
adjustment, the debiased integrated beta estimator is not sparse; thus, we further
regularize it to accommodate the sparsity. We call this the robust thresholding
debiased LASSO (RED-LASSO) estimator. We also show that the RED-LASSO
estimator has a near-optimal convergence rate.

The rest of the article is organized as follows. Section 2 introduces the high-
dimensional regression jump-diffusion process. Section 3 proposes the RED-
LASSO estimator and establishes its asymptotic properties. In Section 4, we
conduct a simulation study to check the finite sample performance of the proposed
estimation method. In Section 5, we apply the proposed estimation procedure to
high-frequency financial data. The conclusion is presented in Section 6, and all of
the proofs are collected in the Appendix.

2. THE MODEL SET-UP

We first fix some notations. For any given p1 by p2 matrix A = (
Aij
)
, let

‖A‖1 = max
1≤j≤p2

p1∑
i=1

|Aij|, ‖A‖∞ = max
1≤i≤p1

p2∑
j=1

|Aij|, and ‖A‖max = max
i,j

|Aij|.

The Frobenius norm of A is denoted by ‖A‖F =√
tr(A�A) and the matrix spectral

norm ‖A‖2 is the square root of the largest eigenvalue of AA�. We will use C’s to
denote generic constants whose values are free of n and p and may change from
appearance to appearance.

Let Y(t) and X(t) = (
X1(t), . . . ,Xp(t)

)�
be the dependent process and

p-dimensional multivariate covariate process, respectively. We employ the
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following non-parametric time-series regression jump-diffusion model:

dY(t) = dYc(t)+dYJ(t),

dYc(t) = β�(t)dXc(t)+dZc(t), and dYJ(t) = Jy(t)d�y(t), (2.1)

where Yc(t) and Xc(t) = (
Xc

1(t), . . . ,X
c
p(t)

)�
are the continuous parts of Y(t) and

X(t), respectively, YJ(t) is the jump part of Y(t), Jy(t) is a jump size, �y(t) is
a Poisson process with a bounded intensity process, β(t) = (

β1(t), . . . ,βp(t)
)�

is
a coefficient process, and Zc(t) is a residual process. We note that the subscript
c represents the continuous part of the process. The covariate process X(t) and
residual process Zc(t) satisfy

dX(t) = dXc(t)+dXJ(t), dXc(t) = μ(t)dt +σ (t)dB(t),

dXJ(t) = J(t)d�(t), and dZc(t) = ν(t)dW(t), (2.2)

where XJ(t) is the jump part of X(t), J(t) = (
J1(t), . . . ,Jp(t)

)�
is a jump size

process, �(t) is a p-dimensional Poisson process with bounded intensity processes,
σ (t) is a p by q matrix, and B(t) and W(t) are q-dimensional and one-dimensional
independent Brownian motions, respectively. The stochastic processes μ(t), β(t),
σ (t), and ν(t) are defined on a filtered probability space (�,F,{Ft,t ∈ [0,1]},P)

with filtration Ft satisfying the usual conditions, such as adapted and càdlàg
process. In this article, we do not assume that ν(t) is bounded. Instead, we only
impose the finite moment condition on the residual process in Assumption 1(a),
which allows the residual process to exhibit heavy tails. We assume that the
coefficient β(t) = (

β1(t), . . . ,βp(t)
)�

satisfies the following diffusion model:

dβ(t) = μβ(t)dt +νβ(t)dWβ(t),

where νβ(t) is a p by r matrix, Wβ(t) is an r-dimensional independent Brownian
motion, and μβ(t) and νβ(t) are predictable. The main interest of this article is
to investigate the latent regression diffusion process. From this point of view, the
jump part can be considered as noises, and we discuss how to overcome this in the
following section. The parameter of interest is the integrated beta:

Iβ = (Iβi)i=1,...,p =
∫ 1

0
β(t)dt.

The integrated beta can be considered as the average of spot betas. That is, the
integrated beta presents the average effect of the increment of the covariate process.
When the beta process is constant, the integrated beta is the same as the usual beta
in the regression model.

Remark 1. In this article, we focus on
∫ 1

0 β(t)dt rather than
∫ 1

0 |β(t)|dt. Then,
the variable selection is based on the average effect of the covariate process
on the dependent process. For example, suppose that the beta process smoothly
oscillates around zero. In this case,

∫ 1
0 β(t)dt would be close to zero, whereas
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0 |β(t)|dt can be large. Such factors with zero average effect are excluded in

applications that emphasize the overall long-term effect. We note that the drift
term μβ(t) = (

μβ,1(t), . . . ,μβ,p(t)
)�

can play a significant role in the difference

between
∫ 1

0 β(t)dt and
∫ 1

0 |β(t)|dt. For example, suppose that βi(0) = 0. When
μβ,i(t) changes sign over time, βi(t) may oscillate around zero, which can lead
to a significant difference between the two measures. In contrast, when μβ,i(t)
maintains the same sign and βi(t) fluctuates around that level due to the stochastic
Brownian motion component, the difference is relatively small. On the other hand,
when the beta process exhibits discontinuities or nonsmoothness,

∫ 1
0 |β(t)|dt can

serve as a more relevant measure. However, addressing such cases is beyond the
scope of this article, and theoretically, the localization scheme does not work. Thus,
we leave this issue for a future study.

In the regression-based financial models, there are hundreds of potential factor
candidates (Campbell et al., 2008; Bali et al., 2011; Cochrane, 2011; Harvey
et al., 2016; McLean and Pontiff, 2016; Hou et al., 2020). To account for
this, we allow that the dimension p can be large; thus, we need to handle the
curse of dimensionality. To do this, we assume that the coefficient beta process
β(t) = (β1(t), . . . ,βp(t))� satisfies the following sparsity condition:

sup
0≤t≤1

p∑
i=1

|βi(t)|δ ≤ sp and
p∑

i=1

|Iβi|δ ≤ sp a.s., (2.3)

where δ ∈ [0,1), sp is diverging slowly in p, and 00 is defined as 0. This general
sparsity condition includes the exact sparsity condition, i.e., δ = 0. The exact
sparsity condition implies that only several factors are significant, while most
factors do not affect the dependent process. Thus, we assume that the relatively
small number of factors is significant. We note that since the beta process is an
Itô diffusion process, in general, the boundedness in the sparsity condition (2.3)
is satisfied with high probability. Thus, even without the almost sure sparsity
condition, the results in this article hold with high probability. However, for
simplicity, we assume that the sparsity condition holds almost surely.

3. ROBUST HIGH-DIMENSIONAL HIGH-FREQUENCY REGRESSION

3.1. Integrated Beta Estimation Procedure

In this section, we propose a robust integrated beta estimation procedure for the
high-dimensional regression diffusion model defined in (2.1) and (2.2). Recently,
under the sub-Gaussian assumption, Kim et al. (2025) proposed the integrated
beta estimator that can handle the curse of dimensionality and time-varying betas.
However, empirical studies have demonstrated that the stock log-return data often
exhibit heavy-tails (Cont, 2001; Fan and Kim, 2018; Mao and Zhang, 2018; Shin
et al., 2023), which leads to the inconsistency of the integrated beta estimator.
To accommodate heavy-tailedness, we impose the finite moment condition on the
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residual process, Zc(t), and jump sizes, Jy(t) and J(t) (see Assumption 1). Then, we
propose a robust estimation procedure. We first estimate the instantaneous betas.
To do this, we employ the local regression as follows. For any process g(t) and
	n = 1/n, let 	n

i g = g(i	n)−g((i−1)	n) for 1 ≤ i ≤ 1/	n. Define

Yi =

⎛⎜⎜⎜⎝
	n

i+1Y
	n

i+2Y
...

	n
i+kn

Y

⎞⎟⎟⎟⎠, Zi =

⎛⎜⎜⎜⎝
	n

i+1Zc

	n
i+2Zc

...
	n

i+kn
Zc

⎞⎟⎟⎟⎠,

Xi =

⎛⎜⎜⎜⎝
	n

i+1X̂c�
	n

i+2X̂c�
...

	n
i+kn

X̂c�

⎞⎟⎟⎟⎠, and 	n
i X̂c =

⎛⎜⎜⎜⎝
	n

i X1 1{|	n
i X1|≤v1,n}

	n
i X2 1{|	n

i X2|≤v2,n}
...

	n
i Xp 1{|	n

i Xp|≤vp,n}

⎞⎟⎟⎟⎠,

where kn is the number of observations for each local regression, 1{·} is an
indicator function, and vj,n, j = 1, . . . ,p, are the threshold levels. We use vj,n =
Cj,v

√
logpn−1/2 for some large constants Cj,v, j = 1, . . . ,p. In the numerical study,

we choose

vj,n = √
BVj logpn−1/2, (3.1)

where the bipower variation BVj = π

2

∑n
i=2 |	n

i−1Xj| · |	n
i Xj|. This choice of vj,n is

similar to the usual choice in the literature (Aït-Sahalia and Xiu, 2019; Aït-Sahalia
et al., 2020) except for the logp term, which is used to bound the continuous parts
of the covariate processes with high probability. We note that the thresholding
can detect the jumps in the covariate process X(t) and mitigate their impact on
beta estimators. On the other hand, the thresholding is not used for the dependent
process Y(t) since the robustification method outlined in (3.3) and (3.5) can handle
both heavy-tailedness of the residual process Zc(t) and jumps in the dependent
process Y(t).

Remark 2. In this article, we handle jumps using thresholding and robustifica-
tion methods under the finite activity assumption. When extending this assumption
to allow for jumps of infinite activity or infinite variation, a major challenge arises
from the presence of numerous small jumps. To address this issue, we can apply
truncation methods. Specifically, using truncation techniques, we can establish a
CLT for the estimated volatility functionals in the presence of infinite activity but
finite variation jumps (Mancini, 2009, 2017). For the infinite variation case, we can
still obtain consistency, although the convergence rate is determined by the jump
activity indices (Mancini, 2017). We note that these CLT and consistency results
are established in the finite-dimensional setting. However, it is a theoretically
demanding task to extend these results to the high-dimensional case. Thus, we
leave this issue for future study.
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Meanwhile, when calculating local regressions, we need to handle the curse
of dimensionality and heavy-tailedness. To overcome high-dimensionality, we
often employ the penalized regression procedures under the sparsity assumption.
For example, we often use the LASSO (Tibshirani, 1996) and Dantzig (Candes
and Tao, 2007) estimators with the sub-Gaussian conditions. However, these
estimators cannot handle the heavy-tailed observations, and furthermore, they are
not consistent. To tackle this issue, we use the following Huber loss lτ (Huber,
1964):

lτ (x) =
{

x2/2 if |x| ≤ τ

τ |x|− τ 2/2 if |x| > τ,

where τ > 0 is the robustification parameter. We denote lτ (x) = (lτ (x1), . . . ,

lτ (xp1))
� for any vector x = (

x1, . . . ,xp1

)� ∈ R
p1 . The Huber loss lτ mitigates

the effect of outliers coming from the heavy-tailedness of the residual process
Zc(t) and jump size process Jy(t). Thus, by employing the truncation, Huber loss,
and �1-regularization, we can simultaneously deal with the three issues of the
jumps, heavy-tailedness, and curse of dimensionality. Specifically, we propose the
following instantaneous beta estimator at time i	n:

β̂ i	n
= arg min

β∈Rp
Lτ,i(β)+η‖β‖1 , (3.2)

where η > 0 is the regularization parameter, and the empirical loss function is

Lτ,i(β) = ‖lτ (Yi −Xiβ)/kn‖1 . (3.3)

In Theorem 1, we show that the proposed instantaneous beta estimator β̂ i	n
is

consistent with appropriate τ and η. Then, we can estimate the integrated beta
using the integration of β̂ i	n

’s. However, their integration cannot enjoy the law of
large numbers property since each β̂ i	n

is biased due to the regularization term.
That is, the error of their integration is dominated by the bias terms, which leads
to the same convergence rate as that of β̂ i	n

. Thus, to reduce the effect of the bias
and obtain a faster convergence rate, we propose a debiasing scheme as follows.
First, we estimate the inverse instantaneous volatility matrix at time i	n, �(i	n) =
�−1(i	n), where �(t) = σ (t)σ�(t). Specifically, we use the following constrained
�1-minimization for inverse matrix estimation (CLIME) (Cai, Liu, and Luo, 2011):

�̂i	n = argmin‖�‖1 s.t. ‖ 1

kn	n
X�

i Xi�− I‖max ≤ λ, (3.4)

where λ is the tuning parameter, which will be specified in Theorem 2. With the
inverse volatility matrix estimator �̂i	n , we usually adjust the instantaneous beta
estimator β̂ i	n

as follows:

β̃
′
i	n

= β̂ i	n
+ 1

kn	n
�̂

�
i	n

X�
i

(
Yi −Xiβ̂ i	n

)
.
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The above adjustment is based on the debiasing scheme, which is widely employed
in high-dimensional literature (Javanmard and Montanari, 2014, 2018; Van de
Geer et al., 2014; Zhang and Zhang, 2014). This scheme reduces the bias from
�1-regularization by adding a bias-correction term to the original estimator, where
the correction uses an approximate inverse volatility matrix of the covariates to
re-weight the residuals. Specifically, it examines how much each parameter was
shrunk by the �1-penalty and then adjusts the estimates to remove that excess
shrinkage. We note that this debiasing scheme performs well under the sub-
Gaussian assumption (Javanmard and Montanari, 2014, 2018; Van de Geer et al.,
2014; Kim et al., 2025). However, 	n

i Zc has only finite (2+ ζ )-th moment for an
arbitrarily small ζ > 0; thus, the debiased instantaneous beta estimator has heavy-
tails. To handle this issue, we employ the Winsorization method as follows. Define
the truncation (Winsorization) function

ψ� (x) =
{

x if |x| ≤ �

sign(x)� if |x| > �,

where � > 0 is a truncation parameter and denote ψ�(x) = (ψ� (x1), . . . ,

ψ� (xp1))
� for any vector x = (x1, . . . ,xp1)

� ∈ R
p1 . Using this truncation function,

we adjust β̂ i	n
as

β̃ i	n
= β̂ i	n

+ψ�

(
1

kn	n
�̂

�
i	n

X�
(i+kn)

(
Y(i+kn) −X(i+kn)β̂ i	n

))
, (3.5)

where the truncation parameter � will be specified in Theorem 2. We note that
for the debiasing step, we use the non-overlapping window for X and Y , which
helps enjoy the martingale property. Specifically, since β0((i + kn)	n) − β̂ i	n

is
measurable at time (i + kn)	n, we can handle the noises from X(i+kn) and Y(i+kn)

using the martingale convergence theorem. We also note that the purpose of
the debiasing is to enjoy the law of large numbers property when obtaining the
integrated beta estimator. Usually, the debiasing scheme is employed to obtain
asymptotic normality, which enables the hypothesis test or confidence interval
construction (Javanmard and Montanari, 2014, 2018; Van de Geer et al., 2014;
Zhang and Zhang, 2014). However, in this article, we do not focus on this issue and
mainly focus on the integrated beta estimation. Then, the integrated beta estimator
is defined as follows:

Îβ =
[1/(kn	n)]−2∑

i=0

β̃ ikn	n
kn	n. (3.6)

The debiased LASSO integrated beta estimator Îβ can achieve a faster convergence
rate than the simple integration of the instantaneous beta estimators. However,
due to the bias adjustment term, it cannot account for the sparsity structure
of the integrated beta. To accommodate the sparsity, we employ the following
thresholding scheme:

https://doi.org/10.1017/S0266466625100236 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100236


ROBUST HIGH-DIMENSIONAL TIME-VARYING COEFFICIENT 9

Ĩβ i = s(Îβ i)1(|Îβ i| ≥ hn) and Ĩβ = (
Ĩβ i

)
i=1,...,p ,

where the thresholding function s(·) satisfies |s(x)−x| ≤ hn and hn is a thresholding
level, which will be specified in Theorem 3. For example, we can employ the hard
thresholding function s(x) = x or soft thresholding function s(x) = x − sign(x)hn.
In the empirical study, we used the hard thresholding function s(x) = x. We call this
the RED-LASSO estimator. We describe the RED-LASSO estimation procedure
in Algorithm 1.

Algorithm 1 RED-LASSO estimation procedure.

Step 1 Obtain the instantaneous beta estimator:

β̂ i	n
= arg min

β∈Rp
‖lτ (Yi −Xiβ)/kn‖1 +η‖β‖1 ,

where τ = Cτ n−1/4(logp)−3/4, η = Cη

[
spn−5/4√logp + n−5/4(logp)3/4

]
, and

kn = ckn1/2 for some large constants Cτ , Cη, and ck.
Step 2 Obtain the inverse instantaneous volatility matrix estimator:

�̂i	n = argmin‖�‖1 s.t. ‖ 1

kn	n
X�

i Xi�− I‖max ≤ λ,

where λ = Cλn−1/4√logp for some large constant Cλ.
Step 3 Debias the instantaneous beta estimator:

β̃ i	n
= β̂ i	n

+ψ�

(
1

kn	n
�̂

�
i	n

X�
(i+kn)

(
Y(i+kn) −X(i+kn)β̂ i	n

))
,

where � = C� s2−δ
p nδ/4(logp)(1−3δ)/4 for some large constant C� .

Step 4 Obtain the integrated beta estimator:

Îβ =
[1/(kn	n)]−2∑

i=0

β̃ ikn	n
kn	n.

Step 5 Threshold the integrated beta estimator:

Ĩβ i = s(Îβ i)1
(|Îβ i| ≥ hn

)
and Ĩβ = (

Ĩβ i

)
i=1,...,p ,

where s(·) satisfies |s(x)− x| ≤ hn, hn = Chbn for some large constant Ch, and
bn is defined in Theorem 2.

3.2. Theoretical Results

In this section, we investigate asymptotic properties of the proposed RED-LASSO
estimation procedure. To investigate the theoretical properties, we make the
following assumptions.
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Assumption 1.

(a) The residual process Zc(t) and jump size processes, Jy(t) and J(t) =(
J1(t), . . . ,Jp(t)

)�
, satisfy

max
1≤i≤n

E

{
|√n	n

i Zc|γ
∣∣∣F(i−1)	n

}
≤ C,

sup
0≤t≤1

E{|Jy(t)|γ } ≤ C, and sup
0≤t≤1

max
1≤i≤p

E{|Ji(t)|γ } ≤ C a.s.,

where γ = 2+ ζ for an arbitrarily small ζ > 0.
(b) The processes μ(t), μβ(t), β(t), �(t), and �β(t) = νβ(t)ν�

β (t) are almost surely
entry-wise bounded, and ‖�−1(t)‖1 ≤ C a.s.

(c) The processes μβ(t) = (
μβ,1(t), . . . ,μβ,p(t)

)�
and �β(t) = (

�β,ij(t)
)

i,j=1,...,p
satisfy the following sparsity condition for δ ∈ [0,1):

sup
0≤t≤1

p∑
i=1

|μβ,i(t)|δ ≤ sp and sup
0≤t≤1

p∑
i=1

|�β,ii(t)|δ/2 ≤ sp a.s.

(d) nc1 ≤ p ≤ c2 exp(nc3) for some positive constants c1, c2, and c3 < 1/6, and
s2

p logp	nkn → 0 as n,p → ∞.
(e) Define Wt =

{
w ∈ R

p :
∥∥wSc

t

∥∥
1
≤ 3

∥∥wSt

∥∥
1 +4

∥∥(β0(t))Sc
t

∥∥
1

}
, where wSc

t
is the

subvector obtained by stacking
{
wj : j ∈ Sc

t

}
, wSt is the subvector obtained

by stacking
{
wj : j ∈ St

}
, (β0(t))Sc

t
is the subvector obtained by stacking{

(β0(t))j : j ∈ Sc
t

}
, and St = {j : jth element of |β0(t)| > nη}. Then, there

exists a positive constant κ such that the following inequality holds for some
D = (8 + 48/κ)sp(nη)1−δ and 0 ≤ i ≤ n − kn, where the specific value of η is
given in Theorem 1:

inf{w�∇2Lτ,i(β)w : w ∈ Wi	n, ‖w‖2 = 1,
∥∥β −β0(i	n)

∥∥
1 ≤ D} ≥ κ/n.

(f) The volatility process �(t) = (�ij(t))i,j=1,...,p satisfies the following condition:

|�ij(t)−�ij(s)| ≤ C
√|t − s| logp a.s.

Remark 3. Assumption 1(a) is the finite (2+ ζ )-th moment condition for an
arbitrarily small ζ > 0, which allows the dependent process Y(t), covariate process
X(t), and residual process Zc(t) to have heavy-tailed distributions. We note that
in financial applications, the finite second moment condition is not restrictive
(Cont, 2001; Gabaix et al., 2003). We also note that the moment condition for
Zc(t) is satisfied when 	n

i Zc is an independent random variable and E{|	n
i Zc|γ } ≤

Cn−γ /2, or sup0≤t≤1 supt≤s≤1E{|ν(s)|γ
∣∣∣Ft} ≤ C a.s. The boundedness condition

Assumption 1(b) implies the sub-Gaussianity for the continuous part of the
covariate process, Xc(t), and target parameter, β(t), which are often required to
investigate high-dimensional inferences. However, the boundedness condition can
be relaxed to the local boundedness condition by Lemma 4.4.9 in Jacod and
Protter (2011). Specifically, if the asymptotic result, such as stable convergence

https://doi.org/10.1017/S0266466625100236 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100236


ROBUST HIGH-DIMENSIONAL TIME-VARYING COEFFICIENT 11

in law or convergence in probability, is satisfied under the boundedness con-
dition, it is also satisfied under the local boundedness condition. We note that
the local boundedness condition is usually satisfied in financial data. On the
other hand, for the continuous-time regression model, we usually assume that
the smallest eigenvalue of �(t) is bounded from below, which implies that the
largest eigenvalue of �−1(t) is bounded. In this point of view, the condition
‖�−1(t)‖1 ≤ C a.s. is not restrictive. Even if this condition is replaced by the
sparsity condition sup0≤t≤1 max1≤i≤p

∑p
j=1 |ωij(t)|q ≤ sω,p a.s., where �−1(t) =

(ωij(t))i,j=1,...,p, and q ∈ [0,1) and sω,p are the sparsity related variables, the
difference in theoretical results is up to sω,p order. Assumption 1(c) is the sparsity
condition for the beta process, which is required to investigate the discretization
error when estimating instantaneous betas. The sparsity assumptions are well
established in financial modeling, where only a small number of factors explain
the asset returns. In Assumption 1(d), we allow the dimension p to grow with the
number of observations n exponentially, which accommodates high-dimensional
data settings. Assumption 1(e) is the eigenvalue condition for the Hessian matrix
∇2Lτ,i(β), which is called the localized restricted eigenvalue (LRE) condition (Fan
et al., 2018; Sun, Zhou, and Fan, 2020). This implies strictly positive restricted
eigenvalues (REs) over a local neighborhood. In high-dimensional applications,
global RE conditions are often restrictive due to strong correlations among
covariates. By focusing on local neighborhoods around the true parameter, the
LRE condition provides a more realistic assumption for real data. We note that nη

converges to zero for the choice of η in Theorems 1 and 2. When the coefficient
process β(t) satisfies the exact sparsity condition, i.e., δ = 0, Wt is replaced by
an �1-cone

{
w ∈ R

p :
∥∥wSc

t

∥∥
1
≤ 3

∥∥wSt

∥∥
1

}
, where St = {j : jth element of β0(t) �=

0}. Finally, we need the continuity condition Assumption 1(f) to investigate
asymptotic behaviors of the CLIME estimator. We note that this condition is
obtained with high probability when �(t) follows a continuous Itô diffusion
process with bounded drift and instantaneous volatility processes. We also note
that this condition is generally reasonable in financial markets, except the cases of
volatility spikes. However, such spikes can be separately modeled as jumps and
handled under the finite activity assumption.

The following theorem derives the asymptotic properties of the instantaneous
beta estimator β̂ i	n

. Note that the subscript 0 represents the true parameters.

Theorem 1. Under Assumption 1(a)–(e), let kn = cknc for some constants ck and
c ∈ [3/8,3/4]. For any given positive constant a, choose τ = Cτ,a

√
kn	n(logp)−3/4

and η = Cη,a[spn−3/2√kn logp+n−1k−1/2
n (logp)3/4] for some large constants Cτ,a

and Cη,a. Then, we have, for large n,

max
i

‖β̂ i	n
−β0(i	n)‖1 ≤ Csp(nη)1−δ and

max
i

‖β̂ i	n
−β0(i	n)‖2 ≤ C

√
sp(nη)1−δ/2, (3.7)

with probability greater than 1−p−a.
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Remark 4. Theorem 1 shows the �1 and �2 norm error bounds of the instanta-
neous beta estimator. We note that as kn increases, the statistical estimation error
decreases, and the time variation approximation error increases. To achieve the
optimality, we choose c = 1/2, which implies that these two errors have the same
convergence rate. Then, the instantaneous beta estimator has the �1 convergence
rate of n−(1−δ)/4 and �2 convergence rate of n−(2−δ)/8 with the log order and sparsity
level terms.

To estimate the integrated beta, we can use the integration of the instantaneous
beta estimators. However, as discussed in Section 3.1, it cannot enjoy the law of
large numbers property due to the heavy-tailed biases. To tackle this problem,
we employ the robust debiasing method (3.5) and obtain the debiased LASSO
integrated beta estimator Îβ in (3.6). The following theorem establishes the
asymptotic behaviors of Îβ.

Theorem 2. Under the assumptions in Theorem 1 and Assumption 1(f),
choose kn = ckn1/2 for some constant ck. For any given positive constant a, let
λ = Cλ,an−1/4√logp and � = C� s2−δ

p nδ/4(logp)(1−3δ)/4 for some constants Cλ,a

and C� . Then, we have, with probability greater than 1−p−a,

‖Îβ − Iβ0‖max ≤ Cbn, (3.8)

where bn = s2−δ
p n(−2+δ)/4(logp)(5−3δ)/4 + spn−1/2 (logp)3/2.

Remark 5. Theorem 2 shows the max norm error bound of the debiased
LASSO integrated beta estimator. When the beta process satisfies the exact sparsity
condition, i.e., δ = 0, the debiased LASSO integrated beta estimator has the
convergence rate of s2

pn−1/2 (logp)5/4 + spn−1/2 (logp)3/2, while we have a slower

convergence rate of s2
pn−1/4√logp+spn−1/4 (logp)3/4 without a debiasing scheme.

The n1/2 term is the optimal convergence rate of estimating model parameters given
n observations. For the log order term, the usual optimal rate is

√
logp in high-

dimensional inferences. However, we have (logp)3/2 term since the additional logp
term comes from bounding the time-varying processes, such as the target process
β(t). In sum, the debiased LASSO integrated beta estimator has the optimal
convergence rate with up to logp and sp orders.

Theorem 2 reveals that the debiased LASSO integrated beta estimator performs
better than the integration of the instantaneous beta estimators. Finally, to account
for the sparsity structure, we threshold the debiased LASSO integrated beta
estimator and obtain the RED-LASSO estimator. Theorem 3 establishes the �1

convergence rate of the RED-LASSO estimator.

Theorem 3. Under the assumptions in Theorem 2, for any given positive
constant a, choose hn = Ch,abn for some constant Ch,a. Then, we have, with
probability greater than 1−p−a,

‖Ĩβ − Iβ0‖1 ≤ Cspb1−δ
n . (3.9)
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Theorem 3 shows that the proposed RED-LASSO estimator is consistent in
terms of the �1 norm. We note that under the sub-Gaussian assumption on the
log-return data, Kim et al. (2025) proposed the integrated beta estimator that
has the �1 convergence rate of spa1−δ

n , where an = s2−δ
p n(−2+δ)/4(logp)(2−δ)/2 +

spsω,pn(−2+q)/4(logp)(2−q)/2 + spn−1/2 (logp)3/2, and sω,p and q are the sparsity-
related terms for the inverse volatility matrix. Thus, the cost of handling the heavy-
tailedness is at most logp order. We also note that the regularized approximate
quadratic (RA-Lasso) estimator (Fan, Li, and Wang, 2017) and the regularized
adaptive Huber estimator (Sun et al., 2020) are robust to heavy-tailed distributions.
Under the constancy of the beta process, these estimators achieve the �1 conver-
gence rate of spn−1/2√logp. In contrast, the proposed RED-LASSO estimator
accommodates both heavy-tailedness and time-varying beta processes, with an
additional cost of at most logp and sp orders.

3.3. Discussion on the Tuning Parameter Selection

In this section, we discuss how to choose the tuning parameters to implement
the RED-LASSO estimation procedure. We first obtain the variables 	n

i X̂c
j ,

j = 1, . . . ,p, based on the threshold level (3.1). Then, to handle the scale problem,
we standardize the variables 	n

i Y and 	n
i X̂c

j , j = 1, . . . ,p, to have a zero mean
and unit variance. The re-scaling is employed after obtaining the RED-LASSO
estimator. In the local regression stage (3.2), we select kn = [n1/2] for the simulation
study. The choice of kn for the empirical study is presented in Section 5. Also, we
choose

τ = cτ n−1/4 (logp)−3/4 , η = cηn−5/4 (logp)3/4 ,

λ = cλn−1/4
√

logp, � = c� (logp)1/4 , and hn = chn−1/2 (logp)3/2 ,

(3.10)

where cτ , cη, cλ, c� , and ch are tuning parameters. For the simulation and empirical
studies, we choose c� and ch that minimize the corresponding mean squared
prediction error (MSPE). The results are c� = 0.025, and ch = 0.1. Details can be
found in Section 5. Also, we select cτ,cη ∈ [0.1,10] via five-fold cross-validation
based on the following mean squared error (MSE):

1

ktest
n

∥∥∥Y test
i − (

X test
i

)
β̂

train
i	n

∥∥∥2

2
,

where Y test
i and X test

i are obtained from Yi and Xi, respectively, by selecting the
rows corresponding to the test data, ktest

n is the number of rows in Y test
i and X test

i ,

and β̂
train
i	n

is the instantaneous beta estimator calculated from the training data.
The test and training data are chosen based on the five-fold cross-validation. This
choice procedure is similar to that of Sun et al. (2020) and Tan, Sun, and Witten
(2023), which employ robust regularization approaches. Similarly, we choose
cλ ∈ [0.1,10] via five-fold cross-validation based on the following loss function
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(Cai et al., 2011):

tr

[(
1

ktest
n 	n

(
X test

i

)�X test
i �̂

train
i	n

− Ip

)2
]

,

where �̂
train
i	n

is the inverse instantaneous volatility matrix estimator obtained from

the training data and Ip is the p-dimensional identity matrix. We note that β̂
train
i	n

and

�̂
train
i	n

enjoy the same theoretical properties as β̂ i	n
and �̂i	n , which can be shown

similar to the proofs of Theorems 1 and 2. This holds because the time gaps used
in each local estimation are sufficiently short, which allows us to control the errors
introduced by subsampling.

4. A SIMULATION STUDY

To check the finite sample performance of the proposed RED-LASSO estimator,
we conducted simulations. Based on the models (2.1) and (2.2), we generated the
data using the heavy-tailed and sub-Gaussian processes with frequency 1/nall.
Specifically, we employed the following time-series regression jump-diffusion
model:

dY(t) = β�(t)dXc(t)+dZc(t)+ Jy(t)d�y(t), dX(t) = dXc(t)+dXJ(t),

dXc(t) = σ (t)dB(t), dXJ(t) = J(t)d�(t), and dZc(t) = ν(t)dW(t),

where the jump sizes Ji(t) and Jy(t) were obtained from 0.1 times i.i.d. t-
distribution with degrees of freedom df , and �(t) = (

�1(t), . . . ,�p(t)
)�

and �y(t)
were generated by Poisson processes with the intensities (20, . . . ,20)� and 10,
respectively. We chose df as 2 and ∞ for the heavy-tailed and sub-Gaussian
processes, respectively. The initial values of X(t) and Y(t) were set as zero, and
we generated ν(t) as follows:

ν(tl) = (
1+0.5

∣∣tdf,l

∣∣)ν ′(tl),

where tdf,l, l = 1, . . . ,nall, are the i.i.d. t-distributions with degrees of freedom df ,
and ν ′(tl), l = 1, . . . ,nall, were generated from the following Ornstein–Uhlenbeck
process:

dν ′(t) = 3
(
0.8−ν ′(t)

)
dt +0.24dWν(t),

where ν ′(0) = 1 and Wν(t) is an independent Brownian motion. We note that
the process ν(t) is not realistic. However, to investigate the effect of the heavy-
tailedness of the return process, the structure of ν(t) is imposed. To generate the
volatility process σ (t), we first generated the Ornstein–Uhlenbeck process u(t) as
follows:

du(t) = 5(0.45−u(t))dt +0.2dWu(t),
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where u(0) = 1 and Wu(t) is an independent Brownian motion. Then, we took σ (t)
as a Cholesky decomposition of �(t) = (

�ij(t)
)

1≤i,j≤p
, where �ij(t) = u(t)0.6|i−j|.

To generate the coefficient β(t), we considered the exact sparse process, i.e.,
βi(t) = 0 for [sp]+1 ≤ i ≤ p. Specifically, we generated β(t) as follows:

dβ(t) = μβ(t)dt +νβ(t)dWβ(t),

where μβ(t) = (
μβ,1(t), . . . ,μβ,p(t)

)�
, νβ(t) = (

νβ,i,j(t)
)

1≤i,j≤p, and Wβ(t) is a
p-dimensional independent Brownian motion. For 1 ≤ i ≤ [sp], the initial value
βi(0) = 1 and μβ,i(t) = 0.1 for 0 ≤ t ≤ 1. The process

(
νβ,i,j(t)

)
1≤i,j≤[sp] was taken

to be ξ(t)I[sp], where I[sp] is the [sp]-dimensional identity matrix and ξ(t) follows
the Ornstein–Uhlenbeck process:

dξ(t) = 3(0.3− ξ(t))dt +0.1dWξ (t),

where ξ(0) = 0.15 and Wξ (t) is an independent Brownian motion. We chose
p = 100, sp = logp, and nall = 4,000, and we varied n from 1,000 to 4,000. When
implementing the RED-LASSO estimation procedure, the tuning parameters were
selected as discussed in Section 3.3.

To investigate the effect of the robustification of the RED-LASSO estimator,
we employed a thresholding debiased LASSO (ED-LASSO) estimator. The ED-
LASSO estimator uses the same estimation procedure as the RED-LASSO estima-
tor with τ = � = ∞. Since the ED-LASSO estimator does not employ the Huber
loss and Winsorization method, the jump adjustment for the dependent process
Y(t) is needed. Thus, we used Y ′

i instead of Yi for the ED-LASSO estimator, where

Y ′
i =

⎛⎜⎜⎜⎝
	n

i+1Ŷc

	n
i+2Ŷc

...
	n

i+kn
Ŷc

⎞⎟⎟⎟⎠ and 	n
i Ŷc = 	n

i Y 1{|	n
i Y|≤un}. (4.1)

In the simulation and empirical studies, we choose un = √
BVY logpn−1/2, where

the bipower variation BVY = π

2

∑n
i=2 |	n

i−1Y| · |	n
i Y|. We note that the ED-LASSO

estimator can enjoy the same theoretical properties as the RED-LASSO estimator
under the sub-Gaussian process, but it cannot explain the heavy-tailed process. As
a benchmark, we also considered the LASSO estimator (Tibshirani, 1996), which
cannot account for any of the heavy-tailed distribution or the time-varying beta
process. Specifically, we employed the LASSO estimator as follows:

Ĩβ
LASSO = argminβ

{
n∑

i=1

(
	n

i Ŷc −	n
i X̂c�β

)2 +ηLASSO‖β‖1

}
, (4.2)

where the regularization parameter ηLASSO ∈ [0.1,10] was selected via five-
fold cross-validation based on the MSE. We also employed the support vector
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The log max, �1, and �2 norm error plots (corresponding to three columns) of the RED-LASSO (black
dot), ED-LASSO (red triangle), LASSO (green diamond), and SVR (blue star) estimators for p = 100
and n = 1,000,2,000,4,000.

regression (SVR) estimator with a linear kernel as follows:

Ĩβ
SVR = argminβ

{
Cs

n∑
i=1

max
{|	n

i Ŷc −	n
i X̂c�β|− ε,0

}+ 1

2
‖β‖2

2

}
, (4.3)

where the cost parameter Cs ∈ [10−4,1] and insensitivity parameter ε ∈ [10−4,1]
were selected by five-fold cross-validation using the MSE. We note that the
SVR estimator can partially mitigate the effect of heavy-tailed distributions by
employing the above epsilon-insensitive loss function instead of a squared loss
function. However, it cannot fully account for heavy-tails, nor can it handle the
time-varying property of the beta process. After obtaining the RED-LASSO, ED-
LASSO, LASSO, and SVR estimators, the average estimation errors under the max
norm, �1 norm, and �2 norm were computed by 1,000 simulations.

Figure 1 plots the log max, �1, and �2 norm errors of the RED-LASSO, ED-
LASSO, LASSO, and SVR estimators with n = 1,000,2,000,4,000 for the heavy-
tailed and sub-Gaussian processes. From Figure 1, we can find that the estimation
errors of the RED-LASSO estimator decrease as the sample size n increases.
As expected, the RED-LASSO estimator performed the best for the heavy-tailed
process. This may be because the RED-LASSO estimator can fully explain the
heavy-tailedness, while other estimators cannot. For the sub-Gaussian process,
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Figure 2. The max, �1, and �2 norm error plots of the RED-LASSO estimator for p = 100 and
n = 4,000 with the heavy-tailed and sub-Gaussian processes. Note that ch = 0.1 is fixed and c� is
varied from 0.005 to 0.05.

the RED-LASSO and ED-LASSO estimators showed better performance than the
LASSO estimator. This is because the LASSO estimator cannot account for the
time variation of the beta process. We note that, even for the sub-Gaussian process,
the RED-LASSO estimator showed better performance than the ED-LASSO
estimator. One possible explanation for this is that the true return process can
have some extreme values over time, even if the sub-Gaussian random variables
are used. From this result, we can conjecture that the RED-LASSO estimator is
robust to the heavy-tailedness of the log-return process. We also note that the ED-
LASSO estimator does not outperform the SVR estimator for both heavy-tailed
and sub-Gaussian processes. This may be because, although the SVR estimator
cannot account for the time-varying property of the beta process, it handles heavy-
tailed distributions better than the ED-LASSO estimator.

On the other hand, we set the tuning parameters c� = 0.025 and ch = 0.1 in the
numerical study. To investigate the robustness of the RED-LASSO estimator with
respect to the choice of c� and ch, we calculated the estimation errors by varying
c� and ch. Figures 2 and 3 show the max, �1, and �2 norm errors of the RED-
LASSO estimator with n = 4,000 for the heavy-tailed and sub-Gaussian processes.
In Figure 2, ch = 0.1 is fixed and c� is varied from 0.005 to 0.05, while c� = 0.025
is fixed and ch is varied from 0.05 to 0.5 in Figure 3. As seen in Figures 2 and 3, the
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Figure 3. The max, �1, and �2 norm error plots of the RED-LASSO estimator for p = 100 and
n = 4,000 with the heavy-tailed and sub-Gaussian processes. Note that c� = 0.025 is fixed and ch is
varied from 0.05 to 0.5.

errors of the RED-LASSO estimator usually do not critically depend on the choice
of c� and ch. This result supports the practical applicability of the RED-LASSO
procedure. An exception is the �1 norm error for small ch. This may be because
the RED-LASSO estimator with small ch cannot effectively handle the non-sparse
structure of the debiased integrated beta estimator.

5. AN EMPIRICAL STUDY

In this section, we applied the proposed RED-LASSO estimator to high-frequency
trading data from January 2013 to December 2019. We took stock price data,
futures price data, and firm fundamentals from the End of Day website, FirstRate
Data website, and Center for Research in Security Prices (CRSP)/Compustat
Merged Database, respectively. We used 5-minute data to mitigate the effect of
microstructure noise. Specifically, we obtained 5-minute log-price data with the
previous tick scheme (Wang and Zou, 2010; Zhang, 2011) and processed the
data similarly to the procedure in Kim et al. (2025). The days with half trading
hours were not included. For the dependent process, we collected the log-price
data of the following five assets: Apple Inc. (AAPL), Berkshire Hathaway Inc.
(BRK.B), Amazon.com, Inc. (AMZN), Alphabet Inc. (GOOG), and Exxon Mobil
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Corporation (XOM). These firms have the top market values in their global
industry classification standard (GICS) sectors. For the covariate process, we
first obtained the log-prices of 54 futures, which are often used as the market
macro variables. For example, we selected 20 commodity futures data, 10 currency
futures data, 10 interest rate futures data, and 14 stock market index futures data.
The specific list is presented in Table A1 in the Appendix. Then, we constructed
Fama–French five factors (Fama and French, 2015) and the momentum factor
(Carhart, 1997) with the assets listed on NYSE, NASDAQ, and AMEX, which
are widely used in stock market analysis. We note that MKT, HML, SMB, RMW,
CMA, and MOM represent the market, value, size, profitability, investment, and
momentum factors, respectively. First, we calculated MKT as the return of a value-
weighted portfolio of whole assets. Then, we obtained other factors as follows:

HML = (SH +BH)/2− (SL+BL)/2,

SMB = (SH +SM +SL)/3− (BH +BM +BL)/3,

RMW = (SR+BR)/2− (SW +BW)/2,

CMA = (SC +BC)/2− (SA+BA)/2,

MOM = (SU +BU)/2− (SD+BD)/2,

where small (S) and big (B) portfolios represent the small and big market equities,
respectively, while we classified high (H), medium (M), and low (L) portfolios
according to their ratio of book equity to market equity. On the other hand, robust
(R), neutral (N), and weak (W) portfolios were classified by their profitability,
while we obtained conservative (C), neutral (N), and aggressive (A) portfolios
using their investment data. Also, up (U), flat (F), and down (D) portfolios
were classified by their momentum of the return. The portfolio constituents were
updated monthly, and, with 5-minute frequency, we obtained the portfolio return
as follows:

WRetd,i =
∑Nd

j=1 wj
d,i ×Retj

d,i∑Nd
j=1 wj

d,i

,

where WRetd,i is the portfolio return for the dth day and ith time interval, Nd is
the number of portfolio components on the dth day, the superscript j is used to
represent the jth stock of the portfolio, and wj

d,i is calculated by

wj
d,i = wj

d ×
i−1∏
l=0

(
1+Retj

d,l

)
,

where wj
d is the market capitalization of the jth stock at the market close time on

the day d − 1, and Retj
d,0 represents the overnight return from the day (d −1) to

day d. To sum up, the five assets and 60 factors were used for the dependent and
covariate processes, respectively. The details of the data processing can be found
in Aït-Sahalia et al. (2020) and Kim et al. (2025).
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When obtaining the RED-LASSO estimator, we selected the tuning parameters
based on Sections 3.3 and 4. Also, we set kn = 78 so that the instantaneous betas
were estimated on a daily basis, while the integrated betas were estimated on a
monthly basis. Finally, we chose the tuning parameters c� and ch using the cross-
validation scheme on multi-period high-frequency financial data in 2013. Since
the integrated beta estimator is obtained at the monthly level and the stationarity
assumption is reasonable for the beta process, we employed one-month-ahead
prediction error to evaluate performance for each tuning parameter selection
(Wang and Zou, 2010). Specifically, we first defined the following MSPE:

�(c�,ch) = 1

55

5∑
s=1

11∑
j=1

∥∥∥Ĩβ
j,s

(c�,ch)− Ĩβ
(j+1),s

(∞,∞)

∥∥∥2

2
,

where Ĩβ
j,s

(c�,ch) is the RED-LASSO estimator with the tuning parameters c�

and ch for the jth month in 2013 and sth stock. We note that Ĩβ
j,s

(∞,∞) is the
RED-LASSO estimator obtained without truncation or thresholding. Then, we
selected c� and ch by minimizing �(c�,ch) over c� ∈ {0.005l | 1 ≤ l ≤ 10, l ∈ Z}
and ch ∈ {0.05l | 1 ≤ l ≤ 10, l ∈ Z}. The results are c� = 0.025 and ch = 0.1. Then,
using the RED-LASSO, ED-LASSO, LASSO, and SVR estimation procedures,
we obtained the monthly integrated betas for each of the five assets. For the non-
trading period, we set the beta estimates as zero.

We first compare the performances of the RED-LASSO, ED-LASSO, LASSO,
and SVR estimators. To do this, we calculated the monthly in-sample and out-
of-sample R2 with the monthly integrated beta estimates. We note that since the
integrated beta reflects the average effect of covariate movements on the dependent
process, the higher in-sample R2 implies a better approximation of this average
effect. This indicates how well the estimator captures the overall time-varying
relationship between the dependent and covariate processes. That is, R2 measures
the goodness-of-fit for the proposed time-varying linear model. However, the in-
sample R2 can cause the overfitting issue. To overcome this, we use the out-of-
sample R2. Theoretically, under a stationarity condition of the beta process, the
best predictor of the beta process is the one from the previous period. From this
point of view, the out-of-sample R2 indicates the performance of explaining this
average relationship over future data. Specifically, from the high out-of-sample R2,
we can conjecture that the proposed method can account for the dynamics of the
beta process. The out-of-sample R2 was calculated using the integrated betas from
the previous month, and it was obtained excluding the year 2013 since the tuning
parameters were chosen based on the data in 2013. For each year, we calculated
the average R2 across the five assets and 12 months. Table 1 shows the average
in-sample and out-of-sample R2 of the RED-LASSO, ED-LASSO, LASSO, and
SVR estimators. As seen in Table 1, the RED-LASSO estimator shows the best
performance for all periods. This may be because only the RED-LASSO estimator
can handle both the heavy-tailed distribution of the return process and time-varying
property of the beta process.
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Table 1. The average in-sample and out-of-sample R2 of the RED-LASSO, ED-
LASSO, LASSO, and SVR estimators over the five assets

In-sample R2

Estimator

RED-LASSO ED-LASSO LASSO SVR

Whole period 0.233 0.228 0.197 0.226

2013 0.229 0.222 0.195 0.225

2014 0.202 0.195 0.165 0.192

2015 0.246 0.240 0.211 0.238

2016 0.223 0.221 0.190 0.223

2017 0.180 0.180 0.151 0.177

2018 0.320 0.313 0.280 0.307

2019 0.228 0.225 0.191 0.223

Out-of-sample R2

Estimator

RED-LASSO ED-LASSO LASSO SVR

Whole period 0.215 0.206 0.190 0.199

2014 0.183 0.170 0.157 0.151

2015 0.229 0.217 0.205 0.214

2016 0.206 0.198 0.183 0.182

2017 0.165 0.158 0.143 0.160

2018 0.299 0.290 0.267 0.287

2019 0.209 0.204 0.186 0.202

Table 2 reports the monthly average proportion of non-zero integrated beta esti-
mates across six factor groups and five assets over 84 months for the RED-LASSO,
ED-LASSO, LASSO, and SVR estimators. Detailed non-zero frequencies for each
individual factor are presented in Table A2 in the Appendix. As seen in Table 2,
the RED-LASSO estimator can better account for the sparsity of the integrated
betas than the ED-LASSO, LASSO, and SVR estimators. From this result, we can
conjecture that the proposed RED-LASSO provides more sparse beta estimates,
which is an important property in practice. Furthermore, as discussed above, the
RED-LASSO estimator shows the best performance in terms of R2 in Table 1. That
is, the RED-LASSO estimator can explain the market dynamics well with a simpler
model. We note that for the RED-LASSO estimates, the stock market index futures
factors had non-zero integrated betas more often than the other futures factors. This
result is consistent with the multi-factor models (Fama and French, 1992, 2015;
Carhart, 1997; Asness, Moskowitz, and Pedersen, 2013) since the market factors
can be partially explained by the stock market index futures factors.
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Table 2. The average proportion of non-zero monthly integrated beta estimates across factor groups and assets for the RED-LASSO
(RED), ED-LASSO (ED), LASSO, and SVR estimators

AAPL BRK.B AMZN GOOG XOM

Type RED ED LASSO SVR RED ED LASSO SVR RED ED LASSO SVR RED ED LASSO SVR RED ED LASSO SVR

All factors 0.18 0.42 0.30 0.95 0.24 0.44 0.50 0.95 0.21 0.44 0.39 0.95 0.21 0.43 0.35 0.95 0.25 0.47 0.59 0.95

Commodity 0.05 0.33 0.12 0.96 0.05 0.32 0.31 0.96 0.05 0.34 0.21 0.96 0.05 0.33 0.19 0.96 0.14 0.39 0.46 0.96

Currency 0.08 0.39 0.18 0.97 0.10 0.40 0.40 0.97 0.11 0.41 0.30 0.97 0.12 0.39 0.23 0.97 0.12 0.41 0.49 0.97

Interest rate 0.06 0.29 0.15 0.84 0.08 0.29 0.38 0.84 0.07 0.29 0.25 0.84 0.07 0.31 0.20 0.84 0.06 0.30 0.38 0.84

Stock market index 0.50 0.62 0.70 0.99 0.58 0.63 0.85 0.99 0.52 0.62 0.74 0.99 0.53 0.63 0.74 0.99 0.42 0.60 0.86 0.99

Market factor 0.25 0.55 0.37 1.00 0.61 0.78 0.71 1.00 0.39 0.61 0.52 1.00 0.37 0.60 0.46 1.00 0.79 0.87 0.86 1.00
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Figure 4. The monthly integrated betas from the RED-LASSO estimator for the five assets and 60
factors. Each line connects the 60 integrated beta estimates for each month.

Now, we investigate the result of the RED-LASSO estimator. Figure 4 shows the
monthly integrated betas from the RED-LASSO estimator for the five assets and
60 factors. Figure 5 depicts the non-zero frequency of the RED-LASSO estimator
for the five groups, consisting of the commodity futures group, currency futures
group, interest rate futures group, stock market index futures group, and market
factor group. From Figures 4 and 5, we see that integrated betas change over time,
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Figure 5. The non-zero frequency of the monthly integrated betas from the RED-LASSO estimator
for the five assets and five groups. The five groups consist of the commodity futures group, currency
futures group, interest rate futures group, stock market index futures group, and market factor group.

and only a small number of factors had non-zero integrated betas in most periods.
To investigate the time series of the significant betas, we plotted the integrated
beta estimates for the three factors that most frequently had non-zero integrated
betas in Figure 6. The AAPL has NQ (E-mini Nasdaq 100), ES (E-mini S&P 500),
and YM (E-mini Dow); BRK.B has MKT, YM, and ES; AMZN has MKT, MOM,
and RMW; GOOG has NQ, ES, and VX (VIX); and XOM has MKT, XAE (E-
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Figure 6. The monthly integrated betas from the RED-LASSO estimator for the three factors that
most frequently had non-zero integrated betas among the 60 factors for each of the five assets.
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mini Energy Select Sector), and YM. In sum, either the NQ factor or MKT factor
most frequently had non-zero integrated betas, while the other factors had non-zero
integrated betas only for some time periods.

When modeling regression-based financial models, we often employ the six
factors, MKT, HML, SMB, RMW, CMA, and MOM (Carhart, 1997; Asness et al.,
2013; Fama and French, 2015, 2016). To investigate their beta behaviors in more
detail, we present the box plots of the integrated betas from the RED-LASSO
and ED-LASSO estimators for these six factors in Figure 7. As expected, the
MKT factor played a significant role for BRK.B and XOM. Specifically, the MKT
factor had non-zero integrated betas for all 84 months as shown in Table A2 in
the Appendix. In contrast, the six factors frequently had zero integrated betas for
AAPL, AMZN, and GOOG. This may be because technology companies, such as
AAPL, AMZN, and GOOG, have recently shown outstanding performance in the
U.S. market, potentially reducing their dependence on these six factors. We note
that the results of the two estimators are similar, but the RED-LASSO estimator
has a more stable result. Thus, we can conjecture that considering both the heavy-
tailed distribution and the time variation of the beta process helps better explain
the beta dynamics.

6. CONCLUSION

In this article, we developed a novel RED-LASSO estimation procedure that can
handle the heavy-tailedness of financial data and account for the time variation and
sparsity of the high-dimensional beta process. To estimate the instantaneous beta,
we propose a robust estimator that employs the Huber loss, truncation method,
and �1-penalty. We demonstrated that the proposed instantaneous beta estimator
can handle the heavy-tailedness and the curse of dimensionality with a desirable
convergence rate. To handle the heavy-tailed bias coming from the Huber loss and
�1-penalty, we developed a robust debiasing scheme and propose an integrated beta
estimator. We showed that the proposed debiasing method sufficiently mitigates
the effect of the bias, and the integrated beta estimator can enjoy the law of
large numbers property. Then, the debiased integrated beta estimator is further
regularized to account for the sparsity of the integrated beta. We demonstrated that
the proposed RED-LASSO estimator can achieve the near-optimal convergence
rate.

In the empirical study, the RED-LASSO estimation procedure shows the best
performance in terms of R2 and the sparsity of the beta estimates. It suggests that
when estimating integrated beta in the high-dimensional high-frequency set-up,
the RED-LASSO estimation method helps account for the features of the time-
varying beta process and heavy-tailed distributions of observed log-returns. On the
other hand, the proposed tuning parameter selection procedure does not guarantee
the theoretical properties. It would be interesting to develop a robust tuning
parameter selection method with rigorous theoretical guarantees and practical
applicability. However, developing a procedure that satisfies both theoretical and
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Figure 7. The box plots of the monthly integrated betas from the RED-LASSO and ED-LASSO
estimators for MKT, HML, SMB, RMW, CMA, and MOM over 84 months for each of the five assets.

practical criteria may be challenging. In addition, in this article, we did not consider
microstructure noises. The microstructure noise could be another source of the
heavy tails and accommodating them leads to an application for higher frequency
observations. However, if we impose the microstructure noise structure on the
regression diffusion model, we have an unbalanced order relationship between the
noise and regression variables, which ruins the usual regression structure. Hence,
it is difficult to apply the existing estimation methods. It would be interesting and
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important to develop a robust estimation method that can handle microstructure
noises. Finally, for each local sparse beta estimation, thanks to the bias adjustment,
the bias is negligible, and we can obtain an asymptotic normality. However, the
parameter of interest is the integrated beta, and the integrated beta estimator has
a faster convergence rate than that of the local beta estimator, due to the property
of the law of large numbers. Unfortunately, the convergence rate of the integrated
beta estimator can be dominated by that of the bias term. Thus, we still have a
bias issue for the integrated beta inference. It would be interesting but difficult to
develop a novel bias adjustment scheme to manage this non-negligible bias term.
We leave these topics for future study.

A. APPENDIX

A.1. Proof of Theorem 1

Without loss of generality, it is enough to show the statement for fixed i. For simplicity, we
denote β0(i	n) by β0 = (β10, . . . ,βp0)�.

Proposition A1. Under the assumptions in Theorem 1, we have∥∥∇Lτ,i(β0)
∥∥

max ≤ η/2, (A.1)

with probability greater than 1−p−a for any given positive constant a.

Proof of Proposition A1. Define

Yc
i =

⎛⎜⎜⎜⎜⎝
	n

i+1Yc

	n
i+2Yc

...
	n

i+kn
Yc

⎞⎟⎟⎟⎟⎠, X c
i =

⎛⎜⎜⎜⎜⎝
	n

i+1Xc�
	n

i+2Xc�
...

	n
i+kn

Xc�

⎞⎟⎟⎟⎟⎠, and X̃i =

⎛⎜⎜⎜⎜⎜⎝

∫ (i+1)	n
i	n

(β(t)−β0)�dXc(t)∫ (i+2)	n
(i+1)	n

(β(t)−β0)�dXc(t)
...∫ (i+kn)	n

(i+kn−1)	n
(β(t)−β0)�dXc(t)

⎞⎟⎟⎟⎟⎟⎠ .

We have

(Yc
i )k =

∫ (i+k)	n

(i+k−1)	n

β�(t)dXc(t)+
∫ (i+k)	n

(i+k−1)	n

dZc(t)

=β�
0 	n

i+kXc +	n
i+kZc +

∫ (i+k)	n

(i+k−1)	n

(β(t)−β0)�dXc(t)

=(
X c

i β0 +Zi + X̃i
)
k .

Thus, for 1 ≤ j ≤ p, we have

∣∣∇jLτ,i(β0)
∣∣ = ∣∣∣∣∣∂Lτ,i(β0)

∂βj

∣∣∣∣∣ ≤ (I)j + (II)j, (A.2)
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where

(I)j = 1

kn

∣∣∣∣∣∣
kn∑

h=1

ψτ

(
Zih + X̃ih

)
	n

i+hXc
j

∣∣∣∣∣∣,
(II)j = 1

kn

∣∣∣∣ kn∑
h=1

[
ψτ

(
	n

i+hY −〈	n
i+hX̂c,β0〉)	n

i+hX̂c
j

−ψτ

(
	n

i+hYc −〈	n
i+hXc,β0〉)	n

i+hXc
j

]∣∣∣∣.
First, we consider (I)j. By the boundedness condition Assumption 1(b), we can show, with

probability at least 1−p−2−a,

sup
1≤h≤kn

∣∣∣	n
i+hXc

j

∣∣∣ ≤ CX
√

logpn−1/2 (A.3)

for some positive constant CX . Then, we have

(I)j ≤ 1

kn

kn∑
h=1

∣∣∣ψτ

(
Zih + X̃ih

)
1
(
|	n

i+hXc
j | > CX

√
logpn−1/2

)∣∣∣
+ 1

kn

kn∑
h=1

∣∣∣E{ψτ

(
Zih + X̃ih

)
	n

i+hXc
j 1
(
|	n

i+hXc
j | ≤ CX

√
logpn−1/2

)∣∣∣F(i+h−1)	n

}∣∣∣
+ 1

kn

∣∣∣ kn∑
h=1

ψτ

(
Zih + X̃ih

)
	n

i+hXc
j 1
(
|	n

i+hXc
j | ≤ CX

√
logpn−1/2

)
−E

{
ψτ

(
Zih + X̃ih

)
	n

i+hXc
j 1
(
|	n

i+hXc
j | ≤ CX

√
logpn−1/2

)∣∣∣F(i+h−1)	n

}∣∣∣
= (I)(1)

j + (I)(2)
j + (I)(3)

j . (A.4)

For (I)(1)
j , by (A.3), we have

Pr
{
(I)(1)

j = 0
}

≥ 1−p−2−a. (A.5)

For (I)(2)
j , let f (h) = ψτ

(
Zih + X̃ih

)
	n

i+hXc
j 1
(
|	n

i+hXc
j | ≤ CX

√
logpn−1/2

)
. Then, we

have∣∣∣E{f (h)

∣∣∣F(i+h−1)	n

}∣∣∣
≤
∣∣∣E{(Zih + X̃ih

)
	n

i+hXc
j 1
(
|	n

i+hXc
j | ≤ CX

√
logpn−1/2

)∣∣∣F(i+h−1)	n

}∣∣∣
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j 1
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i+hXc
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√
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Consider the first term. Similar to the proofs of Theorem 1 (Kim et al., 2024), we can show,
for any constant b ≥ 1,

Pr

{
sup

1≤h≤kn

E

{
|X̃ih|b

∣∣∣F(i+h−1)	n

}
≤
(

Csp	n
√

bkn logp
)b
}

≥ 1−p−2−a and

sup
1≤h≤kn

E

{
|	n

i+hXc
j |b

∣∣∣F(i+h−1)	n

}
≤ (C	nb)b/2 a.s. (A.6)

Then, by Cauchy–Schwarz inequality, we have, with probability at least 1−p−2−a,

sup
1≤h≤kn

∣∣∣E{X̃ih	n
i+hXc

j 1
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|	n
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√
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}
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3/2
n

√
kn logp.

Also, for 1 ≤ h ≤ kn, we have

E

{
Zih	n

i+hXc
j 1
(
|	n

i+hXc
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√
logpn−1/2

)∣∣∣F(i+h−1)	n

}
= 0.

Thus, we have, with probability at least 1−p−2−a,

sup
1≤h≤kn

∣∣∣E{(Zih + X̃ih
)
	n

i+hXc
j 1
(
|	n

i+hXc
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√
logpn−1/2

)∣∣∣F(i+h−1)	n

}∣∣∣
≤ Csp	

3/2
n

√
kn logp. (A.7)

Consider the second term. By (A.6) and Hölder’s inequality, we have, with probability at
least 1−p−2−a,

sup
1≤h≤kn

E

{
|Zih + X̃ih|γ

∣∣∣F(i+h−1)	n

}
≤ Cn−γ /2. (A.8)

Then, using the fact that∣∣ψτ

(
Zih + X̃ih
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Zih + X̃ih

)∣∣ ≤ ∣∣Zih + X̃ih
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) ≤ τ−1 ∣∣Zih + X̃ih

∣∣2 a.s.,

we have, with probability at least 1−p−2−a,
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where the second inequality is due to Hölder’s inequality and the last inequality is from
(A.6) and (A.8). By (A.7) and (A.9), we have

Pr
{
(I)(2)

j ≤ C
(

sp	
3/2
n

√
kn logp+ τ−1n−3/2

)}
≥ 1−2p−2−a. (A.10)

For (I)(3)
j , by (2.1) in Freedman (1975), we have

Pr

⎧⎨⎩(I)(3)
j ≥ s and

kn∑
h=1

E

{
(f (h))2

∣∣∣F(i+h−1)	n

}
≤ Cn−2kn

⎫⎬⎭
≤ 2exp

{
−Ck2

ns2
/(

τ
√

logpn−1/2kns+n−2kn

)}
. (A.11)

Also, by (A.6) and (A.8), we have, with probability at least 1−p−2−a,

sup
1≤h≤kn

∣∣∣E{(f (h))2
∣∣∣F(i+h−1)	n

}∣∣∣
≤ sup

1≤h≤kn

E

{
|Zih + X̃ih|2|	n

i+hXc
j |2

∣∣∣F(i+h−1)	n

}

≤
(

sup
1≤h≤kn

E

{
|Zih + X̃ih|γ

∣∣∣F(i+h−1)	n

})2/γ

×
(

sup
1≤h≤kn

E

{
|	n

i+hXc
j |2γ /(γ−2)

∣∣∣F(i+h−1)	n

})(γ−2)/γ

≤ Cn−2,

where the second inequality is due to Hölder’s inequality. Thus, we have

Pr
{
(I)(3)

j ≤ C
(
τn−1/2k−1

n (logp)3/2 +n−1k−1/2
n

√
logp

)}
≥ 1−2p−2−a. (A.12)

By (A.4), (A.5), (A.10), and (A.12), we have, with probability at least 1−5p−1−a,

max
1≤j≤p

(I)j ≤ C
[
sp	

3/2
n

√
kn logp+ τ−1n−3/2 + τn−1/2k−1

n (logp)3/2
]

. (A.13)

Consider (II)j. For some large constant C > 0, define

Q1 = {max
i,j

|	n
i Xc

j | ≤ C
√

logpn−1/2},

Q2 = {max
i,j

∫ (i+kn)	n

i	n

d�j(t) ≤ C logp}∩ {max
i

∫ (i+kn)	n

i	n

d�y(t) ≤ C logp},

Q3 = {max
i,j

kn∑
k=1

1{|	n
i+kXj|>vj,n} ≤ C logp}.

By (A.3), we have

Pr (Q1) ≥ 1−p−2−a.
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By the boundedness of the intensity process, we have

Pr (Q2) ≥ 1−p−2−a.

Under the event Q1 ∩Q2, we have, for large n,

max
i,j

kn∑
k=1

1{|	n
i+kXj|>vj,n} ≤ max

i,j

∫ (i+kn)	n

i	n

d�j(t) ≤ C logp.

Thus, we have

Pr (Q1 ∩Q2 ∩Q3) ≥ 1−2p−2−a. (A.14)

We note that, for any x1,x2,y1,y2 ∈ R,

|x1y1 − x2y2| ≤ |(x1 − x2)(y1 − y2)|+ |(x1 − x2)y2|+ |x2 (y1 − y2)| .

Hence, under the event Q1 ∩Q2 ∩Q3, we have

(II)j

≤ 1

kn

kn∑
h=1

[∣∣ψτ

(
	n

i+hY −〈	n
i+hX̂c,β0〉)−ψτ

(
	n

i+hYc −〈	n
i+hXc,β0〉)∣∣

×
∣∣∣	n

i+hX̂c
j −	n

i+hXc
j

∣∣∣
+ ∣∣ψτ

(
	n

i+hY −〈	n
i+hX̂c,β0〉)−ψτ

(
	n

i+hYc −〈	n
i+hXc,β0〉)∣∣ ∣∣∣	n

i+hXc
j

∣∣∣
+ ∣∣ψτ

(
	n

i+hYc −〈	n
i+hXc,β0〉)∣∣ ∣∣∣	n

i+hX̂c
j −	n

i+hXc
j

∣∣∣]

≤ C

kn

kn∑
h=1

[
τ

∣∣∣	n
i+hX̂c

j −	n
i+hXc

j

∣∣∣
+√

logpn−1/2 ∣∣ψτ

(
	n

i+hY−〈	n
i+hX̂c,β0〉)−ψτ

(
	n

i+hYc−〈	n
i+hXc,β0〉)∣∣]

≤ C

⎧⎨⎩τn−1(logp)3/2 + τn−1(logp)3/2 + k−1
n

√
logpn−1/2

kn∑
h=1

∣∣〈	n
i+hX̂c −	i+hXc,β0〉∣∣

⎫⎬⎭
≤ C

{
τn−1(logp)3/2 + spn−3/2(logp)2

}
a.s.,

which implies

Pr

(
max

1≤j≤p
(II)j ≤ C

{
τn−1(logp)3/2 + spn−3/2(logp)2

})
≥ 1−2p−1−a. (A.15)

Combining (A.2), (A.13), and (A.15), we have, with probability greater than 1−p−a,∥∥∇Lτ,i(β0)
∥∥∞ ≤ C

[
sp	

3/2
n

√
kn logp+ τ−1n−3/2 + τn−1/2k−1

n (logp)3/2
]

. (A.16)

�
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Proof of Theorem 1 By Proposition A1, it is enough to show the statement under (A.1).
First, we investigate β̂ i	n

−β0. Since

Lτ,i(β̂i	n
)+η‖β̂ i	n

‖1 ≤ Lτ,i(β0)+η
∥∥β0

∥∥
1 ,

we have

η
(∥∥β0

∥∥
1 −‖β̂i	n

‖1
) ≥ Lτ,i(β̂i	n

)−Lτ,i(β0)

≥ 〈∇Lτ,i(β0), β̂ i	n
−β0〉

≥ −η‖β̂ i	n
−β0‖1/2.

Then, we have

‖(β̂i	n
−β0)Si	n

‖1 +‖(β̂i	n
−β0)Sc

i	n
‖1

= ‖β̂ i	n
−β0‖1

≥ 2
(‖β̂i	n

‖1 −‖β0‖1
)

= 2
(
‖(β̂i	n

)Sc
i	n

‖1 +‖(β̂i	n
)Si	n

‖1 −‖(β0)Si	n
‖1 −‖(β0)Sc

i	n
‖1

)
≥ 2

(
‖(β̂i	n

−β0)Sc
i	n

‖1 −‖(β̂i	n
−β0)Si	n

‖1 −2‖(β0)Sc
i	n

‖1

)
.

Thus, we have

β̂ i	n
−β0 ∈ Wi	n, (A.17)

where Wi	n is defined in Assumption 1(e).
Now, we investigate ‖β̂ i	n

−β0‖1 and ‖β̂i	n
−β0‖2. By (2.3), we have

(nη)δ |Si	n | ≤ sp and ‖(β0)Sc
i	n

‖1 ≤ �j∈Sc
i	n

|(β0)j|δ |(β0)j|1−δ ≤ sp(nη)1−δ .

(A.18)

Thus, by (A.17) and (A.18), we have

‖β̂i	n
−β0‖1 ≤4‖(β̂i	n

−β0)Si	n
‖1 +4‖(β0)Sc

i	n
‖1

≤4
√

sp(nη)−δ/2‖β̂i	n
−β0‖2 +4sp(nη)1−δ, (A.19)

where the second inequality is due to Cauchy–Schwarz inequality. Suppose that

‖β̂i	n
−β0‖2 > (1+12/κ)

√
sp(nη)1−δ/2. (A.20)

Then, we have

‖β̂i	n
−β0‖1 <

8κ +48

κ +12
√

sp(nη)−δ/2‖β̂i	n
−β0‖2. (A.21)
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From the optimality of β̂i	n
and the integral form of the Taylor expansion, we have

0 ≥ Lτ,i(β̂i	n
)−Lτ,i(β0)+η

(‖β̂i	n
‖1 −∥∥β0

∥∥
1

)
= η

(‖β̂ i	n
‖1 −∥∥β0

∥∥
1

)+〈∇Lτ,i(β0), β̂ i	n
−β0〉

+
∫ 1

0
(1− t)(β̂i	n

−β0)�∇2Lτ,i(β0 + t(β̂i	n
−β0))(β̂i	n

−β0)dt. (A.22)

For the first and second terms, we have

η
(‖β̂ i	n

‖1 −∥∥β0
∥∥

1

)+〈∇Lτ,i(β0), β̂i	n
−β0〉

≥ −η‖β̂ i	n
−β0‖1 −‖∇Lτ,i(β0)‖max‖β̂i	n

−β0‖1

≥ −12κ +72

κ +12
√

spn−δ/2η1−δ/2‖β̂i	n
−β0‖2, (A.23)

where the second inequality is due to (A.21). For the last term, let

z = (κ +12)(nη)δ/2D

(8κ +48)
√

sp‖β̂i	n
−β0‖2

< 1.

Then, for any 0 ≤ t ≤ z, we have

‖β0 + t(β̂i	n
−β0)−β0‖1 ≤ z‖β̂i	n

−β0‖1 ≤ D,

where the last inequality is due to (A.21). Thus, by Assumption 1(e), we have∫ 1

0
(1− t)(β̂i	n

−β0)�∇2Lτ,i(β0 + t(β̂i	n
−β0))(β̂i	n

−β0)dt

≥
∫ z

0
(1− t)κn−1‖β̂i	n

−β0‖2
2dt

= (κ +12)
√

spn−δ/2η1−δ/2‖β̂i	n
−β0‖2 − (κ +12)2

2κ
spn1−δη2−δ . (A.24)

Combining (A.22)–(A.24), we have

(κ +12)2

2κ
spn1−δη2−δ ≥ κ2 +12κ +72

κ +12
√

spn−δ/2η1−δ/2‖β̂i	n
−β0‖2,

which implies

‖β̂ i	n
−β0‖2 ≤ (κ +12)2

2(κ2 +12κ +72)

κ +12

κ

√
sp(nη)1−δ/2

≤ (1+12/κ)
√

sp(nη)1−δ/2.

This contradicts to (A.20), thus, we obtain the �2 norm error bound. Then, by (A.19), we
can show the �1 norm error bound. �
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Table A1. The symbols of 54 futures in Section 5

Type Symbol Description

Commodity CA Cocoa
CL Crude Oil WTI
GC Gold
HG Copper
HO NY Harbor ULSD (Heating Oil)
ML Milling Wheat
NG Henry Hub Natural Gas
OJ Orange Juice
PA Palladium
PL Platinum
RB RBOB Gasoline
RM Robusta Coffee
RS Canola
SI Silver
ZC Corn
ZL Soybean Oil
ZM Soybean Meal
ZO Oats
ZR Rough Rice
ZW Wheat

Currency A6 Australian Dollar
AD Canadian Dollar
B6 British Pound
BR Brazilian Real
DX U.S. Dollar Index
E1 Swiss Franc
E6 Euro FX
J1 Japanese Yen
RP Euro/British Pound
RU Russian Ruble

Interest rate BTP Euro BTP Long-Bond
ED Eurodollar
G 10-Year Long Gilt
GG Euro Bund
HR Euro Bobl
US 30-Year U.S. Treasury Bond
ZF 5-Year U.S. Treasury Note
ZN 10-Year U.S. Treasury Note
ZQ 30-Day Fed Funds
ZT 2-Year U.S. Treasury Note

Stock market index DY DAX
ES E-mini S&P 500
EW E-mini S&P 500 Midcap
FX Euro Stoxx 50
MME MSCI Emerging Markets Index
MX CAC 40
NQ E-mini Nasdaq 100
RTY E-mini Russell 2000
VX VIX
X FTSE 100
XAE E-mini Energy Select Sector
XAF E-mini Financial Select Sector
XAI E-mini Industrial Select Sector
YM E-mini Dow
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Table A2. The number of non-zero monthly integrated beta estimates across 60 factors and five assets over 84 months for the
RED-LASSO (RED), ED-LASSO (ED), LASSO, and SVR estimators

AAPL BRK.B AMZN GOOG XOM

Type Symbol RED ED LASSO SVR RED ED LASSO SVR RED ED LASSO SVR RED ED LASSO SVR RED ED LASSO SVR

Commodity CA 4 28 9 84 3 34 21 84 2 23 15 84 3 21 15 84 6 32 33 84
CL 5 36 13 84 6 27 38 84 7 35 27 84 6 39 21 84 64 65 79 84
GC 15 36 16 84 11 36 40 84 8 41 32 84 6 42 21 84 3 41 32 84
HG 21 36 27 84 17 21 46 84 13 38 30 84 13 31 29 84 25 46 57 84
HO 4 33 11 84 2 32 34 84 3 27 24 84 1 30 20 84 38 47 76 84
ML 1 19 4 49 3 17 10 49 0 14 11 49 3 22 11 49 3 11 16 49
NG 6 37 9 84 3 28 23 84 4 24 17 84 2 18 11 84 9 29 35 84
OJ 2 23 9 84 4 26 21 84 7 22 16 84 3 26 12 84 4 30 29 84
PA 1 26 11 84 6 30 28 84 4 32 19 84 5 26 14 84 8 28 38 84
PL 5 28 8 84 5 27 23 84 7 30 12 84 2 28 15 84 5 30 41 84
RB 7 35 13 84 1 28 37 84 2 38 24 84 5 32 19 84 44 40 73 84
RM 0 15 7 52 3 11 15 52 4 11 13 52 3 14 12 52 3 21 20 52
RS 2 25 9 84 5 24 25 84 3 19 14 84 2 15 13 84 0 17 25 84
SI 4 27 13 84 3 26 30 84 4 33 14 84 6 26 16 84 6 31 38 84
ZC 2 28 10 84 5 24 17 84 2 34 17 84 6 35 20 84 3 32 36 84
ZL 3 21 8 84 4 27 22 84 4 32 17 84 6 27 14 84 9 33 34 84
ZM 3 24 8 84 2 36 22 84 2 33 17 84 9 30 15 84 6 36 30 84
ZO 3 27 11 84 1 37 27 84 4 36 14 84 5 29 13 84 4 34 28 84
ZR 3 36 12 84 4 23 22 84 5 23 15 84 5 40 13 84 5 25 29 84
ZW 3 30 7 84 0 26 21 84 6 41 19 84 3 29 17 84 1 30 33 84

Currency A6 10 40 23 84 17 43 46 84 14 30 29 84 17 37 26 84 18 44 59 84
AD 14 38 23 84 12 32 41 84 13 37 33 84 13 38 27 84 32 34 68 84
B6 3 37 12 84 4 29 32 84 1 38 22 84 6 31 16 84 4 38 38 84
BR 5 23 13 83 5 34 23 83 4 27 18 83 8 31 15 83 3 31 35 83
DX 3 42 10 84 2 31 32 84 4 38 20 84 5 32 20 84 6 35 35 84
E1 5 29 13 84 12 42 36 84 6 33 25 84 7 36 22 84 6 38 33 84
E6 1 33 12 84 3 39 31 84 4 36 22 84 2 32 18 84 2 37 38 84
J1 24 41 38 84 26 40 58 84 40 56 44 84 35 46 34 84 25 36 49 84
RP 4 30 8 84 7 25 27 84 5 24 23 84 8 21 13 84 2 32 34 84
RU 1 18 7 67 2 23 14 67 6 30 19 67 5 31 10 67 3 25 30 67

(Continued)
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Table A2. (continued)

AAPL BRK.B AMZN GOOG XOM

Type Symbol RED ED LASSO SVR RED ED LASSO SVR RED ED LASSO SVR RED ED LASSO SVR RED ED LASSO SVR

Interest rate BTP 2 24 5 84 8 30 27 84 8 34 16 84 4 27 12 84 4 29 31 84
ED 1 2 2 36 1 2 10 36 2 3 8 36 1 3 7 36 0 3 11 36
G 4 34 14 84 7 26 35 84 7 35 14 84 1 41 17 84 5 29 35 84

GG 12 31 17 84 7 36 42 84 5 31 27 84 9 34 20 84 5 36 45 84
HR 8 29 16 84 8 28 31 84 6 27 25 84 9 29 18 84 4 31 36 84
US 7 36 23 84 11 34 51 84 10 31 39 84 11 33 26 84 7 32 36 84
ZF 5 33 20 84 15 33 48 84 6 33 31 84 10 36 28 84 9 31 45 84
ZN 6 37 20 84 12 34 49 84 11 31 28 84 9 36 30 84 11 31 42 84
ZQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ZT 8 25 15 82 5 21 30 82 8 24 22 82 6 25 18 82 6 34 40 82

Stock market index DY 49 59 73 84 43 34 76 84 40 54 73 84 43 43 72 84 21 48 76 84
ES 71 70 82 84 81 80 84 84 80 75 84 84 77 74 84 84 57 53 84 84
EW 23 42 62 84 62 65 80 84 38 44 66 84 32 56 60 84 22 42 75 84
FX 30 44 58 84 38 40 70 84 34 39 60 84 40 41 65 84 21 36 75 84

MME 56 57 71 83 56 48 76 83 62 66 77 83 63 62 75 83 49 48 80 83
MX 42 44 60 84 36 53 76 84 40 40 67 84 49 46 67 84 32 44 79 84
NQ 84 84 84 84 41 52 75 84 84 84 84 84 84 84 84 84 10 53 68 84
RTY 47 50 74 84 48 44 72 84 61 56 74 84 44 58 67 84 25 45 70 84
VX 57 60 67 84 59 56 76 84 61 61 64 84 65 60 71 84 38 43 74 84
X 39 43 58 84 60 55 74 83 33 45 61 84 47 44 68 84 54 63 82 84

XAE 11 31 20 84 12 29 47 84 10 39 33 84 17 42 29 84 76 80 81 84
XAF 11 35 20 84 50 65 66 84 12 31 26 84 18 44 31 84 12 37 44 84
XAI 5 37 19 84 18 44 46 84 8 45 27 84 11 42 29 84 11 38 49 84
YM 65 75 78 84 83 82 84 84 49 52 79 84 45 54 76 84 72 76 84 84

Six factors HML 28 45 28 84 55 68 63 84 51 67 50 84 45 62 43 84 61 64 79 84
SMB 17 42 19 84 73 81 68 84 19 40 28 84 13 40 23 84 66 77 64 84
RMW 6 37 14 84 39 58 52 84 5 36 23 84 8 35 20 84 66 73 72 84
CMA 21 40 28 84 15 44 35 84 42 56 45 84 38 56 39 84 63 68 70 84
MOM 29 54 35 84 42 60 56 84 41 61 44 84 38 53 37 84 62 77 68 84
MKT 30 60 67 84 84 84 84 84 40 52 73 84 46 58 70 84 84 84 84 84
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A.2. Proof of Theorem 2

Proof of Theorem 2 We first investigate β̂ i	n
and �̂i	n . By (2.3), (3.7), and Assumption

1(c), we can show, with probability at least 1−p−2−a,

sup
0≤i≤n−kn

‖β̂i	n
−β0((i+ kn)	n)‖1 ≤ Csp

(
spn−1/4 (logp)3/4

)1−δ
and

sup
0≤i≤n−kn

‖β̂i	n
‖1 ≤ Csp. (A.25)

For �̂i	n , similar to the proofs of Theorem 1 (Kim et al., 2025), we can show, with
probability at least 1−p−2−a,

sup
0≤i≤n−kn

‖ 1

kn	n
X�

i Xi�0(i	n)− I‖max ≤ λ. (A.26)

Thus, we have, with probability at least 1−p−2−a,

sup
0≤i≤n−kn

‖�̂i	n‖1 ≤ C. (A.27)

Consider β̃i	n
. For each 1 ≤ m ≤ p, there exists standard Brownian motion W∗

m(t) such that

dβm(t) = μβ,m(t)dt +
√

�β,mm(t)dW∗
m(t).

Then, by the proofs of Theorem 1 (Kim et al., 2025), we have

1

kn	n
X c�

i X̃i = 1

kn	n
Ai +Ri,

where

Ai =
⎛⎝ p∑

m=1

∫ (i+kn)	n

i	n

∫ t

i	n

√
�β,mm(s)dW∗

m(s)�jm(t)dt

⎞⎠
j=1,...,p

and

Pr

{
sup

0≤i≤n−kn

‖Ri‖max ≤ Cspn−1/2 (logp)3/2

}
≥ 1−p−2−a.

Note that

Pr

{
sup

0≤i≤n−kn

∥∥X̃i
∥∥

max ≤ Cspn−3/4 logp

}
≥ 1−p−2−a.

Hence, similar to the proofs of (A.15), we can show

1

kn	n
X�

i X̃i = 1

kn	n
Ai +R

′
i,

where

Pr

{
sup

0≤i≤n−kn

‖R
′
i‖max ≤ Cspn−1/2 (logp)3/2

}
≥ 1−p−1−a. (A.28)
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Let

β̃
(2)

i	n
= β̂ i	n

+ψ�

(
1

kn	n
�̂

�
i	n

X�
(i+kn)

(
Yc

(i+kn)
−X(i+kn)β̂ i	n

))
,

β̃
(3)

i	n
= β̂ i	n

+ψ�

(
1

kn	n
�̂

�
i	n

X�
(i+kn)

[
X c

(i+kn)
β0((i+ kn)	n)−X(i+kn)β̂ i	n

]
+Bi+kn

)
,

β̃
(4)

i	n
= β̂ i	n

+ψ�

(
1

kn	n
�̂

�
i	n

X c�
(i+kn)

X c
(i+kn)

[
β0((i+ kn)	n)− β̂ i	n

]
+Bi+kn

)
,

β̃
(5)

i	n
= β̂ i	n

+ψ�

(
β0((i+ kn)	n)− β̂ i	n

+Bi+kn

)
,

where

Bi = 1

kn	n
�̂

�
(i−kn)	n

(
X�

i Zi +Ai

)
.

Then, we have

‖Îβ − Iβ0‖max ≤
∥∥∥∥∥∥

[1/(kn	n)]−2∑
i=0

(
β̃ikn	n

− β̃
(2)
ikn	n

)
kn	n

∥∥∥∥∥∥
max

+
∥∥∥∥∥∥

[1/(kn	n)]−2∑
i=0

(
β̃

(2)
ikn	n

− β̃
(3)
ikn	n

)
kn	n

∥∥∥∥∥∥
max

+
∥∥∥∥∥∥

[1/(kn	n)]−2∑
i=0

(
β̃

(3)
ikn	n

− β̃
(4)
ikn	n

)
kn	n

∥∥∥∥∥∥
max

+
∥∥∥∥∥∥

[1/(kn	n)]−2∑
i=0

(
β̃

(4)
ikn	n

− β̃
(5)
ikn	n

)
kn	n

∥∥∥∥∥∥
max

+
∥∥∥∥∥∥

[1/(kn	n)]−2∑
i=0

(
β̃

(5)
ikn	n

−β0((i+1)kn	n)
)

kn	n

∥∥∥∥∥∥
max

+
∥∥∥∥∥∥

[1/(kn	n)]−2∑
i=0

∫ (i+1)kn	n

ikn	n

(
β0((i+1)kn	n)−β0(t)

)
dt

∥∥∥∥∥∥
max

+
∥∥∥∥∥
∫ 1

([1/(kn	n)]−1)kn	n

β0(t)dt

∥∥∥∥∥
max

= (I)+ (II)+ (III)+ (IV)+ (V)+ (VI)+ (VII). (A.29)

Consider (I). By the boundedness of the intensity, we can show Pr
{∫ 1

0 d�y(t) ≤ C logp
}

≥
1−p−1−a. Thus, we have

Pr
{
(I) ≤ Cs2−δ

p n(−2+δ)/4(logp)(5−3δ)/4
}

≥ 1−p−1−a. (A.30)
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For (II), by (A.27) and (A.28), we have, with probability at least 1−2p−1−a,

(II) ≤ sup
0≤i≤n−2kn

∥∥∥∥�̂�
i	n

(
1

kn	n
X�

i+kn
X̃i+kn − 1

kn	n
Ai+kn

)∥∥∥∥
max

≤ Cspn−1/2 (logp)3/2 . (A.31)

Consider (III). Similar to the proofs of (A.20) in Kim et al. (2025), we can show, with
probability at least 1−p−1−a,

(III) ≤
[1/(kn	n)]−2∑

i=0

∥∥∥�̂�
i	n

(
X�

(i+kn)
X c

(i+kn)
−X c�

(i+kn)
X c

(i+kn)

)
β0((i+ kn)	n)

∥∥∥
max

+
[1/(kn	n)]−2∑

i=0

∥∥∥�̂�
i	n

(
X�

(i+kn)
X(i+kn) −X c�

(i+kn)
X c

(i+kn)

)
β̂i	n

∥∥∥
max

≤ Cspn−3/4
√

logp. (A.32)

Consider (IV). By Assumption 1(b) and (f), we can show, with probability at least 1 −
p−1−a,

sup
0≤i≤n−kn

∥∥∥∥�0(i	n)− 1

kn	n
X c�

i X c
i

∥∥∥∥
max

≤ sup
0≤i≤n−kn

∥∥∥∥∥�0(i	n)− 1

kn	n

∫ (i+kn)	n

i	n

�0(t)dt

∥∥∥∥∥
max

+ sup
0≤i≤n−kn

∥∥∥∥∥ 1

kn	n

∫ (i+kn)	n

i	n

�0(t)dt − 1

kn	n
X c�

i X c
i

∥∥∥∥∥
max

≤ Cn−1/4
√

logp.

Thus, by Assumption 1(f), we can show, with probability at least 1−p−1−a,

sup
0≤i≤n−kn

∥∥∥∥ 1

kn	n

(
X c�

(i+kn)
X c

(i+kn)
−X c�

i X c
i

)∥∥∥∥
max

≤ Cn−1/4
√

logp.

Then, by (A.14), (A.25), and (A.27), we have, with probability at least 1−p−1−a,

(IV) ≤ sup
0≤i≤n−2kn

∥∥∥∥ 1

kn	n
�̂

�
i	n

X c�
(i+kn)

X c
(i+kn)

− I

∥∥∥∥
max

× sup
0≤i≤n−2kn

∥∥β0((i+ kn)	n)− β̂i	n

∥∥
1

≤ sup
0≤i≤n−2kn

[∥∥∥∥ 1

kn	n
�̂

�
i	n

(
X c�

(i+kn)
X c

(i+kn)
−X c�

i X c
i

)∥∥∥∥
max

+
∥∥∥∥ 1

kn	n
�̂

�
i	n

(
X c�

i X c
i −X�

i Xi

)∥∥∥∥
max

+
∥∥∥∥ 1

kn	n
�̂

�
i	n

X�
i Xi − I

∥∥∥∥
max

]
×Csp

(
spn−1/4 (logp)3/4

)1−δ
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≤ C
(

n−1/4
√

logp+n−1/2(logp)2 +λ
)

× sp

(
spn−1/4 (logp)3/4

)1−δ

≤ Cs2−δ
p n(−2+δ)/4(logp)(5−3δ)/4. (A.33)

For (V), let g(i) = β0((i+ kn)	n)− β̂i	n
+Bi+kn . We have

(V) ≤
∥∥∥∥∥∥

[1/(kn	n)]−2∑
i=0

[
ψ� (g(ikn))−E

{
ψ� (g(ikn))

∣∣∣F(i+1)kn	n

}]
kn	n

∥∥∥∥∥∥
max

+
∥∥∥∥∥∥

[1/(kn	n)]−2∑
i=0

[
E

{
ψ� (g(ikn))

∣∣∣F(i+1)kn	n

}
−β0((i+1)kn	n)+ β̂ikn	n

]
kn	n

∥∥∥∥∥∥
max

=
∥∥∥(V)(1)

∥∥∥
max

+
∥∥∥(V)(2)

∥∥∥
max

.

For the first term, by the boundedness of the intensity process and (A.27), we can show,
with probability at least 1−p−2−a,

sup
kn≤i≤n−kn

sup
1≤j≤p

E

{
B2

ij

∣∣∣Fi	n

}
≤ Cs2

pn−1/2.

Thus, from (A.25), we have, with probability at least 1−2p−2−a,

sup
0≤i≤n−2kn

sup
1≤j≤p

E

[
|(g(i))j|2

∣∣∣F(i+kn)	n

]
≤ Cs2

p

(
spn−1/4 (logp)3/4

)2−2δ
.

Then, by (2.1) in Freedman (1975), we have, for 1 ≤ j ≤ p,

Pr

[
(V)

(1)
j ≥ s and

[1/(kn	n)]−2∑
i=0

E

[
|(g(ikn))j |2

∣∣∣F(i+1)kn	n

]
≤ Cs2

pn1/2
(

spn−1/4 (logp)3/4
)2−2δ

]
≤ 2exp

{
−Cns2

/(
n1/2� s+ s4−2δ

p nδ/2 (logp)(3−3δ)/2
)}

,

which implies

Pr

[∥∥∥(V)(1)
∥∥∥

max
≤ Cs2−δ

p n(−2+δ)/4(logp)(5−3δ)/4
]

≥ 1−3p−1−a.

For the second term, we have, with probability at least 1−2p−2−a,∥∥∥(V)(2)
∥∥∥

max

≤ sup
0≤i≤[1/(kn	n)]−2

sup
1≤j≤p

∣∣∣E{[ψ� (g(ikn))]j

∣∣∣F(i+1)kn	n

}
− [

β0((i+1)kn	n)− β̂ikn	n

]
j

∣∣∣
= sup

0≤i≤[1/(kn	n)]−2
sup

1≤j≤p

∣∣∣E{[ψ� (g(ikn))−g(ikn)]j

∣∣∣F(i+1)kn	n

}∣∣∣
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≤ sup
0≤i≤[1/(kn	n)]−2

sup
1≤j≤p

E

{∣∣∣[g(ikn)]j

∣∣∣1(∣∣∣[g(ikn)]j

∣∣∣ > �
)∣∣∣F(i+1)kn	n

}
≤ sup

0≤i≤[1/(kn	n)]−2
sup

1≤j≤p
E

{∣∣∣[g(ikn)]j

∣∣∣2/�

∣∣∣F(i+1)kn	n

}
≤ Cs2−δ

p n(−2+δ)/4(logp)(5−3δ)/4.

Thus, we have

Pr
{
(V) ≤ Cs2−δ

p n(−2+δ)/4(logp)(5−3δ)/4
}

≥ 1−4p−1−a. (A.34)

Consider (VI). By the sub-Gaussianity of the beta process, we can show, with probability
at least 1−p−1−a,

(VI) ≤ C
√

logp/n. (A.35)

For (VII), by Assumption 1(b), we have

(VII) ≤ Cn−1/2 a.s. (A.36)

Combining (A.29)–(A.36), we have, with probability greater than 1−p−a,

‖Îβ − Iβ0‖max ≤ C
[
s2−δ
p n(−2+δ)/4(logp)(5−3δ)/4 + spn−1/2 (logp)3/2

]
. (A.37)

�

A.3. Proof of Theorem 3

Proof of Theorem 3 By (3.8), there exists hn such that, with probability greater than
1−p−a,

‖Îβ − Iβ0‖max ≤ hn/2.

Thus, it is enough to show the statement under the event {‖Îβ − Iβ0‖max ≤ hn/2}. Similar
to the proofs of Theorem 1 (Kim et al., 2025), we can show

‖Ĩβ − Iβ0‖1 ≤ Csph1−δ
n . �
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