REAL HYPERSURFACES OF NON-FLAT COMPLEX SPACE FORMS WITH GENERALIZED ξ - PARALLEL JACOBI STRUCTURE OPERATOR

TH. THEOFANIDIS
Department of Civil Engineering, School of Technology, Aristotle University of Thessaloniki,
Thessaloniki, 54124, Greece
e-mail: onslaught5000@hotmail.com, theotheo@civil.auth.gr

(Received 24 September 2014; revised 22 December 2014; accepted 17 April 2015; first published online 23 July 2015)

Abstract

The aim of the present paper is the classification of real hypersurfaces M equipped with the condition $A l=l A, l=R(., \xi) \xi$, restricted in a subspace of the tangent space $T_{p} M$ of M at a point p. This class is large and difficult to classify, therefore a second condition is imposed: $\left(\nabla_{\xi} l\right) X=\omega(X) \xi+\psi(X) l X$, where $\omega(X), \psi(X)$ are 1forms. The last condition is studied for the first time and is much weaker than $\nabla_{\xi} l=0$ which has been studied so far. The Jacobi Structure Operator satisfying this weaker condition can be called generalized ξ-parallel Jacobi Structure Operator.

2010 Mathematics Subject Classification. 53C40, 53D15.

1. Introduction. An n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called complex space form, which is denoted by $M_{n}(c)$. A complete and simply connected complex space form is a projective space $\mathbb{C} P^{n}$ if $c>0$, a hyperbolic space $\mathbb{C} H^{n}$ if $c<0$, or a Euclidean space \mathbb{C}^{n} if $c=0$. The induced almost contact metric structure of a real hypersurface M of $M_{n}(c)$ will be denoted by (ϕ, ξ, η, g).

Real hypersurfaces in $\mathbb{C} P^{n}$ which are homogeneous, were classified by R. Takagi [12]. The same author classified real hypersurfaces in $\mathbb{C} P^{n}$, with constant principal curvatures in [13]. Berndt gave the equivalent result for Hopf hypersurfaces in $\mathbb{C} H^{n}$ [1] where he divided real hypersurfaces into four model spaces, named A_{0}, A_{1}, A_{2} and B. Analytic lists of constant principal curvatures can be found in the previously mentioned references as well as in [7, 9]. Real hypersurfaces of type A_{1} and A_{2} in $\mathbb{C} P^{n}$ and of type A_{0}, A_{1} and A_{2} in $\mathbb{C} H^{n}$ are said to be hypersurfaces of type A for simplicity and appear quite often in classification theorems. Real hypersurfaces of type A_{1} in $\mathbb{C} H^{n}$ are divided into types $A_{1,0}$ and $A_{1,1}$ [7]. Finally we mention that real hypersurfaces satisfying $\phi A=A \phi$, in $\mathbb{C} P^{n}$ and $\mathbb{C} H^{n}$ were classified by Okumura [10], and Montiel and Romero [8] respectively. For more information and examples on real hypersurfaces, we refer to [9].

A Jacobi field along geodesics of a given Riemannian manifold (M, g) plays an important role in the study of differential geometry. It satisfies a well-known differential equation which inspires Jacobi operators. For any vector field X, the Jacobi operator is defined by $R_{X}: R_{X}(Y)=R(Y, X) X$, where R denotes the curvature tensor and Y is a vector field on $M . R_{X}$ is a self-adjoint endomorphism in the tangent space of M, and is
related to the Jacobi differential equation, which is given by $\nabla_{\dot{\gamma}}\left(\nabla_{\dot{\gamma}} Y\right)+R(Y, \dot{\gamma}) \dot{\gamma}=0$ along a geodesic γ on M, where $\dot{\gamma}$ denotes the velocity vector along γ on M. In a real hypersurface M of a complex space form $M_{n}(c), c \neq 0$, the Jacobi operator on M with respect to the structure vector field ξ, is called the structure Jacobi operator and is denoted by $l X=R_{\xi}(X)=R(X, \xi) \xi$. Conditions including this operator, generate larger classes than the conditions including the Riemannian tensor $R(X, Y) Z$. So, operator l has been studied by quite a few authors and under several conditions.

In 2007, Ki, Pérez, Santos and Suh [6] classified real hypersurfaces in complex space forms with ξ-parallel Ricci tensor and structure Jacobi operator. Cho and Ki in [3] classified the real hypersurfaces whose structure Jacobi operator is symmetric along the Reeb flow ξ and commutes with the shape operator A.

In the present paper we classify real hypersurfaces M satisfying the condition $l A=A l$, restricted in the subspace $\mathbb{D}=\operatorname{ker}(\eta)$ of $T_{p} M$ for every point $p \in M$, where $\operatorname{ker}(\eta)$ consists of all vectors fields orthogonal to the Reeb flow ξ. This class is quite large and rather difficult to be classified, therefore a second condition had to be imposed: $\left(\nabla_{\xi} l\right) X=\omega(X) \xi+\psi(X) l X$, where $\omega(X), \psi(X)$ are 1 -forms. This condition is much weaker than the condition $\nabla_{\xi} l=0$ that has been used so far $[\mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}]$. Therefore a larger class is produced. In particular, the following theorem is proved:

Theorem 1.1. Let M be a real hypersurface of a complex space form $M_{n}(c), n>2$ $(c \neq 0)$, satisfying

$$
\begin{equation*}
l A X=\operatorname{AlX}, \quad \forall X \in \mathbb{D}, \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{\xi} l\right) X=\omega(X) \xi+\psi(X) l X \tag{1.2}
\end{equation*}
$$

for every vector field $X \in T M$, where $\omega(X), \psi(X)$ are 1-forms. Then M is a Hopf hypersurface. Furthermore, if $\eta(A \xi) \neq 0$ then M is of type A.

The Jacobi Structure Operator satisfying (1.2) will be called generalized ξ-parallel Jacobi Structure Operator.
2. Preliminaries. In this section, we explain explicitly the notions that were mentioned in Section 1, as well as the notions that will appear in the paper. We also give a series of equations that will be our basic tools in our calculations and conclusions.

Let M_{n} be a Kaehlerian manifold of real dimension 2 n , equipped with an almost complex structure J and a Hermitian metric tensor G. Then for any vector fields X and Y on $M_{n}(c)$, the following relations hold: $J^{2} X=-X, \quad G(J X, J Y)=G(X, Y)$, $\widetilde{\nabla} J=0$, where $\widetilde{\nabla}$ denotes the Riemannian connection of G of M_{n}.

Let $M_{2 n-1}$ be a real $(2 n-1)$-dimensional hypersurface of $M_{n}(c)$, and denote by N a unit normal vector field on a neighbourhood of a point in $M_{2 n-1}$ (from now on we shall write M instead of $M_{2 n-1}$). For any vector field X tangent to M we have $J X=\phi X+\eta(X) N$, where ϕX is the tangent component of $J X, \eta(X) N$ is the normal component, and $\xi=-J N, \quad \eta(X)=g(X, \xi), \quad g=\left.G\right|_{M}$.

By properties of the almost complex structure J and the definitions of η and g, the following relations hold [2]:

$$
\begin{gather*}
\phi^{2}=-I+\eta \otimes \xi, \quad \eta \circ \phi=0, \quad \phi \xi=0, \quad \eta(\xi)=1, \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad g(X, \phi Y)=-g(\phi X, Y) . \tag{2.2}
\end{gather*}
$$

The above relations define an almost contact metric structure on M which is denoted by (ϕ, ξ, g, η). Furthermore, let A be the shape operator in the direction of N, and denote by ∇ the Riemannian connection of g on M. Then, A is symmetric and the following equations are satisfied:

$$
\begin{equation*}
\nabla_{X} \xi=\phi A X, \quad\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{2.3}
\end{equation*}
$$

As the ambient space $M_{n}(c)$ is of constant holomorphic sectional curvature c, the equations of Gauss and Codazzi are respectively given by:

$$
\begin{align*}
R(X, Y) Z= & \frac{c}{4}[g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \\
& -2 g(\phi X, Y) \phi Z]+g(A Y, Z) A X-g(A X, Z) A Y \tag{2.4}\\
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X= & \frac{c}{4}[\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi] \tag{2.5}
\end{align*}
$$

The tangent space $T_{p} M$, for every point $p \in M$, is decomposed as following:

$$
T_{p} M=\mathbb{D}^{\perp} \oplus \mathbb{D}
$$

where $\mathbb{D}=\operatorname{ker}(\eta)=\left\{X \in T_{p} M: \eta(X)=0\right\}$.
The subspace $\operatorname{ker}(\eta)$ is more usually referred as \mathbb{D} and called holomorphic distribution of M at p. Based on the decomposition of $T_{p} M$, by virtue of (2.3), we decompose the vector field $A \xi$ in the following way:

$$
\begin{equation*}
A \xi=\alpha \xi+\beta U \tag{2.6}
\end{equation*}
$$

where $\beta=\left|\phi \nabla_{\xi} \xi\right|, \alpha$ is a smooth function on M and $U=-\frac{1}{\beta} \phi \nabla_{\xi} \xi \in \operatorname{ker}(\eta)$, provided that $\beta \neq 0$.

If the vector field $A \xi$ is expressed as $A \xi=\alpha \xi$, then ξ is called principal vector field.

Finally, differentiation will be denoted by (). All manifolds, vector fields, etc., of this paper are assumed to be connected and of class C^{∞}.
3. Auxiliary lemmas and relations. In this section, we will be working in the set $\mathcal{N}=\{p \in M: \beta \neq 0$ in a neighbourhood around $p\}$. By putting $X=\xi$ in (1.2), combined with (2.3) and (2.6), we obtain $\beta l \phi U=-\omega(\xi) \xi$. The inner product of the last equation with ξ yields $l \phi U=0$ which is analysed from (2.4) and (2.6) giving $(4 \alpha A+c) \phi U=0$. From the last equation, it follows that $\alpha \neq 0$ in \mathcal{N}.

Lemma 3.1. Let M be a real hypersurface of a complex space form $M_{n}(c), n>2$ $(c \neq 0)$, satisfying (1.1) and (1.2). Then, the following relations hold in \mathcal{N} :

$$
\begin{align*}
A U & =\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right) U+\beta \xi, \quad A \phi U=-\frac{c}{4 \alpha} \phi U . \tag{3.1}\\
\nabla_{\xi} \xi & =\beta \phi U, \quad \nabla_{U} \xi=\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right) \phi U, \quad \nabla_{\phi U} \xi=\frac{c}{4 \alpha} U . \tag{3.2}\\
\nabla_{\xi} U & =W_{1}, \quad \nabla_{U} U=W_{2}, \quad \nabla_{\phi U} U+\frac{c}{4 \alpha} \xi=W_{3} . \tag{3.3}\\
\nabla_{\xi} \phi U & =\phi W_{1}-\beta \xi, \quad \nabla_{U} \phi U=\phi W_{2}+\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right) \xi, \quad \nabla_{\phi U} \phi U=\phi W_{3} . \tag{3.4}
\end{align*}
$$

where W_{1}, W_{2}, W_{3} are vector fields orthogonal to U, ξ.
Proof. From (2.4), we get

$$
\begin{equation*}
l X=\frac{c}{4}[X-\eta(X) \xi]+\alpha A X-g(A X, \xi) A \xi \tag{3.5}
\end{equation*}
$$

which, for $X=U$ yields

$$
\begin{equation*}
l U=\frac{c}{4} U+\alpha A U-\beta A \xi \tag{3.6}
\end{equation*}
$$

The scalar product of (3.6) with U yields

$$
\begin{equation*}
g(A U, U)=\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha} \tag{3.7}
\end{equation*}
$$

where $\gamma=g(l U, U)$. We have already shown in the beginning of this section that $l \phi U=0 \Rightarrow A \phi U=-\frac{c}{4 \alpha} \phi U$ holds. Therefore

$$
\begin{equation*}
g(A U, \phi U)=g(A \phi U, U)=0 \tag{3.8}
\end{equation*}
$$

From (3.7), (3.8) and $g(A U, \xi)=g(A \xi, U)=\beta$ we obtain $A U=\left(\frac{\gamma}{\alpha}+\frac{\beta^{2}}{\alpha}-\right.$ $\left.\frac{c}{4 \alpha}\right) U+\beta \xi+\lambda W$, where W is a vector field satisfying $W \perp\{U, \phi U, \xi\}$. Combining the decomposition of $A U$ with (2.6) and (3.6), we obtain $l U=\gamma U+\alpha \lambda W$.

Summarizing the results so far, we have proved the following:

$$
\begin{align*}
l U & =\gamma U+\alpha \lambda W, \quad l \phi U=0 \tag{3.9}\\
A U & =\left(\frac{\gamma}{\alpha}+\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right) U+\beta \xi+\lambda W, \quad A \phi U=-\frac{c}{4 \alpha} \phi U \tag{3.10}
\end{align*}
$$

Condition (1.1) yields the next calculations: $A l U=l A U \Rightarrow g(A l U, \xi)=g(l A U, \xi) \Rightarrow$ $g(l U, A \xi)=0$, since l is symmetric and $l \xi=0$. Expanding $g(l U, A \xi)=0$ with the aid of (2.6) and (3.9), we obtain $\gamma=0$. Now, we expand $A l U=l A U$ with the aid of $\gamma=0$ and (3.5), obtaining $\lambda=0$. So, from the conclusions of this paragraph and (3.10), we have proved (3.1).

From equation (3.1) and relation (2.3) for $X=\xi, X=U, X=\phi U$, we obtain (3.2). Next, we remind of the rule

$$
\begin{equation*}
X g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right) \tag{3.11}
\end{equation*}
$$

We define $W_{1}=\nabla_{\xi} U$. By virtue of (3.11) for $X=Z=\xi, Y=U$ and for $X=\xi$, $Y=Z=U$, it is shown respectively $\nabla_{\xi} U \perp \xi$ and $\nabla_{\xi} U \perp U$. In a similar way, we
define $W_{2}=\nabla_{U} U$. Equation (3.11) for $X=Y=Z=U$ and $X=Z=U, Y=\xi$ yields respectively $\nabla_{U} U \perp U$ and $\nabla_{U} U \perp \xi$. Finally, (3.11) for $X=\phi U, Y=Z=U$ and $X=\phi U, Y=U, Z=\xi$ (with the aid of (3.2)) yields respectively $\nabla_{\phi U} U \perp U$ and $g\left(\nabla_{\phi U} U, \xi\right)=-\frac{c}{4 \alpha}$. Therefore, we define $W_{3}=\nabla_{\phi U} U+\frac{c}{4 \alpha} \xi$ and (3.3) has been proved. In order to prove (3.4), we use the second of (1.3) with the following combinations: (i) $X=\xi, Y=U$, (ii) $X=Y=U$, (iii) $X=\phi U, Y=U$, and make use of (2.6), (3.1), (3.3).

In order to proceed with the rest of the paper, the following functions are defined:

$$
\begin{equation*}
\kappa_{1}=g\left(W_{1}, \phi U\right), \quad \kappa_{2}=g\left(W_{2}, \phi U\right), \quad \kappa_{3}=g\left(W_{3}, \phi U\right) \tag{3.12}
\end{equation*}
$$

Lemma 3.2. Let M be a real hypersurface of a complex space form $M_{n}(c), n>2$ $(c \neq 0)$, satisfying (1.1) and (1.2). Then, the following relations hold in \mathcal{N} :

$$
A W_{1}=-\frac{c}{4 \alpha} W_{1}, \quad A \phi W_{1}=-\frac{c}{4 \alpha} \phi W_{1}-\frac{\kappa_{1} \beta}{\alpha} A \xi
$$

Proof. From (1.2), we obtain $\left(\nabla_{\xi} l\right) U=\omega(U) \xi+\psi(U) l U$. The previous relation is analysed by virtue of (3.9), $\gamma=\delta=\lambda=0$ and Lemma 3.1, giving $l W_{1}=-\omega(U) \xi$. The inner product of the last equation with ξ yields $\omega(U)=0$ which means $l W_{1}=0$, which is expanded from (3.5) giving $A W_{1}=-\frac{c}{4 \alpha} W_{1}$.

In a similar way, (1.2) yields $\left(\nabla_{\xi} l\right) \phi U=\omega(\phi U) \xi+\psi(\phi U) l \phi U$. The last equation is developed by virtue of (3.9), $\epsilon=\delta=\mu=0$ and Lemma 3.1, giving $l \phi W_{1}=-\omega(\phi U) \xi$, whose inner product with ξ yields $\omega(\phi U)=0$. This means $l \phi W_{1}=0$, which is expanded from (3.5) giving $A \phi W_{1}=-\frac{c}{4 \alpha} \phi W_{1}-\frac{\kappa_{1} \beta}{\alpha} A \xi$.

Lemma 3.3. Let M be a real hypersurface of a complex space form $M_{n}(c), n>2$ $(c \neq 0)$, satisfying (1.1) and (1.2). Then, in \mathcal{N} we have $\kappa_{1}=-4 \alpha$ and $\kappa_{2}=-4 \beta+$ $\frac{c}{4 \alpha \beta}\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right)$.

Proof. Putting $X=U, Y=\xi$ in (2.5), we obtain

$$
\left(\nabla_{U} A\right) \xi-\left(\nabla_{\xi} A\right) U=-\frac{c}{4} \phi U
$$

Combining the last equation with (2.6) and Lemmas 3.1, 3.2 it follows :

$$
\begin{gathered}
(U \alpha) \xi+(U \beta) U+\beta W_{2}+\left(-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right) \frac{c}{4 \alpha} \phi U \\
-\xi\left(-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right) U-\frac{\beta^{2}}{\alpha} W_{1}-(\xi \beta) \xi=0
\end{gathered}
$$

Taking the scalar products of the last relation with ξ and U respectively, we obtain

$$
\begin{equation*}
(U \alpha)=(\xi \beta) \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
(U \beta)=\left(\xi\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\right) \tag{3.14}
\end{equation*}
$$

Combining the last three equations, we have

$$
\begin{equation*}
\frac{c}{4 \alpha}\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right) \phi U+\frac{\beta^{2}}{\alpha} W_{1}-\beta W_{2}=0 . \tag{3.15}
\end{equation*}
$$

Putting $X=\phi U, Y=\xi$ in (2.5), we obtain

$$
\left(\nabla_{\phi U} A\right) \xi-\left(\nabla_{\xi} A\right) \phi U=\frac{c}{4} U
$$

which is expanded with the aid of Lemmas 3.1, 3.2 and (2.6), resulting to

$$
\begin{gather*}
{\left[\frac{3 \beta c}{4 \alpha}+\alpha \beta+\kappa_{1} \beta-(\phi U \alpha)\right] \xi} \tag{3.16}\\
-\left[(\phi U \beta)+\frac{c}{4 \alpha}\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right)-\beta^{2}-\kappa_{1} \frac{\beta^{2}}{\alpha}\right] U+\frac{c}{4 \alpha^{2}}(\xi \alpha) \phi U-\beta W_{3}=0 .
\end{gather*}
$$

By taking the scalar products of (3.16) with $\xi, U, \phi U$ and making use of (3.12), we acquire respectively

$$
\begin{align*}
(\phi U \alpha) & =\frac{3 \beta c}{4 \alpha}+\alpha \beta+\kappa_{1} \beta \tag{3.17}\\
(\phi U \beta) & =\frac{c}{4 \alpha}\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)+\beta^{2}+\kappa_{1} \frac{\beta^{2}}{\alpha} . \tag{3.18}\\
\beta \kappa_{3} & =\frac{c}{4 \alpha^{2}}(\xi \alpha) . \tag{3.19}
\end{align*}
$$

Relation $\left(\nabla_{U} A\right) \phi U-\left(\nabla_{\phi U} A\right) U=-\frac{c}{2} \xi$ holds due to (2.5). It is further analysed using Lemmas 3.1, 3.2 leading to

$$
\begin{align*}
& \frac{c}{4 \alpha^{2}}(U \alpha) \phi U+\left[\frac{c}{2 \alpha}\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)+\beta^{2}-(\phi U \beta)\right] \xi \\
& \quad+\left[-\frac{3 \beta c}{4 \alpha}+\frac{\beta^{3}}{\alpha}+\left(\phi U\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right)\right)\right] U-\frac{c}{4 \alpha} \phi W_{2}-A \phi W_{2} \\
& \quad+A W_{3}+\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right) W_{3}=0 \tag{3.20}
\end{align*}
$$

The scalar product of (3.20) with U, combined with Lemma 3.1, (3.12) and the symmetry of A, yields

$$
\frac{\kappa_{2} \beta^{2}}{\alpha}-\frac{3 \beta c}{4 \alpha}+\frac{\beta^{3}}{\alpha}+\phi U\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right)=0
$$

The above equation is modified, first, by expanding the term $\phi U\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right)$ and then, by replacing the terms $(\phi U \alpha),(\phi U \beta)$ from (3.17), (3.18). The result is

$$
\begin{equation*}
\kappa_{2} \beta-\kappa_{1} \frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right)-c-\kappa_{1} \frac{c}{4 \alpha}=0 \tag{3.21}
\end{equation*}
$$

On the other hand, the scalar product of (3.15) with ϕU, because of (3.12), yields

$$
\begin{equation*}
\kappa_{2} \beta-\kappa_{1} \frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right)=0 . \tag{3.22}
\end{equation*}
$$

From (3.21) and (3.22), we obtain $\kappa_{1}=-4 \alpha, \kappa_{2}=-4 \beta+\frac{c}{4 \alpha \beta}\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right)$.
The scalar product of (3.15) with ϕW_{1} yields:

$$
\begin{equation*}
g\left(\phi W_{1}, W_{2}\right)=g\left(W_{1}, \phi W_{2}\right)=0 . \tag{3.23}
\end{equation*}
$$

4. The set \mathcal{N} is the empty set. In this section, we prove that $\mathcal{N}=\emptyset$. In order to do that, we need the following lemma:

Lemma 4.1. Let M be a real hypersurface of a complex space form $M_{n}(c), n>2$ $(c \neq 0)$ satisfying (1.1) and (1.2) in \mathcal{N}. Then, $\kappa_{3}=0$ holds in \mathcal{N}.

Proof. Taking the scalar product of (3.20) with ϕU, because of Lemma 3.1, (3.12) and the symmetry of A, we get $(U \alpha)=\frac{4 \alpha \beta^{2}}{c} \kappa_{3}$. Combining the last equation with (3.13) and (3.14), we have

$$
\begin{equation*}
(U \alpha)=(\xi \beta)=\frac{4 \alpha \beta^{2}}{c} \kappa_{3}, \quad(\xi \alpha)=\frac{4 \alpha^{2} \beta}{c} \kappa_{3}, \quad(U \beta)=\beta\left(\frac{4 \beta^{2}}{c}+1\right) \kappa_{3} \tag{4.1}
\end{equation*}
$$

By making use of (2.5) for $X=\phi W_{2}, Y=\xi$ and using (2.3), (2.6), we obtain

$$
\begin{aligned}
& \left(\phi W_{2} \alpha\right) \xi+\alpha \phi A \phi W_{2}+\left(\phi W_{2} \beta\right) U+\beta \nabla_{\phi W_{2}} U \\
& \quad-A \phi A \phi W_{2}-\nabla_{\xi} A \phi W_{2}+A \nabla_{\xi} \phi W_{2}=\frac{c}{4} W_{2} .
\end{aligned}
$$

The scalar product with ξ, due to (2.2), (2.3), (2.6), (3.11), (3.12), (3.23), (3.1) the symmetry of A and Lemmas 3.1, 3.3, implies

$$
\begin{equation*}
\left(\phi W_{2} \alpha\right)=\beta \kappa_{3}\left(\frac{16 \alpha \beta^{2}}{c}+\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right) . \tag{4.2}
\end{equation*}
$$

From (3.16)-(3.18) and (4.1), it is shown $W_{3}=\kappa_{3} \phi U$, which is combined with (3.17) and Lemma (3.3) giving

$$
\begin{equation*}
\left(W_{3} \alpha\right)=3 \beta\left(\frac{c}{4 \alpha}-\alpha\right) \kappa_{3} . \tag{4.3}
\end{equation*}
$$

In a similar way, equation (2.5) yields $\left(\nabla_{\phi W_{1}} A\right) U-\left(\nabla_{U} A\right) \phi W_{1}=0$, which by virtue of Lemma 3.1 is further developed as

$$
\begin{aligned}
& \left(\phi W_{1}\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\right) U+\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right) \nabla_{\phi W_{1}} U \\
& \quad+\left(\phi W_{1} \beta\right) \xi+\beta \phi A \phi W_{1}-A \nabla_{\phi W_{1}} U-\nabla_{U} A \phi W_{1}+A \nabla_{U} \phi W_{1}=0 .
\end{aligned}
$$

The scalar product of the last equation with ξ by using Lemmas 3.1, 3.3, (2.3), (2.6), (3.11), (3.12) leads to

$$
\begin{equation*}
\left(\phi W_{1} \beta\right)=4 \alpha \beta \kappa_{3}\left(1+\frac{4 \beta^{2}}{c}\right) \tag{4.4}
\end{equation*}
$$

By virtue of Lemma 3.3 and (3.17). (4.1), we have

$$
[\phi U, U] \alpha=(\phi U(U \alpha))+\frac{3 \alpha \beta}{c}\left[8 \beta^{2}+c-\frac{c^{2}}{4 \alpha^{2}}\right] \kappa_{3} .
$$

On the other hand from Lemmas 3.1, 3.3 and (4.1)-(4.3), we obtain:

$$
[\phi U, U] \alpha=\left(\nabla_{\phi U} U-\nabla_{U} \phi U\right) \alpha=\frac{\alpha \beta}{c}\left(-12 \beta^{2}+\frac{c^{2}}{\alpha^{2}}-5 c-\frac{\beta^{2}}{\alpha^{2}} c\right) \kappa_{3} .
$$

The last two equations imply

$$
\begin{equation*}
(\phi U(U \alpha))=2 \beta\left(\frac{7 c}{8 \alpha}-\frac{18 \alpha \beta^{2}}{c}-4 \alpha-\frac{\beta^{2}}{2 \alpha}\right) \kappa_{3} . \tag{4.5}
\end{equation*}
$$

Following a similar way, from the action of $[\phi U, \xi]$ on β we calculate $(\phi U(\xi \beta))$. In particular, we expand the derivative $[\phi U, \xi] \beta=\phi U(\xi \beta)-\xi(\phi U \beta)$ by virtue of Lemma 3.3 and (3.18), (4.1), and then calculate the same derivative, from relation $[\phi U, \xi] \beta=\left(\nabla_{\phi U} \xi-\nabla_{\xi} \phi U\right) \beta$, with the aid of Lemmas 3.1, 3.3, (4.1), (4.4). The final result is

$$
\begin{equation*}
(\phi U(\xi \beta))=2 \beta\left(\frac{3 c}{8 \alpha}-\frac{18 \alpha \beta^{2}}{c}-2 \alpha+\frac{\beta^{2}}{2 \alpha}\right) \kappa_{3} \tag{4.6}
\end{equation*}
$$

Because of (3.13), the relations (4.5) and (4.6) yield

$$
\begin{equation*}
\left(\frac{c}{2}-2 \alpha^{2}-\beta^{2}\right) \kappa_{3}=0 . \tag{4.7}
\end{equation*}
$$

Let us assume there exists a point $p \in \mathcal{N}$ at which $\kappa_{3} \neq 0$. Then, there exists a neighbourhood V_{1} of p such that $\kappa_{3} \neq 0$ in V_{1}. Therefore, (4.7) yields $2 \alpha^{2}+\beta^{2}=\frac{c}{2}$, which is differentiated along ξ, with the aid of (4.1) and $\kappa_{3} \neq 0$, giving $2 \alpha^{2}+\beta^{2}=0$ which is a contradiction. This means there are no points of \mathcal{N} where $\kappa_{3} \neq 0$ and so $\kappa_{3}=0$ holds in \mathcal{N}.

From Lemma 4.1 and (4.1) we have $(U \alpha)=(\xi \alpha)=0 \Rightarrow[U, \xi] \alpha=0$. But the last equation, because of Lemmas 3.1, 3.3 yields

$$
\begin{equation*}
\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)(\phi U \alpha)-\left(W_{1} \alpha\right)=0 \tag{4.8}
\end{equation*}
$$

Using the same Lemmas and relations, we prove $[U, \xi] \beta=0$ and

$$
\begin{equation*}
\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)(\phi U \beta)-\left(W_{1} \beta\right)=0 \tag{4.9}
\end{equation*}
$$

Furthermore, from (2.5) for $X=W_{1}, Y=\xi$, taking the scalar product with ξ and U, using the Lemmas 3.1, 3.3 we have respectively

$$
\begin{align*}
& \left(W_{1} \alpha\right)=\beta\left|W_{1}\right|^{2}-3 \beta c-4 \alpha^{2} \beta \tag{4.10}\\
& \left(W_{1} \beta\right)=c\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right)+\frac{\beta^{2}}{\alpha}\left|W_{1}\right|^{2}-4 \alpha \beta^{2} \tag{4.11}
\end{align*}
$$

Relations (3.17), (4.8), (4.10) and Lemma 3.3 lead to

$$
\begin{equation*}
\frac{\beta}{\alpha}\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\left(\frac{3 \beta c}{4 \alpha}-3 \alpha \beta\right)+\frac{3 \beta^{2} c}{\alpha}=\frac{\beta^{2}}{\alpha}\left|W_{1}\right|^{2}-4 \alpha \beta^{2} \tag{4.12}
\end{equation*}
$$

while relations (3.18), (4.9), (4.11) and Lemma 3.3 lead to

$$
\begin{equation*}
\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\left[\frac{c}{4 \alpha}\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)-3 \beta^{2}\right]-c\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right)=\frac{\beta^{2}}{\alpha}\left|W_{1}\right|^{2}-4 \alpha \beta^{2} \tag{4.13}
\end{equation*}
$$

We equate the left sides of (4.12) and (4.13) and then modify this new equation by subtracting $-3 \beta^{2}\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)$ from both sides. The result is

$$
\left.\frac{c}{4 \alpha}\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\left[\frac{2 \beta^{2}}{\alpha}+\frac{c}{4 \alpha}\right)\right]+\frac{3 \beta^{2} c}{\alpha}+c\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right)=0
$$

which is multiplied by $\frac{4 \alpha^{3}}{c}$, giving

$$
\begin{equation*}
\left(\beta^{2}-\frac{c}{4}\right)\left(\beta^{2}+\frac{c}{8}\right)=-4 \alpha^{2} \beta^{2}-\frac{\alpha^{2} c}{2}=-4 \alpha^{2}\left(\beta^{2}+\frac{c}{8}\right) . \tag{4.14}
\end{equation*}
$$

If we had $\frac{c}{8}=-\beta^{2}<0$ at some point of M, then the same would hold in a neighbourhood of this point. In this case, by differentiation of $\frac{c}{8}=-\beta^{2}$ along ϕU in this neighbourhood and by virtue of (3.18), Lemma 3.3, we would get $c=4 \alpha^{2}>0$ which is a contradiction. Therefore, $\frac{c}{8} \neq-\beta^{2}$ and (4.14) yields

$$
\begin{equation*}
\beta^{2}+4 \alpha^{2}=\frac{c}{4} \tag{4.15}
\end{equation*}
$$

We differentiate (4.15) along ϕU and make use of (3.17), (3.18), (4.15), Lemma 3.3, obtaining $\beta^{2}+4 \alpha^{2}=\frac{2 c}{3}$ which contradicts (4.15). Therefore, we have a contradiction in \mathcal{N} and \mathcal{N} is the empty set. Thus, M is a Hopf hypersurface.
5. Proof of Theorem 1.1. Since M is Hopf, we have $A \xi=\alpha \xi$ and α is constant [9]. The scalar product of condition (1.2) with ξ, due to the symmetry of $l, l \xi=0$, (3.11) and $\nabla_{\xi} \xi=\phi A \xi=\alpha \phi \xi=0$, yields $\omega(X)=0 \forall X \in T M$ and so condition (1.2) becomes

$$
\left(\nabla_{\xi} l\right) X=\psi(X) l X
$$

In addition, replacing the vector field X with $2 X$ in the above relation and due to the linearity of ψ, l, we have

$$
\left(\nabla_{\xi} l\right) X=2 \psi(X) l X
$$

The above two equations hold for every $X \in \mathbb{D}$ and therefore we obtain $\psi(X) l X=$ $0, \forall X \in \mathbb{D}$. However l cannot be locally zero [11], which means $\psi(X)=0 \forall X \in \mathbb{D}$. The last equation and $\left(\nabla_{\xi} l\right) \xi=0$, reform (1.2) as $\left(\nabla_{\xi} l\right) X=0$, which is further analysed leading to $\alpha\left(\nabla_{\xi} A\right) X=0$.

Next, we recall the following equation which holds in every Hopf hypersurface [9]:

$$
\begin{equation*}
A \phi A X-\frac{\alpha}{2}(A \phi+\phi A) X-\frac{c}{4} \phi X=0 \tag{5.1}
\end{equation*}
$$

Relation $\alpha\left(\nabla_{X} A\right) \xi-\alpha\left(\nabla_{\xi} A\right) X=-\alpha \frac{c}{4} \phi X$ holds $\forall X \in \mathbb{D}$ due to (2.5). It is combined with $\alpha\left(\nabla_{\xi} A\right) X=0$ and further developed, giving $\alpha^{2} \phi A X=\alpha A \phi A X-\alpha \frac{c}{4} \phi X$. The right term of this equality is replaced from (5.1) resulting to

$$
\begin{equation*}
\alpha(\phi A-A \phi) X=0, \quad \forall X \in D \tag{5.2}
\end{equation*}
$$

From (5.2) and $(\phi A-A \phi) \xi=0$, we obtain $\alpha=0$ or M is of type $\mathrm{A}[\mathbf{8}, \mathbf{1 0}]$ and the theorem is proved.

Finally, we give two propositions.
Proposition 5.1. Every Hopf hypersurface satisfies (1.1).
Proof. If M is Hopf, then (2.4) yields $l X=\left(\alpha A+\frac{c}{4}\right) X, \forall X \in D$. By virtue of the last equation, we have $l A X=A l X$.

Proposition 5.2. Every real hypersurface of type A satisfies (1.2) with $\omega(X)=0$ and $\psi(X)=0$. Every Hopf hypersurface with $\alpha=0$ satisfies the same condition.

Proof. Let M be of type A and $X \in D$ a principal vector field with principal curvature λ, and α the principal curvature of ξ. (2.4) yields $l X=\left(\alpha A+\frac{c}{4}\right) X, \forall X \in D$. Furthermore, in a real hypersurface of type A we have $\lambda^{2}=\alpha \lambda+\frac{c}{4}$, thus from the last two equations we have $l X=\lambda^{2} X$, which is used to show $\left(\nabla_{\xi} l\right) X=0$. The last equation and $\left(\nabla_{\xi} l\right) \xi=\nabla_{\xi} l \xi-l \nabla_{\xi} \xi=0$ show that real hypersurfaces of type A satisfy (1.2) with $\omega=\psi=0$.

If M is Hopf with $\alpha=0$ then (2.4) yields $l X=\frac{c}{4} X$ for every $X \in D$. Therefore, $\left(\nabla_{\xi} l\right) X=0$ holds. In addition we have $\left(\nabla_{\xi} l\right) \xi=0$, thus $\left(\nabla_{\xi} l\right) X=0$ holds for every X.

Acknowledgements. The author expresses deeply his sincere gratitude to the referee for his/her extremely detailed analysis of the manuscript, his/her corrections and suggestions which led to the article's final form.

REFERENCES

1. J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J Reine Angew. Math. 395 (1989), 132-141.
2. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics (Birkhauser, New York, 2002).
3. J. T. Cho and U-H. Ki, Real hypersurfaces in complex space forms with Reeb flow symmetric structure Jacobi operator, Canad. Math. Bull. 51(3) (2008), 359-371.
4. U-H. Ki and H. Kurihara, Jacobi operators along the structure flow on real hypersurfaces in non flat complex space form II, Bull. Korean Math. Soc. 48(6) (2011), 13151327.
5. U-H. Ki and S. Nagai, The Ricci tensor and structure Jacobi operator of real hypersurfaces in a complex projective space, J. Geom. 94 (2009), 123-142.
6. U-H. Ki, J. De Dios Pérez, F. G. Santos and Y. J. Suh, Real hypersurfaces in complex space forms with ξ-parallel Ricci tensor and structure Jacobi operator, J. Korean Math. Soc. 44(2) (2007), 307-326.
7. M. Sadahiro, Geometry of the horosphere in a complex hyperbolic space, Differ. Geom. Appl. 29(1) (2011), 246-250.
8. S. Montiel and A. Romero On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20(2) (1986), 245-261.
9. R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, Math. Sci. Res. Inst. Publ., vol. 32 (Cambridge University Press, Cambridge, 1997), 233-305.
10. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
11. M. Ortega, J. De Dios Pérez and F. G. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mt. J. Math. 36(5) (2006), 1603-1613.
12. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10(3) (1973), 495-506.
13. R. Takagi, On real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan 27 (1975), 43-53.
