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totally real fields

Kâzım Büyükboduk

Abstract

The main theorem of the author’s thesis suggests that it should be possible to lift the
Kolyvagin systems of Stark units, constructed by the author in an earlier paper, to
a Kolyvagin system over the cyclotomic Iwasawa algebra. In this paper, we verify that
this is indeed the case. This construction of Kolyvagin systems over the cyclotomic
Iwasawa algebra from Stark units provides the first example towards a more systematic
study of Kolyvagin system theory over an Iwasawa algebra when the core Selmer rank
(in the sense of Mazur and Rubin) is greater than one. As a result of this construction,
we reduce the main conjectures of Iwasawa theory for totally real fields to a statement in
the context of local Iwasawa theory, assuming the truth of the Rubin–Stark conjecture
and Leopoldt’s conjecture. This statement in the local Iwasawa theory context turns
out to be interesting in its own right, as it suggests a relation between the solutions to
p-adic and complex Stark conjectures.
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1. Introduction

This paper is the result of an attempt to understand Kolyvagin system theory (over an Iwasawa
algebra) when the core Selmer rank (in the sense of [MR04, Definitions 4.1.8 and 4.1.11]) is greater
than one; the work here should be considered as a continuation of our earlier paper [Buy09].

The Kolyvagin system machinery is designed to bound the size of a Selmer group. In all well-
known cases, the bounds obtained relate to L-values and thus provide a link between arithmetic
and analytic data. Well-known prototypes for such a relation between arithmetic and analytic
data are the Birch and Swinnerton-Dyer conjecture (or, more generally, Bloch–Kato conjectures)
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and the main conjectures of Iwasawa theory. The Kolyvagin system machinery has been
successfully applied by many authors to obtain deep results towards proving these conjectures.

In this paper, we construct and study Kolyvagin systems over the cyclotomic Iwasawa algebra
(henceforth denoted by Λ). In [Buy07], Kolyvagin systems over Λ were proved to exist in a
wide variety of settings, provided that the core Selmer rank is one. Further, Mazur and Rubin
[MR04, § 5.3] showed that these Kolyvagin systems can be used to compute the correct size of
an appropriately defined Selmer group. However, when the core Selmer rank is greater than one,
not much is known.

The most basic example of a situation where the core Selmer rank is greater than one arises
when one attempts to utilize the Euler system that would come from the Rubin–Stark elements
introduced in [Rub96]. Rubin was the first to study the Euler system of Stark units in [Rub92],
where he proved a Gras-type formula for the χ-isotypic component of a certain ideal class group
under some assumptions on the character χ (which essentially ensured that the core Selmer
rank of the Galois representation T = Zp(1)⊗ χ−1, in the sense of [MR04, Definitions 4.1.8
and 4.1.11], is one). These assumptions were removed and a more general Gras-type conjecture
proved in [Buy09]. The proof of the main result in [Buy09] relies on the introduction of an
auxiliary Selmer structure in a systematic way so as to cut the core Selmer rank down to one.
One then obtains a useful collection of Kolyvagin systems for this auxiliary Selmer structure,
reducing the problem so that it becomes amenable to the treatment of [MR04].

The principal objective of this article is to generalize the methods of [Buy09] to an Iwasawa-
theoretic setting. We first show how to lift the Kolyvagin systems for the auxiliary Selmer
structure constructed in [Buy09] to Kolyvagin systems over the cyclotomic Iwasawa algebra. To
achieve this, we modify (in § 2) the classical Selmer structure along the cyclotomic tower. The
main theorem of [Buy07] implies that there are Kolyvagin systems over Λ for the modified Selmer
structure (see also § 2.5 below). In § 3, we show how to obtain these Kolyvagin systems from the
Euler system of Stark units (which were introduced in [Rub96, § 6]).

This approach of constructing Kolyvagin systems from Euler systems is, of course, standard.
Kolyvagin’s original descent argument has been systematized by Mazur and Rubin, who
constructed in [MR04, Theorem 5.3.3] what they call the Euler system to Kolyvagin system
map. The problem one faces here is that when the Euler system to Kolyvagin system map is
directly applied to the Euler system of Stark units, one obtains, in general, a Kolyvagin system
not for the modified Selmer structure but, rather, for a much coarser Selmer structure. This
issue is tackled in § 3.3. Once we have obtained the Kolyvagin system for the modified Selmer
structure, we can apply the Kolyvagin system machinery of [MR04] to deduce the main results
of this paper.

Before stating our main results, we introduce some notation and state the hypotheses that
will be in effect throughout the paper.

1.1 Notation and hypotheses

For any field F and a fixed separable closure F of F , we write GF := Gal(F/F ) for the Galois
group of F/F .

Fix a totally real number field k and let r = [k : Q]; fix also an algebraic closure k of k and
a rational odd prime p. Let k∞ denote the cyclotomic Zp-extension of k. Let kn be the unique
sub-extension of k∞/k such that [kn : k] = pn. Let µpn denote the pnth roots of unity, and let
µp∞ = lim−→n

µpn .
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Stark units and the main conjectures for totally real fields

Let χ :Gk→ Z×p be a non-trivial totally even character of Gk (i.e. it is trivial on all complex
conjugations inside Gk) that has finite order, and let L be the fixed field of ker(χ) inside k.
Denote the conductor of χ by fχ, and let ∆ be the Galois group Gal(L/k).

Let S be a finite set of places of k which contains the infinite places but does not contain any
prime of k lying above p. Suppose also that |S| > r + 1.

For any abelian group A, let A∧ denote its p-adic completion; also define Aχ to be the
χ-isotypic component of A∧.

In this paper T will always stand for the Gk-representation Zp(1)⊗ χ−1 (except in the
appendix, where T will be an arbitrary Zp[[Gk]]-module which is free, of finite rank over Zp,
and unramified outside a finite number of places of k).

The following hypotheses will be assumed occasionally (and all of them are required for our
main results).

(A1) p - fχ (i.e. L/k is unramified at all primes of k above p).

(A2) k is unramified at all primes above p.

(A3) χ(Frob℘) 6= 1 for any prime ℘ of k above p, where Frob℘ denotes a Frobenius element at ℘
inside Gal(k/k).

Hypothesis (A1) was assumed already in [Buy09], although we believe that removing it may
be possible (both in [Buy09] and in this paper) via an argument similar to the one used in the
proof of Proposition 3.9.

We are almost certain that the results in this paper could be established without (A2) as
well. However, this would at least have necessitated fixing a prime ℘⊂ k above p to define our
auxiliary local conditions (§ 2.2). We decided to avoid making this choice of a prime ℘ for the
sake of consistency with [Buy09]. In fact, one of the major goals of this paper is to initiate a
study of Λ-adic Kolyvagin systems (in the sense of [Buy07]) when the core Selmer rank is strictly
greater than one. In view of this, we decided that we would rather assume the extra condition
(A2) than lose our liberty in modifying the local conditions at p.

Hypothesis (A3) is, however, a more serious assumption. This is the assumption H.sEZ
of [Buy07, § 2.2] translated to our setting, and it appears here for exactly the same reason
that it appeared in [Buy07]: to avoid the interference of the exceptional zeros (in the sense
of [Gre94, MTT86]) of the relevant p-adic L-function.

1.2 Statement of the main results
Suppose that the finite set of places S does not contain any non-archimedean prime which splits
completely in L/k. Let cstark

k∞
:= {εχkn}n , where εχkn denotes an appropriate twist of the Rubin–

Stark element1 (see §§ 3.1, 3.2 and 4 as well as Remark 4.5 for details). Let M∞ be the maximal
abelian p-extension of L∞ unramified outside the set of primes lying above p, and set T = T ⊗ Λ.
Let H1(kp, T) denote the semi-local cohomology group2 at p. Finally, for a torsion Λ-module
A, let char(A) denote its characteristic ideal.

1 The definition of εχkn actually depends on the choice of the set S; however, as long as we assume that S contains

no non-archimedean prime which splits completely in L/k, this choice does not affect our main results. That is
why we feel free to drop S from our notation.
2 Let kn be the unique sub-extension of k∞/k such that [kn : k] = pn. Set Ln = L · kn, and let Uχn denote the local
units inside (Ln ⊗Qp)χ. By Kummer theory (see, e.g., [Rub00, § 1.6.C and Proposition 3.2.6] and Lemma 3.4 in
this paper) H1(kp, T) may be identified with lim←−n U

χ
n .
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Theorem A. Assume that the hypotheses (A1)–(A3) hold. Fix a finite set S as above, and
suppose that the Rubin–Stark conjecture [Rub96, Conjecture B′] is true for S and for every
K ∈ K, where K is the collection of fields defined in § 3. Assume also that Leopoldt’s conjecture
is true for the number fields Ln := L · kn, n > 0. Then

char(Gal(M∞/L∞)χ) = char
( r∧

H1(kp, T)/Λ · cstark
k∞

)
. (1)

We remark that when k = Q (i.e. when r = 1), the element cstark
k∞

can be obtained from the
cyclotomic units. Furthermore, in this case, the ideal on the right-hand side of (1) is generated by
a certain Kubota–Leopoldt p-adic L-function. This fact goes back to Iwasawa [Iwa64]. Therefore,
when k = Q, Theorem A is equivalent to the main conjecture of Iwasawa theory in the most
classical setting.

Let Lχk denote the Deligne–Ribet p-adic L-function attached to the character χ (see [DR80]
for the construction of this p-adic L-function). In light of the main conjectures for totally real
fields (proved by Wiles in [Wil90]), Theorem A yields the following result.

Theorem B. Under the hypotheses of Theorem A, char(
∧r H1(kp, T)/Λ · cstark

k∞
)⊂ Λ is

generated by Lχk .

It would be more reasonable to expect a relation such as the one given in Theorem B
between the Rubin–Stark elements and the p-adic L-function to exist, rather, between the
Deligne–Ribet p-adic L-function and the ‘p-adic’ Stark elements (which would be solutions to
a p-adic Stark conjecture [Sol02, Sol04] instead of the ‘complex’ Rubin–Stark conjecture). This
suggests a link between solutions to the p-adic Stark conjectures and complex Stark conjectures
at s= 0. We hope to formulate this relation more precisely in a future paper. Motivated by
the example above in the k = Q case, and referring to the work of Perrin-Riou [Per94a, Per95],
one might hope to deduce Theorem B directly (i.e. without appealing to the truth of the main
conjectures) and also deduce the main conjecture for the totally real field k itself (modulo, of
course, the hypotheses of Theorem A).

2. Modified Selmer structures

2.1 Selmer groups for T = Zp(1) ⊗ χ−1

Throughout this section, we use the notation defined in § 1.1. In addition, set Γ := Gal(k∞/k)
and let Λ := Zp[[Γ]] be the cyclotomic Iwasawa algebra.

We first recall Mazur and Rubin’s definition of a Selmer structure and, in particular, the
canonical Selmer structure on T ⊗ Λ.

2.1.1 Local conditions. Let R be a complete local noetherian ring, and let M be a R[[Gk]]-
module which is free of finite rank over R. We will be interested in the case where R is Λ or
certain quotients of it and M is T ⊗ Λ or its relevant quotients by an ideal of Λ.

For each prime λ of k, a local condition F (at the prime λ) on M is a choice of an R-submodule
H1
F (kλ, M) of H1(kλ, M). For the prime p, a local condition F at p will be a choice of an

R-submodule H1
F (kp, M) of the semi-local cohomology group

H1(kp, M) :=
⊕
℘|p

H1(k℘, M),

where the direct sum is over all the primes of k which lie above p.
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For examples of local conditions, see [MR04, Definitions 1.1.6 and 3.2.1].
Suppose that F is a local condition (at a prime λ of k) on M . If M ′ is a submodule of M

(respectively, if M ′′ is a quotient module), then F induces local conditions (which we will still
denote by F) on M ′ (respectively, M ′′) upon taking H1

F (kλ, M ′) (respectively, H1
F (kλ, M ′′)) to

be the inverse image (respectively, the image) of H1
F (kλ, M) under the natural maps induced

from

M ′ ↪→M and M �M ′′.

Definition 2.1. The propagation of a local condition F on M to a submodule M ′ (or a
quotient M ′′) of M is the local condition F on M ′ (or on M ′′) obtained by following the procedure
in the paragraph above.

For example, if I is an ideal of R, then a local condition on M induces local conditions on
M/IM and M [I] by propagation.

Definition 2.2. The Cartier dual of M is defined to be the R[[Gk]]-module

M∗ := Hom(M, µp∞),

where µp∞ stands for the p-power roots of unity.

Let λ be a prime of k. There is the perfect local Tate pairing

〈· , ·〉λ :H1(kλ, M)×H1(kλ, M∗)−→H2(kλ, µp∞) ∼−→Qp/Zp.

2.1.2 Selmer structures and Selmer groups. The notation from § 2.1.1 is in effect throughout
this subsection. We will also write Dλ for Gkλ := Gal(kλ/kλ) whenever we wish to identify the
group Gkλ with a closed subgroup of Gk, namely with a particular decomposition group Dλ ⊂Gk
at λ. We further define Iλ ⊂Dλ to be the inertia group and Frobλ ∈ Dλ/Iλ to be the arithmetic
Frobenius element at λ.

Definition 2.3. A Selmer structure F on M is a collection of the following data:

• a finite set Σ(F) of places of k, including all infinite places and primes above p as well as
all primes where M is ramified;

• for every λ ∈ Σ(F), a local condition (in the sense of § 2.1.1) on M (which we now view as
a R[[Dλ]]-module), i.e. a choice of an R-submodule

H1
F (kλ, M)⊂H1(kλ, M).

If λ /∈ Σ(F), we will also write H1
F (kλ, M) =H1

f (kλ, M), where the module H1
f (kλ, M) is the

finite part of H1(kλ, M), defined as in [MR04, Definition 1.1.6].

Definition 2.4. If F is a Selmer structure on M , we define the Selmer module H1
F (k, M) to

be the kernel of the sum of the restriction maps

H1(Gal(kΣ(F)/k), M)−→
⊕

λ∈Σ(F)

H1(kλ, M)/H1
F (kλ, M),

where kΣ(F) is the maximal extension of k which is unramified outside Σ(F).

Example 2.5. In this example we recall [MR04, Definition 5.3.2]. Let R= Λ be the cyclotomic
Iwasawa algebra, and let M be a free R-module endowed with a continuous action of Gk which
is unramified outside a finite set of places of k. Fix a finite set of places Σ containing all the primes

1167

https://doi.org/10.1112/S0010437X09004163 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004163
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of k which lie above p, all the places at infinity, and all the primes of k where M is ramified.
We define a Selmer structure FΛ on M by setting Σ(FΛ) = Σ and H1

FΛ
(kλ,M) =H1(kλ,M)

for λ ∈ Σ(FΛ). This is what we call the canonical Selmer structure on M. As remarked in
[MR04, Definition 5.3.2], this definition is independent of the choice of Σ.

As in Definition 2.1, the induced Selmer structure on the quotients M/IM will still be denoted
by FΛ. Note that H1

FΛ
(kλ,M/IM) will not usually be the same as H1(kλ,M/IM).

Remark 2.6. When R= Λ and M = T ⊗ Λ with T = Zp(1)⊗ χ−1, we shall see in § 2.5 that
the Selmer structure Fcan of [Buy07, § 2.1] on the quotients T ⊗ Λ/(f) may be identified,
under hypothesis (A3) on χ, with the propagation of FΛ to the quotients T ⊗ Λ/(f), for every
distinguished polynomial f inside Λ.

Definition 2.7. A Selmer triple is a triple (M, F , P) where F is a Selmer structure on M and
P is a set of rational primes that is disjoint from Σ(F).

Remark 2.8. Although, thanks to Kummer theory, one could identify the cohomology groups in
our setting (when the Galois module in question is T ⊗ Λ with T = Zp(1)⊗ χ−1 or its quotients
by certain ideals of Λ) with certain groups of units, we shall insist on using the cohomological
language for the sake of notational consistency with [MR04], from which we borrow the main
technical results. This way, we also hope that it will be easier to hypothesize our approach for
potential generalizations to other settings.

2.2 Modifying the local conditions at p
In [Buy09, § 1], the classical local conditions at the primes above p are modified to obtain a
Selmer structure FL on T . The objective of this section is to lift the Selmer structure FL on T
to a Selmer structure on T ⊗ Λ.

In this section, we will make use of the results from Appendix A to determine the structure of
the semi-local cohomology group H1(kp, T ⊗ Λ) as a Λ-module. Although there may be a more
direct way (in this particular setting where T = Zp(1)⊗ χ−1) of obtaining these results on the
structure of H1(kp, T ⊗ Λ) without appealing to the description of the Galois cohomology groups
in terms of (ϕ, Γ)-modules, we believe that the more general approach via Fontaine’s theory of
(ϕ, Γ)-modules might allow our strategy to be applied in many other settings.

Recall that k∞ denotes the cyclotomic Zp-extension of k and that Γ = Gal(k∞/k). Assume
that the hypotheses (A1)–(A3) hold until the end of § 2.2. Hypothesis (A2) implies that the
extension k∞/k is totally ramified at all primes ℘⊂ k over p. Let k℘ denote the completion
of k at ℘, and let k℘,∞ denote the cyclotomic Zp-extension of k℘. We may therefore identify
Gal(k℘,∞/k℘) with Γ for all ℘|p, so henceforth Γ will stand for any of these Galois groups. Let
Λ = Zp[[Γ]] be the cyclotomic Iwasawa algebra, as usual. We also fix a topological generator γ
of Γ and set X = γ − 1 (and we occasionally identify Λ with the power series ring Zp[[X]]).

Following the notation of Appendix A, write

H1
Iw(k℘, T ) := lim←−

n

H1(k℘,n, T ),

where k℘,n denotes the unique subfield of k℘,∞ which has degree pn over k℘. By Shapiro’s lemma,
one may canonically identify H i

Iw(k℘, T ) with H i(k℘, T ⊗ Λ) (see [Col98, Proposition II.1.1]) for
all i ∈ Z+. Define

H i
Iw(kp, T ) :=

⊕
℘|p

H i
Iw(k℘, T ) and H i(kp, T ⊗ Λ) :=

⊕
℘|p

H i(k℘, T ⊗ Λ)

(these two Λ-modules are canonically isomorphic by the argument above).
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Set HK := Gal(K/K∞) for any local field K. Also define Tm := T ⊗ Λ/(Xm) and Ts,m :=
T ⊗ Λ/(ps,Xm) for s, m ∈ Z+, following the notation of [Buy07, § 2.3.2].

Proposition 2.9.

(i) H1(kp, T ⊗ Λ) =H1
Iw(kp, T ) is a free Λ-module of rank r.

(ii) The map H1(kp, T ⊗ Λ)→H1(kp, Tm) is surjective for all m ∈ Z+.

Proof. For every ℘⊂ k above p, it follows from hypothesis (A3) that THk℘ = 0, and thus (i) is
immediate from Theorem A.8. It also follows that (T ∗)Gk℘ = 0, again thanks to (A3); hence the
proof of [Buy07, Lemma 2.11] shows that H2(k℘, T ⊗ Λ) = 0. But then

coker{H1(kp, T ⊗ Λ)−→H1(kp, Tm)}=
⊕
℘|p

H2(k℘, T ⊗ Λ)[Xm] = 0,

and (ii) follows. 2

Fix a free Λ-direct summand L∞ inside of H1(kp, T ⊗ Λ) which is free of rank
one as a Λ-module. By Proposition 2.9, this also fixes a free Λ/(Xm)-direct summand Lm of
H1(kp, Tm) which is free of rank one (as a Λ/(Xm)-module). When m= 1, we denote L1 by L.

Definition 2.10. Let L∞ be as above. We define the L∞-modified Selmer structure FL∞ on
T ⊗ Λ as follows:

• Σ(FL∞) = Σ(FΛ);

• H1
FL∞

(kp, T ⊗ Λ) = L∞ ⊂H1(kp, T ⊗ L∞);

• H1
FL∞

(kλ, T ⊗ Λ) =H1
FΛ

(kλ, T ⊗ Λ) for λ - p.

The induced Selmer structure on the collection of quotients T0 := {Ts,m} will also be
denoted by FL∞ (except for the induced Selmer structure on T1 = T ⊗ Λ/(X) = T and its
quotients Ts,1 = T ⊗ Λ/(ps,X) = T/psT , which will be denoted by FL for notational consistency
with [Buy09]).

2.3 Local duality and the dual Selmer structure

We will discuss local duality in great generality. Let R be a complete local noetherian ring and
let M be a free R-module of finite rank which is endowed with a continuous action of Gk. Let
M∗ = Hom(M, µp∞) be the Cartier dual of M . For each prime λ of k, there is a perfect pairing

〈· , ·〉λ :H1(kλ, M)×H1(kλ, M∗)−→Qp/Zp,

called the local Tate pairing.

Let F be a Selmer structure on M . For each prime λ of k, define H1
F∗(kλ, M

∗) :=
H1
F (kλ, M)⊥ as the orthogonal complement of H1

F (kλ, M) under the local Tate pairing.
The Selmer structure F∗ on M∗ defined in this way will be called the dual Selmer structure.

As in Definition 2.4, the dual Selmer structure gives rise to the dual Selmer module

H1
F∗(k, M

∗) := ker
{
H1(Gal(kΣ(F)/k), M∗)−→

⊕
λ∈Σ(F)

H1(kλ, M∗)
H1
F∗(kλ, M∗)

}
.
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2.4 Comparison of Selmer modules
As our sights are set on Iwasawa’s main conjecture over totally real number fields, we now
construct the correct Iwasawa module: a Selmer module which should relate to the appropriate
p-adic L-function (which, in our setting, is the Deligne–Ribet p-adic L-function; see [DR80] for
its construction).

Once this Selmer module is defined, we will use Poitou–Tate global duality to compare it to
H1
F∗L∞

(k, (T ⊗ Λ)∗), the dual Selmer module attached to the dual L∞-modified Selmer structure.

Definition 2.11. The p-strict Selmer structure Fstr on T ⊗ Λ is defined by the following data:

• Σ(Fstr) = Σ(FΛ);
• H1

Fstr
(kp, T ⊗ Λ) = 0;

• H1
Fstr

(kλ, T ⊗ Λ) =H1
FΛ

(kλ, T ⊗ Λ) =H1
FL∞

(kλ, T ⊗ Λ) for λ - p.

Hence, for the dual Selmer structure F∗str (in the sense of § 2.3) we have:

• H1
F∗str

(kp, (T ⊗ Λ)∗) =H1(kp, (T ⊗ Λ)∗);

• H1
F∗str

(kλ, (T ⊗ Λ)∗) =H1
F∗L∞

(kλ, (T ⊗ Λ)∗) for λ - p.

For any Zp-module A, let A∨ := Hom(A,Qp/Zp) denote its Pontryagin dual.
Later, in § 4, we will explain why H1

F∗str
(kp, (T ⊗ Λ)∗)∨ is the correct Iwasawa module in this

setting which relates3 to the Deligne–Ribet p-adic L-function.

Proposition 2.12. Assume that Leopoldt’s conjecture holds. Then there is an exact sequence

0 // H1
FL∞

(k, T ⊗ Λ)
locp // L∞ // H1

F∗str
(k, (T ⊗ Λ)∗)∨ // H1

F∗L∞
(k, (T ⊗ Λ)∗)∨ // 0.

Proof. We allow ourselves to be sketchy in this proof, since similar versions of this proposition
can be found in the literature (see, e.g., [Rub00, Theorem I.7.3 and III.2.10] or [deS87, § III.1.7]).

Set γn = γp
n

for n ∈ Z>0, and let Ln ⊂H1(kp, T ⊗ Λ/(γn − 1)) be the image of L∞ under the
surjective map

H1(kp, T ⊗ Λ)−→H1(kp, T ⊗ Λ/(γn − 1)).
Let FLn denote the Selmer structure on T ⊗ Λ/(γn − 1), which is obtained by propagating the
Selmer structure FL∞ on T ⊗ Λ to its quotient T ⊗ Λ/(γn − 1). The propagated Selmer structure
from Fstr on T ⊗ Λ (defined in Definition 2.11) to the quotient T ⊗ Λ/(γn − 1) will still be
denoted by Fstr.

By Shapiro’s lemma, one may canonically identifyH1(k, T ⊗ Λ/(γn − 1)) withH1(kn, T ) and,
for every prime λ⊂ k, H1(kλ, T ⊗ Λ/(γn − 1)) with H1((kn)λ, T ); see [Rub00, §§B.4 and B.5].
In this way, we can view FLn and Fstr as Selmer structures on the Gkn-representation T .

It is easy to see that one then has the following exact sequences:

0 // H1
Fstr

(kn, T ) // H1
FLn

(kn, T )
locp // Ln,

0 // H1
F∗Ln

(kn, T ∗) // H1
F∗str

(kn, T ∗)
loc∗p //

H1
F∗str

((kn)p,T ∗)

H1
F∗Ln

((kn)p,T ∗)
.

(2)

3 Wiles [Wil90] has already proved this relation using techniques that are different from ours. He systematically
made use of Hida’s theory of Λ-adic Hilbert modular forms to construct certain unramified extensions, from which
he deduced the main conjectures.
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Since we assume the truth of Leopoldt’s conjecture, [Buy09, Proposition 1.4] (applied with the
totally real field kn instead of k) and Kummer theory give:

(i) H1(kn, T ) = (L×n )χ and H1((kn)p, T ) = (Ln ⊗Qp)×,χ ⊃ Ln;

(ii) H1
FLn

(kn, T ) = (O×Ln)χ ∩ Ln ⊂ Ln;

(iii) H1
Fstr

(kn, T ) = ker(H1
FLn

(kn, T )→Ln) = 0.

Here O×Ln stands for the ring of integers of the number field Ln. Thanks to Leopoldt’s conjecture,
we may identify (O×Ln)χ with its isomorphic image under the localization map at p, and the
intersection in (ii) above is taken inside (Ln ⊗Qp)×,χ after this identification.

The first exact sequence of (2) can therefore be rewritten as

0 // H1
FLn

(kn, T )
locp // Ln.

Furthermore, the Poitou–Tate global duality theorem [Mil86, I.4.10] says that im(locp) =
im(loc∗p)

⊥ with respect to the local Tate pairing. This, in turn, translates the above diagram
into the following exact sequence (see the proof of [Rub00, Theorem I.7.3] for details):

0 // H1
FLn

(kn, T )
locp // Ln // H1

F∗str
(kn, T ∗)∨ // H1

F∗Ln
(kn, T ∗)∨ // 0. (3)

Now, by passing to the inverse limit with respect to n in (3) (which, owing to
[Rub00, Proposition B.1.1], can be done without harming the exactness), we obtain the exact
sequence that we seek. 2

Suppose that c ∈H1
FL∞

(k, T ⊗ Λ) is any class.

Corollary 2.13. Under the hypotheses of Proposition 2.12, the following sequence is exact:

0 −→ H1
FL∞ (k, T ⊗ Λ)/Λ · c locp−→ L∞/Λ · c

−→ H1
F∗str(k, (T ⊗ Λ)∗)∨ −→H1

F∗L∞
(k, (T ⊗ Λ)∗)∨ −→ 0.

2.5 Kolyvagin systems for the L∞-modified Selmer triple: I
From this section on, we shall concentrate on the particular Gk-representations T = Zp(1)⊗ χ−1

and T = T ⊗ Λ, with χ as in § 1.1. Throughout § 2.5, we assume (A1)–(A3).

Remark 2.14. Consider the following properties (which play a role also in [Buy07, MR04]).

(H1) The residual Fp[[Gk]]-representation T/pT is absolutely irreducible.

(H2) There is a τ ∈Gk such that τ = 1 on µp∞ and T/(τ − 1)T is free of rank one over Zp.
(H3) H0(k, T/pT ) = H0(k, T ∗[p]) = 0.

(H4) Either (H4a) HomFp[[Gk]](T/pT, T ∗[p]) = 0 or (H4b) p > 4.

Before we explain why T = Zp(1)⊗ χ−1 has these properties, let us point out that hypothesis
(H3) above is implied by the (H.3) of Mazur and Rubin [MR04, § 3.5] (cf. [MR04, Lemma 3.5.2]).
However, the weaker hypothesis (H3) is sufficient for our purposes.

Hypothesis (H1) holds because T/pT is one-dimensional (as an Fp-vector space). Hypothesis
(H2) holds with τ = id ∈Gk, and (H3) holds since we assumed that χ is non-trivial. Finally, it
is easy to see that (H4a) holds.
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Observe further that the following versions of the hypotheses (H.T) and (H.sEZ)
from [Buy07, § 2.2] hold for T as well.

(H.T/k) (T ⊗Qp/Zp)Iλ is divisible for every prime λ - p, λ⊂ k.

(H.sEZ/k) (T ∗)Gk℘ = 0 for primes ℘|p.

Note that (H.sEZ/k) is implied by assumption (A3).

Next, we define the Selmer structure Fcan on certain quotients of T ⊗ Λ, following
[Buy07, Definition 2.2].

Definition 2.15. Suppose that f ∈ Λ is any distinguished polynomial, in the sense that the
quotient Λ/(f) is a free Zp-module of finite rank. Let Fcan be the Selmer structure on
Tf := T ⊗ Λ/(f) such that:

• Σ(Fcan) = Σ(FΛ);

• the local conditions are given by

H1
Fcan

(kλ, Tf ) =

{
H1(kλ, Tf ) if λ|p,
H1

f (kλ, Tf ) if λ ∈ Σ(Fcan) and λ - p,

with

H1
f (kλ, Tf ) = ker{H1(kλ, Tf )−→H1(kunr

λ , Tf ⊗Qp)}

where kunr
λ is the maximal unramified extension of kλ.

The induced Selmer structure on the quotients T ⊗ Λ/(ps, f), which is obtained by
propagating Fcan (in the sense of Definition 2.1), will also be denoted by Fcan.

Recall the definition of the collection T0 = {Ts,m}s,m .

Remark 2.16. By the definition of FL∞ , the local conditions on Ts,m at primes λ - p determined
by FL∞ coincide with the local conditions determined by FΛ; and, thanks to [Buy07, Corollary 2.8
and 2.9], they also coincide with the local conditions determined by Fcan, since (H.T/k) holds.
Indeed, it was proved in [Buy07] that all of these local conditions coincide with

H1
unr(kλ, Ts,m) := ker{H1(kλ, Ts,m)−→H1(kunr

λ , Ts,m)},

as long as hypothesis (H.T/k) holds.

Recall that the rank-one Zp-direct summand L of H1(kp, T ) is defined to be the image of L∞
under the canonical (surjective) map

H1(kp, T ⊗ Λ)−→H1(kp, T ).

Let FL denote the Selmer structure on T which is obtained by propagating the Selmer
structure FL∞ . This agrees with the definition of FL in [Buy09, § 1.1].
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Proposition 2.17.

(i) The Selmer structure FL∞ is cartesian on T0 in the sense of [Buy07, Definition 2.4].

(ii) The core Selmer rank X (T, FL) (in the sense of [MR04, Definition 4.1.11]) of the Selmer
structure FL on T is one.

Proof. Assertion (ii) is [Buy09, Proposition 1.8].
As pointed out in Remark 2.16, the Selmer structures Fcan and FL∞ determine the same local

conditions on the quotients Ts,m at every place v - p. Hence, the local conditions determined by
FL∞ are cartesian at v - p, by [Buy07, Proposition 2.10]. It therefore suffices to check that FL∞
is cartesian on T0 at p, i.e. we need to verify properties (C.1)–(C.3) in [Buy07, Definition 2.4]
for the local conditions at p, determined by FL∞ on the collection T0 = {Ts,m}. These properties
are as follows.

(C.1) For positive integers s 6 s′ and m 6m′, the module H1
FL∞

(kp, Ts,m) is the image of the
module H1

FL∞
(kp, Ts′,m′) under the canonical map

H1(kp, Ts′,m′)−→H1(kp, Ts,m).

(C.2) For positive integers s, m and α, the module H1
FL∞

(kp, Ts,m) is the inverse image of the
module H1

FL∞
(kp, Ts,m+α) under the natural map

H1(kp, Ts,m)−→H1(kp, Ts,m+α)

which is induced from the injection Ts,m
[Xα]−→ Ts,m+α, where [Xα] stands for the

multiplication-by-Xα map.

(C.3) For positive integers s, m and α, the module H1
FL∞

(kp, Ts,m) is the inverse image of the
module H1

FL∞
(kp, Ts+α,m) under the natural map

H1
FL∞ (kp, Ts,m)−→H1

FL∞ (kp, Ts+α,m)

which is induced from the injection Ts,m
[pα]−→ Ts+α,f , where [pα] is the multiplication-by-pα

map.

Property (C.1) holds by the definition of FL∞ on T0, and property (C.3) follows easily
from [MR04, Lemma 3.7.1] (which applies since the line Lm ⊂H1(kp, Tm) is a direct summand
of H1(kp, Tm), i.e. the Λ/(Xm)-module H1(kp, Tm)/Lm is free, for any m ∈ Z+).

We now verify (C.2). For s ∈ Z+, let Ls,m be the image of Lm under the reduction map

H1(kp, Tm)−→H1(kp, Ts,m).

It is easy to see that Ls,m (respectively, H1(kp, Ts,m)/Ls,m) is a free L/(ps,Xm)-module of rank
one (respectively, of rank [k : Q]− 1). To complete the proof, we need to check that the map

H1(kp, Ts,m)/Ls,m
[XM−m]−→ H1(kp, Ts,M )/Ls,M

induced from the map

[XM−m] : Λ/(Xm)−→ Λ/(XM )

is injective for all M >m. But this is evident, since H1(kp, Ts,m)/Ls,m (respectively,
H1(kp, Ts,M )/Ls,M ) is a free Λ/(ps,Xm)-module (respectively, a free Λ/(ps,XM )-module) of
rank [k : Q]− 1. 2
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Let P denote the set of primes of k whose elements do not divide pfχ. For positive integers
s and m, define

Ps+m := {q ∈ P | q splits completely in L(µps+m+1)/k}.
Note that the set Pj is exactly the set of primes which are determined by [MR04,
Definition 3.1.6] or [Rub00, Definition IV.1.1], in the particular case where T = Zp(1)⊗ χ−1.
Let N (respectively, Nj) denote the set of square-free products of primes q in P (respectively,
in Pj), with the convention that 1 ∈Nj ⊂N .

Definition 2.18 (cf. [MR04, Definition 3.1.6]).

(i) Define the (generalized) module of Kolyvagin systems by

KS(T, FL, P) := lim←−
s

lim−→
j

KS(T/psT, FL, Pj),

where KS(T/psT, FL, Pj) is the module of Kolyvagin systems for the Selmer structure FL
on the representation T/psT , as in [MR04, Definition 3.1.3].

(ii) Define the module of Λ-adic Kolyvagin systems by

KS(T ⊗ Λ, FL∞ , P) := lim←−
s,m

lim−→
j

KS(Ts,m, FL∞ , Pj),

where KS(Ts,m, FL∞ , Pj) is the module of Kolyvagin systems for the Selmer structure FL∞
on the representation Ts,m.

Theorem 2.19.

(i) The Zp-module KS(T, FL, P) is free of rank one.

(ii) The Λ-module KS(T ⊗ Λ, FL∞ , P) is free of rank one, and the canonical map

KS(T ⊗ Λ, FL∞ , P)−→KS(T, FL, P)

is surjective.

Any generator of these cyclic modules will be called a primitive Kolyvagin system.

Proof. Part (i) follows from [MR04, Theorem 5.2.10(ii)]. We briefly go over the hypotheses which
are needed to apply [MR04, Theorem 5.2.10(ii)] and explain why they hold in our case.

To apply Theorem 5.2.10(ii) of [MR04] with the Selmer triple (T, FL, P), we first need to
know that X (T, FL) = 1, and this is true thanks to Proposition 2.17(ii). Also, one needs to check
that hypotheses (H.1) through (H.6) of [MR04, § 3.5] hold. We already verified (H.1)–(H.4) above;
hypothesis (H.5) holds with P given as above, and (H.6) holds for FL by Proposition 2.17(i) (in
fact, we only need to know that the condition (C.3) holds with m= 1).

The result analogous to [MR04, Theorem 5.2.10(ii)] which enables us to conclude (ii) was
proved by the author in [Buy07]. The statement of [Buy07, Theorem 3.23] is almost identical to
the statement of (ii); the only differences are that the base field Q should be replaced by k and
the Selmer structure Fcan should be replaced by FL∞ . The proof of [Buy07, Theorem 3.23] works
verbatim after these changes; the technical points that need to be verified are the following.

(a) The Gk-representation T satisfies (H1)–(H4) as well as (H.T/k) and (H.sEZ/k).
(b) We have X (T, FL) = 1 for the core Selmer rank.
(c) Properties (C.1)–(C.3) hold for FL∞ .

Proposition 2.17 shows that (b) and (c) hold, and (a) is checked in Remark 2.14. 2
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In the next section, we will obtain a generator of the cyclic Λ-module KS(T ⊗
Λ, FL∞ , P) using the (conjectural) Rubin–Stark elements. Note, however, that the existence
of Λ-adic Kolyvagin systems is unconditional: it does not rely on Rubin’s conjecture
[Rub96, Conjecture B′].

For the convenience of the reader, we record the main application of a Λ-adic Kolyvagin
system κκκ= {{κτ (s, m)}τ∈Ns+m}s,m , which is a generator of the module KS(T ⊗ Λ, FL∞ , P).
See [MR04, § 3] for an explanation of our notation. Here we say, loosely, that κτ (s, m) ∈
H1(k, Ts,m) and, by definition, there is a well-defined element

κ1 = {κ1(s, m)}s,m ∈ lim←−
s,m

H1
FL∞ (k, Ts,m) =H1

FL∞ (k, T ⊗ Λ).

For notational simplicity, we write T = T ⊗ Λ. Recall that char(A) denotes the
characteristic ideal of a finitely generated Λ-module A, with the convention that char(A) = 0
unless A is Λ-torsion.

Theorem 2.20. Under the assumptions (A1)–(A3),

char(H1
F∗L∞

(k, T∗)∨) = char(H1
FL∞ (k, T)/Λ · κ1).

Proof. This is [MR04, Theorem 5.3.10(iii)] applied to our setting. We remark that all the
hypotheses of [MR04, Theorem 5.3.10(iii)] hold thanks to (A1)–(A3) (as we have already
demonstrated). 2

Theorem 2.20 will be applied towards establishing the main conjectures of Iwasawa theory
for totally real fields. We remark once again that Theorem 2.20 does not rely on any conjecture.
However, to link the statement of Theorem 2.20 with the relevant L-values, we will need to
construct a Λ-adic Kolyvagin system from the (conjectural) Rubin–Stark elements; furthermore,
we will need Leopoldt’s conjecture to prove that the Λ-adic Kolyvagin system constructed in this
way is non-trivial.

3. Λ-adic Kolyvagin systems of Stark units

In this section, we review Rubin’s integral refinement of Stark’s conjectures and construct
Kolyvagin systems for the modified Selmer structure FL∞ on T ⊗ Λ coming from the Stark
elements of Rubin. We note that the existence of Kolyvagin systems for FL∞ on T ⊗ Λ was
proved unconditionally in the previous section, building on the main result of [Buy07].

For the rest of this paper, we assume that the Rubin–Stark conjecture [Rub96, Conjecture B′]
holds.

Before giving an outline of Rubin’s conjectures, let us define some notation. Let k, k∞, χ, fχ
and L be as above. For a cycle τ of the number field k, let k(τ) be the maximal p-extension
inside the ray class field of k modulo τ . Let kn be the unique sub-extension of k∞/k which has
degree pn over k. For any other number field F , define F (τ) to be the composite of k(τ) and F ,
and define Fn to be the composite of kn and F . Let

K = {Ln(τ) | τ is a (finite) cycle of k prime to fχp and n ∈ Z>0}
and

K0 = {kn(τ) | τ is a (finite) cycle of k prime to fχp and n ∈ Z>0}
be two collections of abelian extensions of k.
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3.1 Stark elements and Euler systems (of rank r) for Zp(1)

Fix a (finite) set S of places of k that does not contain any prime above p, but which contains
the set of infinite places S∞ and all primes λ that divide the conductor fχ of χ. Assume that
|S| > r + 1. For each K ∈ K, let

SK = S ∪ {places of k at which K is ramified}

be another set of places of k. Let O×K,SK denote the SK units of K (i.e. the elements of K× that
are units away from the primes of K above SK), and let ∆K (respectively, δK) denote Gal(K/k)
(respectively, |Gal(K/k)|). Conjecture B′ of [Rub96] predicts the existence of certain elements4

ε̃K,SK ∈ ΛK,SK ⊂
1
δK

r∧
O×K,SK

where the module ΛK,SK defined in [Rub96, § 2.1] has the property that for any homomorphism

ψ̃ ∈HomQp[∆K ]

( r∧
O×,∧K,SK

⊗Qp,O×,∧K,SK
⊗Qp

)
which is induced from a homomorphism

ψ ∈HomZp[∆K ]

( r∧
O×,∧K,SK

,O×,∧K,SK

)
,

one has ψ̃(ΛK,SK )⊂O×,∧K,SK
. We remark that the rth exterior power

∧r O×,∧K,SK
(and all other

exterior powers which appear below) is taken in the category of Zp[∆K ]-modules.

Remark 3.1. Rubin’s conjecture predicts that the elements ε̃K,SK should in fact lie inside
the module (1/δK)

∧rO×K,SK ,T , where T is a finite set of primes disjoint from SK , chosen in
such a way that the group O×K,SK ,T of SK-units which are congruent to 1 modulo all the primes
in T is torsion-free. However, in our case, any set T which contains a prime other than 2 will
suffice (since all the fields which appear in our paper are totally real). We may therefore fix T
to be {q}, a set consisting of a single prime q which is prime to 2.

Further, T = {q} may be chosen in such a way that the extra factors appearing in the
definition of the (SK , T )-modified zeta function for K (see [Rub96, § 1] for details about these
zeta functions) will be prime to p when they are evaluated at 0. (This could be accomplished,
for example, by choosing the prime q so that Nq− 1 is prime to p.) We note that for such T we
have O×,∧K,SK ,T =O×,∧K,SK

, by the exact sequence given in [Rub96, (1)], for instance. Since in this
paper we work only with the p-adic completion of the group of units, we can safely exclude T
from our notation.

One minor issue arises because of the appearance of the set T = {q}: one should remove all
the fields kn(τ) and Ln(τ) from the collections K0 and K, respectively, for which q|τ . This is not
a problem for our purposes either.

Definition 3.2. For F = k or F = L, we set

ε
Fn(τ),S

Fn(τ)
= Nr

Fn+1(τ)/Fn(τ)
(ε̃
Fn+1(τ),S

Fn+1(τ)
)

4 Note that what we call ε̃K,SK here is the εK,SK in [Buy09, Rub96]. For an explanation for the change of notation,
see Remarks 3.3 and 4.1.
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where Nr
Fn+1(τ)/Fn(τ)

denotes the norm map induced on the rth exterior power. It follows from
[Rub96, Proposition 6.1] that

ε
Fn(τ),S

Fn(τ)
= ε̃

Fn(τ),S
Fn(τ)

if n > 1.

Note that [Rub96, Proposition 6.1] says something also when n= 0; we will return to this point
in Remark 3.3.

The collection {εK,SK}K∈K (which we shall refer to as the collection of Rubin–Stark elements)
satisfies, owing to [Rub96, Proposition 6.1], the distribution relation that ought to be satisfied
by an Euler system of rank r (in the sense of [Per98]). Since S is fixed (and therefore SK is,
too), we shall often drop S or SK from the notation and write εK,SK simply as εK ; sometimes,
we will use S instead of SK and denote OK,SK by OK,S .

For any number field K, Kummer theory gives a canonical isomorphism

H1(K, Zp(1))∼=K×,∧ := lim←−
n

K×/(K×)p
n
.

Under this identification, we view each εK,SK as an element of (1/δK)
∧r H1(K, Zp(1)). The

distribution relation satisfied by the Stark elements (see [Rub96, Proposition 6.1]) shows that
the collection {εK,SK}K∈K is an Euler system of rank r in the sense of [Per98] (except for the
denominators 1/δK , but we ignore this subtlety for the moment, as these denominators disappear
once we ‘pass’ to an Euler system of rank one by the defining property of these elements; see
Proposition 3.14).

3.2 Twisting by the character χ
Following the formalism of [Rub00, § II.4], we may twist the Euler system {εK,SK}K∈K for the
representation Zp(1) in order to obtain an Euler system for the representation T = Zp(1)⊗ χ−1.

Define the Galois groups Γn := Gal(kn/k), Gτ := Gal(k(τ)/k), ∆τ := Gal(L(τ)/k) =Gτ ×∆
and, finally, Gτn := Gal(kn(τ)/k) =Gτ × Γn, which is the p-part of ∆τ

n := Gal(Ln(τ)/k)∼=Gτn ×
∆ =Gτ × Γn ×∆. (These canonical factorizations of the Galois groups follow easily from the
fact that |∆| is prime to p and from ramification considerations.) This description is summarized
in the following array of fields and Galois groups.

Ln(τ)
Γn

GGGGGGGGG
∆

vvvvvvvvv

∆τ
nkn(τ)

Γn Gτn

6666666666666666
L(τ)

Gτ∆τ

																

k(τ)

Gτ IIIIIIIIII L

∆
vvvvvvvvvvv

k

Let χ be as above, and let εχ denote the idempotent (1/|∆|)
∑

σ∈∆ χ(σ)σ−1. We may (and
will) regard this element as an element of the groups ring Zp[∆τ

n] via the factorization above. For
notational simplicity, we set δ = δkn(τ) (note that δ also equals δLn(τ) up to multiplication by a
p-adic unit). In what follows, δ will appear as a denominator; although δ does depend on n and τ ,
we will allow ourselves to be sloppy with the notation we use for these denominators, as they
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will not be present when the Stark elements are utilized for our main purposes (i.e. when they
are used to construct a Λ-adic Kolyvagin system for the Selmer structure FL∞).

For any cycle τ which is prime to pfχ, we define

εχLn(τ) := εχεLn(τ),S ∈
1
δ
εχ

r∧
H1(Ln(τ), Zp(1)) (4)

=
1
δ

r∧
εχH

1(Ln(τ), Zp(1)) (5)

=
1
δ

r∧
H1(Ln(τ), Zp(1))χ. (6)

We note that the equality between the lines (4) and (5) above,( r∧
H1(Ln(τ), Zp(1))

)χ
= εχ

r∧
H1(Ln(τ), Zp(1))

=
r∧
εχH

1(Ln(τ), Zp(1))

=
r∧
H1(Ln(τ), Zp(1))χ,

holds simply because εrχ = εχ.

The Hochschild–Serre spectral sequence gives rise to an exact sequence

H1(∆, T )−→H1(kn(τ), T )−→H1(Ln(τ), T )∆ −→H2(∆, T ), (7)

where H1(Ln(τ), T )∆ stands for the largest submodule of H1(Ln(τ), T ) on which ∆ acts trivially.
On the other hand, since |∆| is prime to p, it follows that the very first and very last terms in (7)
vanish. We therefore have an isomorphism

H1(kn(τ), Zp(1)⊗ χ−1)−→H1(Ln(τ), Zp(1)⊗ χ−1)∆.

Now, since GLn(τ) is in the kernel of χ,

H1(Ln(τ), Zp ⊗ χ−1)∼=H1(Ln(τ), Zp(1))⊗ χ−1

and hence

H1(kn(τ), T ) ∼−→H1(Ln(τ), T )∆ ∼=H1(Ln(τ), Zp(1))χ. (8)

This induces an isomorphism
r∧
H1(kn(τ), T ) ∼−→

r∧
H1(Ln(τ), Zp(1))χ. (9)

The inverse image of the element εχLn(τ) (which was defined in (4)) under the isomorphism induced
from (9) will be denoted by εχkn(τ). The collection {εχkn(τ)}n,τ = {εχK}K∈K0

will be called the Stark
element Euler system of rank r.

Remark 3.3. Suppose that (A3) holds. From our definition of εL(τ) and [Rub96, Proposition 6.1],
it follows that

εL(τ) =
∏
℘|p

(1− Frob−1
℘ )ε̃L(τ),
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where the product is over all primes ℘ of k which lie above p and Frob℘ is the Frobenius element
at ℘ inside Gk. Hence, upon restricting to the χ-parts, we see that

εχk =
∏
℘|p

(1− χ−1(Frob℘))ε̃χk .

(We warn the reader that we are still using the additive notation.) It follows from assumption
(A3) that the element εχk used in this paper differs from the element ε̃χk (which is identical to
the element εχk appearing in [Buy09]) only by a unit u ∈ Z×p :

εχk = u · ε̃χk .

See also Remark 4.1 below, where we use this fact to compare the Kolyvagin systems derived
from these two families of Rubin–Stark elements.

Next, we construct an Euler system of rank one (i.e. an Euler system in the sense of [Rub00]),
using ideas from [Rub96, § 6] and [Per98, § 1.2.3]. The main point is that if one were to apply
the arguments of [Per98, Rub96] directly, all one would get (after applying Kolyvagin’s descent)
would be a Λ-adic Kolyvagin system for the coarser Selmer structure FΛ on T ⊗ Λ. In § 3.4, we
overcome this difficulty and obtain a Λ-adic Kolyvagin system for the finer Selmer structure FL∞
on T ⊗ Λ.

3.3 Choosing homomorphisms
For any field K ∈ K0, recall that ∆K := Gal(K/k) and write δ = |∆K |. By using the elements of

lim←−
K∈K0

r−1∧
HomZp[∆K ](H

1(K, T ), Zp[∆K ]) (10)

(or the images of the elements of

lim←−
K∈K0

r−1∧
HomZp[∆K ](H

1(Kp, T ), Zp[∆K ])

under the canonical map

lim←−
K∈K0

r−1∧
HomZp[∆K ](H

1(Kp, T ), Zp[∆K ])−→ lim←−
K∈K0

r−1∧
HomZp[∆K ](H

1(K, T ), Zp[∆K ])

induced from the localization at p) and the Rubin–Stark elements above, Rubin [Rub96, § 6]
(see also [Per98, § 1.2.3]) showed how to obtain an Euler system (in the sense of [Rub00]) for
the Gk-representation T . In this section, we show how to choose the homomorphisms appearing
in the inverse limit (10) carefully, so that the resulting Euler system gives rise to a Kolyvagin
system for the L∞-modified Selmer structure FL∞ on T ⊗ Λ. We remark also that for Ψ = {ψK}
belonging to the module (10),

ψK(εχK) ∈H1(K, T )

by the defining (integrality) property of the elements

εχK ∈
1
δ

r∧
H1(K, T );

that is, the denominators δ will disappear once we apply the homomorphisms from (10) to the
Rubin–Stark elements.
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One may again identify H1(kn(τ), T ) with (Ln(τ)×)χ, using the isomorphism (8) and
Kummer theory. Similarly, one may identify the semi-local cohomology group H1(kn(τ)p, T )
with (Ln(τ)×p )χ, where Ln(τ)p := Ln(τ)⊗Qp. Let VLn(τ) denote the p-adic completion of the
local units of Ln(τ)p.

The proof of [Rub00, Proposition III.2.6(ii)] gives the next lemma.

Lemma 3.4. Assume that (A3) holds. Then for every kn(τ) ∈ K0,

H1(kn(τ)p, T )∼= (Ln(τ)×p )χ ∼= V χ
Ln(τ)

for all kn(τ) ∈ K0.

Recall that r = [k : Q] and note that all the fields that appear in this paper (namely, the
elements of the collections K and K0) are totally real. Further, assuming (A1) (i.e. that p is
prime to fχ), it follows that L(τ)/k is unramified at all primes above p. Therefore, Krasner’s
lemma [Kra39] on the structure of 1-units implies the following.

Lemma 3.5. If (A1) holds, then VL(τ) is a free Zp[∆τ ]-module of rank r.

Corollary 3.6. Assume that (A1) and (A3) hold. Then, for every k(τ) ∈ K0, the Zp[Gτ ]-
module H1(k(τ)p, T ) = V χ

L(τ) is free of rank r.

Hereafter we shall assume that (A1)–(A3) hold.

Proposition 3.7. For every k(τ) ∈ K0:

(i) the Λ-module H1(k(τ)p, T ⊗ Λ) is free of rank [k(τ) : Q] = r · |Gτ |;
(ii) the canonical map H1(k(τ)p, T ⊗ Λ)→H1(k(τ)p, T ) is surjective.

Proof. Let Q be any prime of k(τ) lying above p, and let k(τ)Q,∞ be the cyclotomic Zp-extension
of k(τ)Q. We set

Hk(τ)Q = Gal(k(τ)Q/k(τ)Q,∞),

following the notation in Appendix A. Owing to assumption (A2), the extension k(τ) is
unramified at p, and we may therefore identify Γ with Gal(k(τ)Q,∞/k(τ)Q).

It is easy to see that H0(k(τ)Q, T ) = 0. Therefore, applying Theorem A.8 with the field k(τ)
proves (i). To prove (ii), we need to check that

0 = coker(H1(k(τ)p, T ⊗ Λ)−→H1(k(τ)p, T )) =H2(k(τ)p, T ⊗ Λ)[γ − 1].

As in the proof of Proposition 2.9(ii), this follows (by local duality) from the vanishing condition

H0(k(τ)p, T ∗) =H0(kp, T ∗) = 0,

where the second equality holds thanks to (A3) and the first equality follows from the proof
of [Rub00, Lemma IV.2.5(i)] together with the remark after [Rub00, Conjecture VIII.2.6]. 2

Remark 3.8. The statement of Proposition 3.7(ii) is equivalent to the statement that the map

H1(k(τ)p, T ⊗ Λ)/(γ − 1)−→H1(k(τ)p, T )

is an isomorphism.

Let Λτ := Zp[[Gτ × Λ]] = Λ⊗Zp Zp[Gτ ] and let M =
⋃
F∈K0

F .
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Proposition 3.9. The Λτ -module H1(k(τ)p, T ⊗ Λ) is free of rank r.

Proof. Let e= {e1, . . . , er} be a Zp[Gτ ]-basis for H1(k(τ)p, T ). By Proposition 3.7(ii) and
Nakayama’s lemma, there exists a set of generators E = {E1, . . . , Er} of the Λτ -module
H1(k(τ)p, T ⊗ Λ) which lifts the basis e (with respect to the surjection of Proposition 3.7(ii)).

We claim that E is a basis for the Λτ -module H1(k(τ)p, T ⊗ Λ). Assume the contrary, and
suppose that there is a non-trivial relation

r∑
i=1

aiEi = 0 (11)

with ai ∈ Λτ . Since H1(k(τ)p, T ⊗ Λ) is Λ-torsion free (by Proposition 3.7(i)), we may assume
without loss of generality that a1 /∈ (γ − 1). This implies that the relation (11), reduced modulo
(γ − 1), gives rise to a non-trivial relation among {e1, . . . , er} over Zp[Gτ ]. This is a contradiction;
hence the set of generators E is a Λτ -basis for H1(k(τ)p, T ⊗ Λ). 2

Corollary 3.10. The Zp[[Gal(M/k)]]-module V := lim←−n,τ H
1(kn(τ)p, T ) = lim←−τ H

1(k(τ)p,
T ⊗ Λ) is free of rank r.

Proof. This is an immediate consequence of Proposition 3.9. 2

Corollary 3.11. The Zp[Gτn]-module H1(kn(τ)p, T ) is free of rank r.

Proof. This follows from Proposition 3.9 and the fact that the map

H1(k(τ)p, T ⊗ Λ)−→H1(kn(τ)p, T )

is surjective (as the relevant H2 vanishes). 2

Choose any Zp[[Gal(M/k)]]-line L inside V such that the quotient V/L is also free (of rank
r − 1) as a Zp[[Gal(M/k)]]-module.

Remark 3.12. Although the main results of this article do not ‘see’ the choice of the line L⊂ V,
our methods require us, in an essential way, to make this somewhat unnatural choice.

Choose any decomposition

V =
r⊕
i=1

Li (12)

of V into rank-one Zp[[Gal(M/k)]]-modules. This, in turn, fixes a decomposition

H1(kp, T ) =
r⊕
i=1

Li (13)

into rank-one Zp-modules Li, with Li 7→ Li under the obvious map V→H1(kp, T ). Consider
r∑
i=1

KS(T, FLi , P)⊂KS(T, Fcan, P). (14)

It is not hard to see (cf. [Buy08, Remark 1.27]) that the sum in (14) is, in fact, a direct sum.
In view of the fact that the main applications of the Kolyvagin systems for the modified Selmer
structure FLi are independent of the choice of Li, it seems natural to raise the following question.
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Question. Does the rank-r submodule
r⊕
i=1

KS(T, FLi , P)⊂KS(T, Fcan, P)

depend on the decomposition (12)?

Unfortunately, at present we are not able to answer this question. Note that if the answer
to this question were to be affirmative, one would have a natural rank-r submodule of
KS(T, Fcan, P); see [Buy08, Theorem 1.28] for further discussion of this matter.

Definition 3.13. For all kn(τ) =K ∈ K0, let LK be the image of L under the (surjective)
projection map V→H1(Kp, T ).

Note that, for all K ∈ K0, LK is a free Zp[∆K ]-module of rank one and that

(LK′)Gal(K′/K) = LK
for all K ⊂K ′. We will simply write L for Lk and Lτn for Lkn(τ). We denote the image of L under
the projection V�H1(k(τ)p, T ⊗ Λ) by Lτ∞. When τ = 1, we simply write L∞ for Lτ∞ and Ln
for Lτn.

We define
r−1∧

Hom(V, Zp[[Gal(M/k)]]) := lim←−
K∈K0

r−1∧
HomZp[∆K ](H

1(Kp, T ), Zp[∆K ]),

where the inverse limit is taken with respect to the natural maps induced from the restriction
map

H1(Kp, T )−→H1(K ′p, T )Gal(K′/K)

(which is easily verified to be injective, e.g. by using the identifications of the semi-local
cohomology groups in question with semi-local units) and the isomorphism

Zp[∆K′ ]Gal(K′/K) −̃→ Zp[∆K ]

NK′
K 7−→ 1

for K ⊂K ′.
The localization map at p gives rise to a map H1(K, T )

locp−→H1(Kp, T ), which induces a
canonical map

r−1∧
Hom(V, Zp[[Gal(M/k)]])−→ lim←−

K∈K0

r−1∧
HomZp[∆K ](H

1(K, T ), Zp[∆K ]). (15)

We will still use Φ to denote the image of Φ ∈
∧r−1 Hom(V, Zp[[Gal(M/k)]]) under this map.

Choose an arbitrary {φK}K∈K0
= Φ ∈

∧r−1 Hom(V, Zp[[Gal(M/k)]]) and define5

H1(K, T ) 3 εχK,Φ := φK(εχK),

where {εχK}K∈K0
is the Stark element Euler system of rank r defined in § 3.2.

5 To make sense of our notation, first use the map (15) to view φK as an element of
∧r−1 HomZp[∆K ](H

1(K, T ),

Zp[∆K ]); then use [Rub96, (4)] to view it as an element of HomZp[∆K ](
∧r H1(K, T ), H1(K, T )).
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Proposition 3.14. The collection {εχK,Φ}K∈K0
(which will henceforth be referred to as the Euler

system of Φ-Stark elements) is an Euler system for the Gk-representation T = Zp(1)⊗ χ−1, in
the sense of [Rub00, Definition II.1.1].

We will sometimes write {εχkn(τ),Φ}n,τ for the Euler system {εχK,Φ}K∈K0
.

Proof. This is [Rub96, Proposition 6.6]. See also [Per98, § 1.2.3] for a more general application
of this idea. 2

Proposition 3.15. For any K ∈ K0, the projection map

r−1∧
Hom(V, Zp[[Gal(M/k)]])−→

r−1∧
HomZp[∆K ](H

1(Kp, T ), Zp[∆K ])

is surjective.

Proof. This is obvious from Corollary 3.11. 2

If the Euler system to Kolyvagin system map of Mazur and Rubin (see [MR04, Theorem 5.3.3])
is applied to the Euler system of Φ-Stark elements, then all one gets is a Λ-adic Kolyvagin system
for the coarser Selmer structure FΛ on T ⊗ Λ. In the following, we will choose a particular
element Φ(∞)

0 ∈
∧r−1 Hom(V, Zp[[Gal(M/k)]]) so that the Kolyvagin system (coming from the

Φ(∞)
0 -Stark elements) will be a Kolyvagin system for the finer Selmer structure FL∞ .

Definition 3.16. We say that an element

{φτn}n,τ = Φ ∈
r−1∧

Hom(V, Zp[[Gal(M/k)]])

satisfies HL if for any K = kn(τ) ∈ K0 one has φτn(
∧r H1(Kp, T ))⊂ Lτn.

Next, we will construct an element

Φ(∞)
0 ∈

r−1∧
Hom(V, Zp[[Gal(M/k)]])

which satisfies HL and lifts the element Φ0 of [Buy09, § 2.3] with respect to the (surjective) map
r−1∧

Hom(V, Zp[[Gal(M/k)]])−→ lim←−
τ

r−1∧
HomZp[Gτ ](H

1(k(τ)p, T ), Zp[Gτ ]) 3 Φ0.

The element Φ0 was used in [Buy09] to construct a primitive Kolyvagin system for the Selmer
structure FL on T .

Fix a basis {Ψ(i)
L }

r−1
i=1 of the free Zp[[Gal(M/k)]]-module

HomZp[[Gal(M/k)]]
(V/L, Zp[[Gal(M/k)]])

of rank r − 1. This in turn fixes a basis {ψ(i)
Lτn}

r−1
i=1 for the free Zp[Gτn]-module

HomZp[Gτn](H
1(kn(τ)p, T )/Lτn, Zp[Gτn]),

for all kn(τ) ∈ K0, such that the homomorphisms {ψ(i)
Lτn}n,τ are compatible with respect to the

surjections

HomZp[∆K′ ]
(H1(K ′p, T )/LK′ , Zp[∆K′ ]) // HomZp[∆K ](H1(Kp, T )/LK , Zp[∆K ])
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for kn(τ) =K ⊂K ′ = kn′(τ ′). Furthermore, the homomorphism
r−1⊕
i=1

ψ
(i)
Lτn :H1(kn(τ)p, T )/Lτn −→ Zp[Gτn]r−1

is an isomorphism of Zp[Gτn]-modules, for every n and τ .

Let ψ(i)
n,τ denote the image of ψ(i)

Lτn under the canonical injection

HomZp[Gτn](H1(kn(τ)p, T )/Lτn, Zp[Gτn]) � � // HomZp[Gτ ](H1(kn(τ)p, T ), Zp[Gτn]).

Note then that the map

Ψτ
n :=

r−1⊕
i=1

ψ(i)
n,τ :H1(kn(τ)p, T )−→ Zp[Gτn]r−1

is surjective and that ker(Ψτ
n) = Lτn.

Define

φτn := ψ(1)
n,τ ∧ ψ(2)

n,τ ∧ · · · ∧ ψ(r−1)
n,τ ∈

r−1∧
Hom(H1(kn(τ)p, Zp[Gτn]).

(When τ = 1, we drop ‘τ ’ from the notation and write simply φn for φτn and so on.) Note once
again that for τ |τ ′ and n 6 n′, the element φτ

′
n′ maps to the element φτn under the surjective (by

Corollary 3.11) homomorphism∧r−1 Hom(H1(kn′(τ ′)p, T ), Zp[Gτ
′
n′ ])

// // ∧r−1 Hom(H1(kn(τ)p, T ), Zp[Gτn]).

We may therefore regard Φ(∞)
0 := {φτn}n,τ as an element of the module

lim←−
kn(τ)∈K0

r−1∧
Hom(H1(kn(τ)p, T ), Zp[Gτn]) =

r−1∧
Hom(V, Zp[[Gal(M/k)]]).

Proposition 3.17. Let {φτn}n,τ = Φ(∞)
0 be as above. Then for every n and τ , φτn induces an

isomorphism

φτn :
r∧
H1(kn(τ)p, T ) ∼−→ ker(Ψτ

n) = Lτn.

In particular, Φ(∞)
0 satisfies HL.

Proof. The proof is identical to the proof of (the easy half of) [Buy07, Lemma 3.1], which also
follows the proof of [MR04, Lemma B.1] almost line by line. 2

Remark 3.18. It is easy to see that the element Φ(∞)
0 lifts, by construction, the element Φ0

of [Buy07, § 2.3], in the sense explained above.

Remark 3.19. Since the map

H1(kp, T ⊗ Λ) = lim←−
n

H1((kn)p, T )−→H1((kn)p, T )

is surjective for every n and the Λ-module H1(kp, T ⊗ Λ) (respectively, the Zp[Γn]-module
H1((kn)p, T )) is free of rank r, it follows that the natural map

r∧
H1(kp, T ⊗ Λ) =

r∧
lim←−
n

H1((kn)p, T )−→ lim←−
n

r∧
H1((kn)p, T )
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is an isomorphism. This, combined with Proposition 3.17, shows that the map φ∞ := {φn}n
induces an isomorphism

r∧
H1(kp, T ⊗ Λ)∼= lim←−

n

r∧
H1((kn)p, T )

φ∞−→ lim←−
n

Ln = L∞.

3.4 Kolyvagin systems for the L∞-modified Selmer triple: II
For notational simplicity, write T := T ⊗ Λ and, for a fixed topological generator γ of Γ =
Gal(k∞/k), set γn = γp

n
. Let M denote the maximal ideal of Λ. Fix a finite set S as in § 3.1

which does not contain any non-archimedean prime that splits completely in L/k. Throughout
this section, we assume (A1)–(A3) as well as the Rubin–Stark conjecture [Rub96, Conjecture B′]
for S and for every K ∈ K.

In § 2.5, we proved under the hypotheses (A1)–(A3) that:

(i) the Λ-module KS(T, FL∞ , P) is free of rank one;

(ii) the Zp-module KS(T, FL, P) is free of rank one;

(iii) the natural map KS(T, FL∞ , P)→KS(T, FL, P) is surjective.

In [Buy09], a particular generator κΦ0 ∈KS(T, FL, P) was constructed using the Rubin–
Stark elements. The main goal of this section is to ‘lift’ κΦ0 to a Λ-adic Kolyvagin system
κκκΦ

(∞)
0 ∈KS(T, FL∞ , P), so that κκκΦ

(∞)
0 maps to κΦ0 under the surjection of (iii) above.

Definition 3.20. For F = FΛ or FL∞ , we set

KS′(T, F, P) := lim←−
m,n

lim−→
j

KS(T/(pm, γn − 1)T, F, Pj),

where KS(T/(pm, γn − 1)T, F, Pj) is the Λ/(pm, γn − 1)-module of Kolyvagin systems (in the
sense of [MR04, Definition 3.1.3]) for the propagated Selmer structure F on the quotient
T/(pm, γn − 1)T.

Remark 3.21. We introduced the module KS′(T, F, P) because, after applying Kolyvagin’s
descent procedure [Rub00, § IV] (modified appropriately in [MR04, Appendix A]), one obtains
elements of KS′(T, FΛ, P). On the other hand, it is not hard to see that the module KS′(T, F, P)
defined above is naturally isomorphic to the module KS(T, F, P) of Definition 2.18(ii), using the
fact that each of the collections {pm, γn − 1}m,n and {pm,Xn}m,n forms a base of neighborhoods
at zero. Furthermore, using the fact that the collection {Mα}α∈Z+ also forms a base of
neighborhoods at zero, one may identify these two modules of Kolyvagin systems with the
generalized module of Kolyvagin systems defined in [MR04, Definition 3.1.6]. With a slight
abuse of notation, we will write KS(T, F, P) for any of the three modules of Kolyvagin
systems given by three different definitions (i.e. Definition 2.18 and Definition 3.20 here, and
[MR04, Definition 3.1.6]). For the current section, we will use Definition 3.20 to define this
module.

Let ES(T ) denote the collection of Euler systems for T , in the sense of [Rub00]. The Euler
system to Kolyvagin system map of [MR04, Theorem 5.3.3] gives a map

ES(T )−→KS(T, FΛ, P).

Fix an arbitrary {φτn}n,τ = Φ ∈
∧r−1 Hom(V, Zp[[Gal(M/k)]]) which satisfies HL, and let

κκκΦ = {{κΦ
τ (m, n)}τ∈N }m,n be the image of the Euler system {εχkn(τ),Φ}n,τ of Proposition 3.14.
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Thanks to [MR04, Theorem 5.3.3], we know the following relationships.

κΦ
1

lim←−m,n κ
Φ
1 (m, n) ∈ lim←−m,n H

1(k, T/(pm, γn − 1)T) =H1(k, T)def

{εχkn,Φ}n {φn(εχkn)}n ∈ lim←−n H
1(kn, T ) =H1(k, T)def

Remark 3.22. For every (rational) prime `, Shapiro’s lemma shows that

H1(k(τ), T/(pm, γn − 1)T)∼=H1(kn(τ), T/pmT ), (16)

H1(k(τ)`, T/(pm, γn − 1)T)∼=H1(kn(τ)`, T/pmT ). (17)

See [MR04, Lemma 5.3.1] for the first isomorphism and [Rub00, Appendix B.5] for its semi-
local version. Thus, we may talk about the propagation of a local conditionH1

F (k`, T)⊂H1(k`, T)
at ` to a local condition

H1
F ((kn)`, T/pmT )⊂H1((kn)`, T/pmT )∼=H1(k`, T/(pm, γn − 1)T),

i.e. we define H1
F ((kn)`, T/pmT ) to be the isomorphic copy of H1

F (k`, T/(pm, γn − 1)T) under
the isomorphism (17) of Shapiro’s lemma.

Theorem 3.23. For any Φ ∈
∧r−1 Hom(V, Zp[[Gal(M/k)]]) which satisfies HL,

κκκΦ := {{κΦ
τ (m, n)}τ∈N }m,n ∈KS(T, FL∞ , P).

For the rest of this section, the integers m and n will be fixed, and we will write the
element κΦ

τ (m, n) ∈H1(k, T/(pm, γn − 1)T) simply as κΦ
τ . Theorem 3.23 claims that for each

τ ∈Nm+n, κΦ
τ ∈H1

FL∞ (τ)(k, T/(p
m, γn − 1)T), where FL∞(τ) is the modified Selmer structure

defined in [MR04, Example 2.1.8]. Here we merely remark that the Selmer structures FL∞ and
FL∞(τ) determine the same local conditions away from τ ; in particular, they agree at p. On the
other hand, [MR04, Theorem 5.3.3] already shows that κΦ

τ ∈H1
FΛ(τ)(k, T/(p

m, γn − 1)T). Since
FL∞ and FΛ determine the same local conditions away from p, Theorem 3.23 follows from the
next proposition.

Proposition 3.24. Let

locp : H1(k, T/(pm, γn − 1)T) //

∼=
��

H1(kp, T/(pm, γn − 1)T)

∼=
��

H1(kn, T/pmT ) // H1((kn)p, T/pmT )

be the localization map into the semi-local cohomology at p (where the vertical isomorphisms
follow from Remark 3.22). Then,

locp(κΦ
τ ) ∈ Ln/pmLn ⊂H1((kn)p, T/pmT ).

Proposition 3.24 will be proved below. We first remark that

Ln/pmLn =H1
FL∞ ((kn)p, T/pmT ),

i.e. Ln/pmLn is the propagation of the local condition

H1
FL∞ ((kn)p, T ) =H1

FL∞ (kp, T/(γn − 1)T) = Ln (18)

at p. We note that the first equality in (18) is explained in Remark 3.22.
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Let

{κ̃Φ
τ (m, n) ∈H1((kn)p, T/pmT )}τ∈Nm+n

be the collection that Rubin associates (in [Rub00, Definition IV.4.10]) to the Euler system
{εχkn(τ),Φ}n,τ . Here we write κ̃Φ

τ (m, n) for the class which was denoted by κ[kn,τ,m] in [Rub00]. Since
we have already fixed m and n, we can safely drop m and n from the notation and write κ̃Φ

τ (m, n)
as κ̃Φ

τ when there is no danger of confusion. Note that [MR04, Appendix A, Equation (33)] relates
the class κ̃Φ

τ to the class κΦ
τ .

Lemma 3.25. If locp(κ̃Φ
τ ) ∈ Ln/pmLn, then locp(κΦ

τ ) ∈ Ln/pmLn as well.

Proof. This is an obvious consequence of using [MR04, Appendix A, Equation (33)]. 2

Let Dτ denote the derivative operator, defined as in [Rub00, Definition IV.4.1]. In [Rub00,
Definition IV.4.10 and Remark IV.4.3], Rubin defines the class κ̃Φ

τ as the inverse image of
Dτε

χ
kn(τ),Φ (mod pm) under the restriction map6

H1(kn, T/pmT )−→H1(kn(τ), T/pmT )G
τ
.

Therefore, locp(κ̃Φ
τ ) maps to locp(Dτε

χ
kn(τ),Φ) (mod pm) under the following map (which is also

an isomorphism thanks to [Rub00, Remark 4.4.3, Proposition B.5.1 and Proposition B.4.2]):

H1((kn)p, T/pmT )−→H1(kn(τ)p, T/pmT )G
τ
.

Under this isomorphism, Ln/pmLn is mapped isomorphically onto the rank-one Z/pmZ [Γn]-
module (Lτn/pmLτn)G

τ
, by the definition of Lτn and by the fact that Lτn is a free Zp[Gτn]-module.

The diagram below summarizes the discussion in this paragraph.

H1((kn)p, T/pmT ) ∼ // H1(kn(τ)p, T/pmT )G
τ

Ln/pmLn ∼ //
?�

OO

(Lτn/pmLτn)G
τ

?�

OO

Proposition 3.26. If Φ satisfies HL, then locp(κ̃Φ
τ ) ∈ Ln/pmLn.

Proof. Since locp is Galois equivariant, locp(Dτε
χ
kn(τ),Φ) =Dτ locp(ε

χ
kn(τ),Φ). Furthermore,

locp(ε
χ
kn(τ),Φ) ∈ Lτn,

since Φ satisfies HL. On the other hand, by [Rub00, Lemma 4.4.2], Dτεkn(τ),Φ (mod pm) is fixed
by Gτ , which in turn implies that

locp(ε
χ
kn(τ),Φ) (mod pm) ∈ (Lτn/pmLτn)G

τ
.

This proves that locp(κ̃Φ
τ ) belongs to Ln/pmLn by the discussion above. 2

Proof of Proposition 3.24. This is immediate from Lemma 3.25 and Proposition 3.26. 2

By the discussion following the statement of Theorem 3.23, this also completes the proof of
Theorem 3.23.

6 Note that (µp∞ ⊗ χ−1)Gkn(τ) is trivial since, for example, the complex conjugation cannot act by χ on µp∞ , as χ
is an even character. This proves that the restriction map in question is an isomorphism, by [Rub00, Remark 4.4.3].
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K. Büyükboduk

4. Applications to the main conjectures

Assume throughout this section that the finite set of places S of k does not contain any non-
archimedean prime which splits completely in L/k. Suppose that the hypotheses (A1)–(A3) hold,
as well as the Rubin–Stark conjecture. In this section we assume, in addition, that Leopoldt’s
conjecture is true; see Remark 4.1 for a discussion concerning this assumption. Let

{φτn}n,τ = Φ(∞)
0 ∈

r−1∧
Hom(V, Zp[[Gal(M/k)]])

be as in § 3.3 (recall that we write φn for φτn when τ = 1, and that we set φ∞ = {φn}), and let

κΦ
(∞)
0 = {κΦ

(∞)
0

τ }τ ∈KS(T, FL∞ , P)

be the Λ-adic Kolyvagin system of Φ(∞)
0 -Stark elements (introduced in § 3.4).

In [Buy09] an explicit generator was determined, which descends from the Euler systems of
Stark elements, for the cyclic Zp-module of Kolyvagin systems KS(T, FL, P). Following [Buy09],
we denote this generator by κΦ0 = {κΦ0

τ }, where Φ0 ∈ lim←−τ
∧r−1 HomZp[Gτ ](H1(k(τ)p, T ), Zp[Gτ ])

is a certain element that was used in [Buy09] and which we also recalled in § 3.3.

Remark 4.1.

(i) As in [Buy09, § 3], we use Leopoldt’s conjecture to ensure that the Kolyvagin system
κΦ0 ∈KS(T, FL, P) is primitive (in particular, non-trivial). Aside from Proposition 2.12
and Corollary 2.13, this is our only reason for assuming Leopoldt’s conjecture.

(ii) By Remark 3.3 and Theorem 2.19, what we call κΦ0 here differs from what [Buy09] called κΦ0

by a unit u ∈ Z×p , where u is as in Remark 3.3. We remind the reader that this difference is
due to the fact that we use Rubin–Stark elements {εχK}K∈K in this paper to construct Euler
systems, whereas [Buy09] used the Rubin–Stark elements {ε̃χK}K∈K. Since κΦ0 of [Buy09] is
a primitive Kolyvagin system, it follows that the κΦ0 appearing in this paper is a primitive
Kolyvagin system as well.

It is clear from our construction that κκκΦ
(∞)
0 maps to the element κΦ0 under the surjective

map

KS(T) := KS(T, FL∞ , P)�KS(T, FL, P) =: KS(T ).

Proposition 4.2. The Λ-adic Kolyvagin system of Φ(∞)
0 -Stark elements κΦ

(∞)
0 is Λ-primitive,

in the sense of [MR04, Definition 5.3.9].

Proof. Let T be the residual representation T/MT = T/pT . For κκκ ∈KS(T) (respectively,
κ ∈KS(T )), let κκκ (respectively, κ) denote the image of κκκ (respectively, κ) under the map
KS(T)→KS(T ) (respectively, the map KS(T )→KS(T )). Since κκκΦ

(∞)
0 maps to the element

κΦ0 under the map KS(T)→KS(T ), it is clear that κκκΦ
(∞)
0 = κΦ0 , so from now on we shall write

κ for both. Since κΦ0 is primitive,7 it follows from [MR04, Definition 4.5.5 and Theorem 5.2.10(ii)]
that κ 6= 0. This proves that the image of κκκΦ

(∞)
0 under the map KS(T)→KS(T/pT) is non-zero

7 We remark that our definition of a primitive Kolyvagin system is a priori different from [MR04, Definition 4.5.5]
of Mazur and Rubin. However, [MR04, Theorem 5.2.10(ii)] shows that these two definitions are, in fact, equivalent.
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for any height-one prime p⊂ Λ, since we have a commutative diagram

κκκΦ
(∞)
0_

��

∈ KS(T)

��

**VVVV

KS(T/pT)
tthhhh

κ ∈ KS(T )

and κ 6= 0. 2

Let char(A) denote the characteristic ideal of a torsion Λ-module A, and recall that A∨

denotes the Pontryagin dual of an abelian group A. The main application of the (Λ-primitive)
Kolyvagin system κκκΦ

(∞)
0 is the following.

Theorem 4.3. We have

char(H1
F∗L∞

(k, T∗)∨) = char(H1
FL∞ (k, T)/Λ · κΦ

(∞)
0

1 )

Proof. This follows from Theorem 2.20 and Proposition 4.2. 2

Corollary 2.13 and Theorem 4.3 (applied with c= κ
Φ

(∞)
0

1 ) imply the following.

Corollary 4.4. We have

char(H1
F∗str(k, T

∗)∨) = char(L∞/Λ · κ
Φ

(∞)
0

1 ).

Remark 4.5. We know a priori only that

εχkn(τ) ∈Qp ⊗Zp
r∧
H1(kn(τ), T ).

Let loc(r)
p denote the map

r∧
H1(kn(τ), T )−→

r∧
H1((kn(τ))p, T )∼=

r∧
V χ
Ln(τ),

so that

loc(r)
p (εχkn(τ)) ∈Qp ⊗Zp

r∧
V χ
Ln(τ).

The defining (integrality) property of the Rubin–Stark elements gives the following.

Consequence. For any

ψ1 ∧ ψ2 ∧ · · · ∧ ψr = ψ ∈
r∧

Hom(V χ
Ln(τ), Zp[G

τ
n]),

we have

ψ(loc(r)
p (εχkn(τ))) ∈ Zp[Gτn],

where we still use ψ to denote the map on Qp ⊗Zp
∧r V χ

Ln(τ) induced from ψ.

On the other hand, we know (by Corollary 3.11) that the Zp[Gτn]χ-module V χ
Ln(τ) is free of

rank r, hence the consequence above implies that loc(r)
p (εχkn(τ)) ∈

∧r V χ
Ln(τ). (This has already

been pointed out in [Rub96, Example 1 following Proposition 1.2].)
Let cstark

k∞
∈
∧r H1(kp, T) be the image of the element

{εχkn}n ∈ lim←−
n

Qp ⊗Zp
r∧
H1(kn, T )

loc
(r)
p−→ lim←−

n

r∧
H1((kn)p, T )

(3.19)∼=
r∧
H1(kp, T)
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under the localization-at-p map loc(r)
p composed with the isomorphism from Remark 3.19. This

is the element which showed up in the statement of Theorem A in § 1.2.

The homomorphism φ∞ = {φn} maps
∧r H1(kp, T) isomorphically onto L∞ by Remark 3.19,

and maps the element cstark
k∞
∈
∧r H1(kp, T) to the class κΦ

(∞)
0

1 ∈ L∞ by construction. We therefore
conclude that

r∧
H1(kp, T)/Λ · cstark

k∞
∼= L∞/Λ · κ

Φ
(∞)
0

1 ,

which, combined with Corollary 4.4, implies the following.

Corollary 4.6. We have

char(H1
F∗str(k, T

∗)∨) = char
( r∧

H1(kp, T)/Λ · cstark
k∞

)
.

Using the explicit description of the Galois cohomology groups in question (cf. [Rub00,
§ I.6.3]), one may identify H1

F∗str
(k, T∗)∨ with Gal(M∞/L∞)χ, where M∞ is the maximal abelian

p-extension of L∞ which is unramified outside the primes above p. This is the Iwasawa module
which is involved in the formulation of the ‘main conjectures’ in this setting. Let Lχk denote
(an appropriate normalization of) the Deligne–Ribet [DR80] p-adic L-function attached to the
character χ. As a consequence of the work of Wiles [Wil90], we deduce the following.

Theorem 4.7. The Λ-module char(
∧r H1(kp, T)/Λ · cstark

k∞
) is generated by Lχk .

It would be very desirable to prove Theorem 4.7 without appealing to [Wil90] and, therefore,
obtain a proof of the ‘main’ conjecture. It seems that this is feasible: the statement of Theorem 4.7
is very much in the spirit of [Col98, Per94a, Per94b, Per95]; and when k = Q (i.e. when
r = 1), Theorem 4.7 is a classical result of Iwasawa [Iwa64]. Note that the Stark elements
are obtained from the cyclotomic units when k = Q. One key observation that we mention here
is that the cyclotomic units demonstrate the complex Stark conjecture and the p-adic Stark
conjecture (see [Sol02, Sol04] for Solomon’s version of the p-adic Stark conjecture) simultaneously.
However, it would not be reasonable to expect to prove Theorem 4.7 using only the properties
of the Rubin–Stark elements (which are solutions to the Rubin–Stark conjecture for the complex
L-functions), since Rubin’s conjecture only predicts the values of a certain complex -valued
regulator evaluated at these elements. In fact, it is plausible that one would also need to utilize
the solutions to an appropriate p-adic Stark conjecture.

In a sequel to this paper, we hope to discuss the relation between the solutions to the complex
and p-adic Stark conjectures via the rigidity offered by Theorem 2.19, and prove Theorem 4.7
without assuming Wiles’ work, thus deducing the main conjectures. One big obstacle with which
the author is faced is the lack of an integral p-adic Stark conjecture (at either s= 1 or s= 0)
along the cyclotomic Zp-tower.

Nevertheless, Theorem 4.7 is true, and this fact already hints at a relation between the
solutions of the complex and p-adic Stark conjectures. This relation should be understood as an
analogy to the fact that the cyclotomic units give solutions to both the complex Stark conjecture
and the p-adic Stark conjecture (when k = Q).
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Appendix A. Local conditions at p over an Iwasawa algebra
via the theory of (ϕ, Γ)-modules

In this appendix, we give an overview of certain results due to Benois, Colmez, Fontaine, Herr and
Perrin-Riou. We use these results to determine the structure of the semi-local cohomology groups
H1(kn(τ)p, T ) in § 3.3. This probably could have been achieved without appealing to the theory of
(ϕ, Γ)-modules; however, this very general approach may be of help in generalizing the methods
of this paper for application to many other settings.

Throughout this appendix, let K denote a finite extension of Qp and set K̃n :=K(µpn) and
K̃∞ :=

⋃
n K̃n. Define the Galois groups H̃K := Gal(K/K̃∞) and Γ̃K :=GK/H̃K = Gal(K̃∞/K).

Let γ̃ be a topological generator of the pro-cyclic group Γ̃K , and let Λ̃K := Zp[[Γ̃K ]]. Let γ̃n be
a fixed topological generator of Gal(K̃∞/K̃n) := Γ̃(n) for n ∈ Z+, which is chosen in such a way
that γ̃n = γ̃p

αn

1 , where αn ∈ Z+ is such that [K̃n : K̃] = pαn .

Let Kn be the maximal p-extension of K inside K̃n, and let
⋃
n Kn =:K∞ ⊂ K̃∞ be the

cyclotomic Zp-extension of K. We set ΓK := Gal(K∞/K) and ΛK := Zp[[ΓK ]]. Note then that

Γ̃K =W × ΓK and Λ̃K = Zp[W ]⊗Zp ΛK ,

where W is a finite group whose order is prime to p. (In fact, W can be identified with
Gal(K(µp)/K).) Let γ denote the restriction of γ̃ to K∞, so that the element γ is a topological
generator of ΓK . Let γn denote the image of γ̃n under the natural isomorphism

Gal(K̃∞/K̃n)∼= Gal(K∞/Kn),

and set HK := Gal(K/K∞) (so that HK/H̃K
∼=W ).

In [Fon90], Fontaine introduced the notion of a (ϕ, Γ)-module over a certain period ring,8

which he denotes by Oε̂nr (and which is the ring of integers of the field ε̂nr). We set Oε(K) :=
(Oε̂nr)HK . We will not include here a detailed discussion of these objects, and instead refer
the reader to [Fon90, A.3.1–3.2] for the definitions and basic properties of these rings. Briefly,
a (ϕ, Γ)-module over Oε(K) is a finitely generated Oε(K)-module with semi-linear continuous
and commuting actions of ϕ and Γ := Γ̃K . A (ϕ, Γ)-module D over Oε(K) is called étale if ϕ(D)
generates D as an Oε(K)-module.

Using his theory, Fontaine established an equivalence between the category of
Zp-representations of the absolute Galois group GK of K and the category of étale (ϕ, Γ)-modules
over Oε(K). This equivalence is as follows.

T 7−→ D(T ) := (Oε̂nr ⊗Zp T )HK

(Oε̂nr ⊗Oε(K)
D)ϕ=1 =: T (D)←− [ D

See [Fon90, A.1.2.4–1.2.6 ] for details.

8 However, one should be cautious, as Fontaine’s Kn is our K̃n, etc. For instance, his ΓK is our Γ̃K .
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Suppose that T is any Zp[[GK ]]-module which is free of finite rank over Zp. In [Her98], Herr
makes use of the theory of (ϕ, Γ)-modules to compute the Galois cohomology groups H∗(K, T ).
One of the benefits of his approach is that the complex he constructs with cohomology H∗(K, T )
is quite explicit. This allows one to compute certain local Galois cohomology groups of
p-adic fields. In [Her01], Herr gives a proof of the local Tate duality, where the local pairing
(see [Her01, § 5]) is explicitly defined in terms of the residues of the differential forms on Oε(K).
The rest of this appendix is a survey of Herr’s results and their applications [Ben00, CC99] to
Iwasawa theory.

In Fontaine’s theory of (ϕ, Γ)-modules, there is an important operator9

ψ :Oε̂nr −→Oε̂nr ,

ψ(x) :=
1
p
ϕ−1(Trε̂nr/ϕ(ε̂nr)(x)),

which is crucial for what follows. The map ψ is a left inverse of ϕ, and its action on Oε̂nr commutes
with the action of GK . It induces an operator (which we still denote by ψ)

ψ :D(T )−→D(T )

for any GK-representation T .
Let Cψ,γ̃ be the complex

Cψ,γ̃ : 0 // D(T )
(ψ−1,γ̃−1) // D(T )⊕D(T )

(γ̃−1)	(ψ−1) // D(T ) // 0.

The main result of [Her98] is the following.

Theorem A.1. The complex Cψ,γ̃ computes the GK-cohomology of T :

(i) H0(K, T )∼=D(T )ψ=1,γ̃=1;

(ii) H2(K, T )∼=D(T )/(ψ − 1, γ̃ − 1);

(iii) there is an exact sequence

0−→ D(T )ψ=1

γ̃ − 1
−→H1(K, T )−→

(
D(T )
ψ − 1

)γ̃=1

−→ 0.

All the isomorphisms and maps that appear above are functorial in T and K.

Definition A.2. Let

H1
Ĩw

(K, T ) := lim←−
n

H1(K̃n, T )

and H1
Iw(K, T ) := lim←−

n

H1(Kn, T ),

where the inverse limits are taken with respect to the corestriction maps.

Remark A.3. Since the order of W is prime to p, it follows that

H1
Iw(K, T ) ∼−→H1

Ĩw
(K, T )W

by the Hochschild–Serre spectral sequence.

We now determine the structure of H1
Iw(K, T ) using Theorem A.1.

9 This definition makes sense because Trε̂nr/ϕ(ε̂nr)(Oε̂nr)⊂ pOε̂nr and ϕ is injective.
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Proposition A.4. Define τn := 1 + γ̃n−1 + · · ·+ γ̃p−1
n−1 ∈ Zp[[Γ̃K ]]. Then there is the following

commutative diagram with exact rows.

Cψ,γ̃n(K̃n, T ) : 0

τ∗n
��

// D(T ) //

τn

��

D(T )⊕D(T ) //

τn⊕id

��

D(T ) //

id

��

0

Cψ,γ̃n−1(K̃n−1, T ) : 0 // D(T ) // D(T )⊕D(T ) // D(T ) // 0

Furthermore, the map induced from the morphism τ∗n on the cohomology of Cψ,γ̃n(K̃n, T )
coincides with the corestriction map under Herr’s identification H∗(Cψ,γ̃n(K̃n, T ))∼=H∗(K̃n, T )
of Theorem A.1.

Proof. This follows from the fact that τ∗n is a cohomological functor and induces TrK̃n/K̃n−1

on H0, hence it induces corestrictions on H i. 2

Using Proposition A.4, one may compute H∗
Ĩw

(K, T ).

Theorem A.5.

(i) H i
Ĩw

(K, T ) = 0 if i 6= 1, 2.

(ii) H1
Ĩw

(K, T ) ∼−→D(T )ψ=1.

(iii) H2
Ĩw

(K, T ) ∼−→D(T )/(ψ − 1).

See [CC99, § II.3] for a proof of this theorem.

Remark A.6. The isomorphism

exp∗ :H1
Ĩw

(K, T ) ∼−→D(T )ψ=1

of Theorem A.5(ii) can be considered as a vast generalization of Coleman’s map [Col79]. The
isomorphism exp∗ conjecturally gives rise to the (conjectural) p-adic L-function attached to T .
This viewpoint that we gain is one of the important benefits of using the theory of (ϕ, Γ)-modules
to compute Galois cohomology.

Let C(T ) := (ϕ− 1)D(T )ψ=1. Since ψ is a left inverse of ϕ, it follows that

ker{D(T )ψ=1 ϕ−1−→ C(T )}=D(T )ϕ=1.

Hence we have an exact sequence

0−→D(T )ϕ=1 −→D(T )ψ=1 ϕ−1−→ C(T )−→ 0. (A1)

Using techniques from the theory of (ϕ, Γ)-modules, one can determine the structure of C(T ).

Proposition A.7. The Λ̃K-module C(T ) is free of rank [K : Qp] · rankZpT .

One can also check that D(T )ϕ=1 ∼= T H̃K . In particular, D(T )ϕ=1 is finitely generated over Zp
and hence is a torsion Zp[[Γ̃K ]]-module. Thus, it follows from Proposition A.7 and Theorem A.5
that D(T )ϕ=1 =H1

Ĩw
(K, T )tors, the torsion submodule of H1

Ĩw
(K, T ).

If we now take the W -invariance of the exact sequence (A1) (making use of the fact that
taking W -invariance is an exact functor) and apply Remark A.3 along with Theorem A.5 and
Proposition A.7, we obtain the following result.
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Theorem A.8 (Cherbonnier and Colmez [CC99]).

(i) For the ΛK-torsion submodule H1
Iw(K, T )tors of H1

Iw(K, T ), we have H1
Iw(K, T )tors

∼= THK .

(ii) The ΛK-module H1
Iw(K, T )/H1

Iw(K, T )tors is free of rank [K : Qp] · rankZpT .
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Her01 L. Herr, Une approche nouvelle de la dualité locale de Tate, Math. Ann. 320 (2001), 307–337.
Iwa64 K. Iwasawa, On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan 16 (1964),

42–82.
Kra39 M. Krasner, Sur la représentation exponentielle dans les corps relativement galoisiens de

nombers p-adiques, Acta Arith. 3 (1939), 133–173.
Mil86 J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1 (Academic Press,

Boston, MA, 1986).
MR04 B. Mazur and K. Rubin, Kolyvagin systems, Mem. Amer. Math. Soc. 168 (2004), no. 799.
MTT86 B. Mazur, J. Tate and J. Teitelbaum, On p-adic analogues of the conjectures of Birch and

Swinnerton-Dyer, Invent. Math. 84 (1986), 1–48.
Per94a B. Perrin-Riou, La fonction L p-adique de Kubota-Leopoldt, in Arithmetic geometry (Tempe,

AZ, 1993), Contemporary Mathematics, vol. 174 (American Mathematical Society, Providence,
RI, 1994), 65–93.
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