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Abstract

The concept of “hybrid twin” (HT) has recently received a growing interest thanks to the availability of powerful
machine learning techniques. This twin concept combines physics-based models within a model order reduction
framework—to obtain real-time feedback rates—and data science. Thus, themain idea of theHT is to develop on-the-
fly data-driven models to correct possible deviations between measurements and physics-based model predictions.
This paper is focused on the computation of stable, fast, and accurate corrections in the HT framework. Furthermore,
regarding the delicate and important problem of stability, a new approach is proposed, introducing several subvariants
and guaranteeing a low computational cost as well as the achievement of a stable time-integration.

Impact Statement

Hybrid twins are a special type of digital twins able to learn and correct themselves once significant and persistent
biases between data and predictions is found. Here, we develop a method that constructs, under real-time
constraints, data-driven corrections to unsatisfactorymodels within the twin. Of particular importance is the issue
of stability of the resulting, corrected model, which is here guaranteed.

1. Introduction

The hybrid twin (HT) paradigm is a powerful tool to make better predictions, increase control perfor-
mance or improve decision-making (Chinesta et al., 2020; Martín et al., 2020). The main idea, see
Figure 1, is to develop on-the-fly data-driven models to correct the gap between data (i.e., measurements)
and model predictions. In other words, there are two main ingredients of a HT:

• The first one is to enrich physics description with data.
• The second one is to accelerate physics-based models using model order reduction (MOR)
techniques, as in Chinesta et al. (2011, 2015), or Sancarlos et al. (2021).

©TheAuthor(s), 2021. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

Data-Centric Engineering (2021), 2: e10
doi:10.1017/dce.2021.16

https://doi.org/10.1017/dce.2021.16 Published online by Cambridge University Press

https://orcid.org/0000-0003-1017-4381
mailto:francisco.chinesta@ensam.eu
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/dce.2021.16
https://doi.org/10.1017/dce.2021.16


In any case, when addressing dynamical systems in the HT framework, it is important to guarantee the
stability of the system when adding corrections to the physical model. It is worth noting that this is an
important issue, because sometimes the best model, computed with state-of-the-art algorithms,
completely fails to obtain a stable time-integrator. For example, when considering a linear dynamical
model by the dynamic mode decomposition (DMD) approach (Schmid, 2010; Kutz et al., 2016), the
feasible region constrained by the stability condition is nonconvex (Huang et al., 2016), and no general
methodology exists to solve it.

For this reason, this work proposes a new, fast, and efficientmethodology, covering several subvariants
and guaranteeing a low computational cost as well as the achievement of a stable dynamical system. This
technique will therefore be used to add a stable correction term into the HT concept.

The methodology is tested for an industrial case detailed in Section 4.1, where an excellent agreement
was observed when employing the HT approach.

The work is organized as follows: in Section 2, the system modeling with the HTconcept is presented
and compared to the direct (so to speak, from scratch) data-driven approach. An alternative approach that
benefits from transfer learning, for instance, can be found in Guastoni et al. (2020). Then, in Section 3, the
proposed technique to obtain stable systems is described as well as the subvariants to deal with high-
dimensional systems. Finally, in Sections 4 and 5, the results and general conclusions of the present work
are discussed, respectively.

2. System Modeling

In what follows, we consider the system as described by a vector z∈ℝD (withD the number of variables
involved in the system evolution). The state (snapshot of the system) at time tn ¼ nΔt is stored at vectors
Zn, with n≥0, with Z0 assumed known. In addition, d control parameters are considered, giving rise to a
parametric space μ∈ℝd.

We assume the existence of a modelMc z,μð Þ which we refer to as coarse, since we assume that some
form of enrichment is necessary. Often, this model is physics-based, it arises from the corresponding

Figure 1. Diagram illustrating the hybrid twin (HT) concept. The HT is able to correct the discrepancy
between the coarse model (CM) and the pseudo-experimental data (PED, denoted by a superscriptm). Its
prediction z is here denoted by a superscript HT whereas the enrichment model is denoted by Δz. The
superscript CM refers to the “coarse model,” and ΔM is the model correction. Both concepts are

introduced in Section 2.
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PDEs governing the problem and can contain nonlinearities. Other times, it is based on Model Based
System Engineering modeling. This approximate representation of the reality is sought to be computable
under real-time constraints. These constraints depend on the context and can range from some seconds to
the order of milliseconds. If the complexity of the model does not allow to obtain such a response under
constraints, MOR techniques constitute an appealing alternative. These that can be linear or not, allow us
to timely integrate the state of the system.

Because of the simplifying hypotheses involved in the construction of themodelMc, it is expected that
model predictionsZc

n differ frommeasurements to some extent, that is, ∥Zn�Zc
n∥> ϵ, for most time steps

n, thus needing for a correction.

2.1. Extracting the model of the system from scratch

Several routes exist to construct a model for a given dynamical system. The first one consists in
performing a completely data-driven approach from experimental measurements Zn,μnð Þ, n¼ 0, 1,….
A valuable option is to consider the so-called DMD to extract a matrix model of a discrete linear system
(Schmid, 2010). As suggested by several works, many different systems can be well approximated using
this approach (Schmid, 2011; Schmid et al., 2011). If problems arise due to complex system behaviors, the
procedure of extending the state vector to a higher dimensional space can often solve the problem (Kutz
et al., 2016; Eivazi et al., 2021).

A second alternative could be a variant of the technique presented in Sancarlos et al. (2020), that
consists in grouping all the states close to Zn and the control parameters close to μn into a set Sn. For the
sake of clarity, in what follows S will refer to one of these generic sets. A linear model for the set S,
denoted MS , which in this case is simply a matrix, is extracted from:

MS ¼ arg min
NS

X1�NS eX0

�� ��2
F , (1)

with

eZn ¼
Zn

μn

" #
,

eX0 ¼ eZ0, eZ1, …, eZns�1

h i
,

X1 ¼ Z1, Z2, …, Zns½ �,
if stability problems do not arise. Note that in this case the model is composed of local matrices defining
different linear maps in each set. A reduced version of this approach was extensively discussed in Reille
et al. (2019).

Quite often, an issue can appear because of the difficulties to learn stable models when constructing
these dynamical systems. For this reason, in Section 3, we propose a new methodology when using these
techniques to guarantee that the obtained systems remain stable.

2.2. Enriching a physics-based model within the HT framework

Constructing a modelM of the physical system from scratch is not the most valuable route as discussed in
our former works (Chinesta et al., 2020). Purely data-driven, black-box models are not popular in
industry, due to the lack of interpretability and guaranteed error estimators. Thus, a more valuable option
consists of constructing corrections to physics-based models—if these provide unsatisfactory results—
from an additive correction of this coarse prediction.

In fact, since the coarse model (CM) is expected to perform reasonably well for predicting the
state of the system, bias will in general remain reasonably small. If this is true, the correction model
will be much less nonlinear, and it will accept a more accurate description from the same amount
of data.
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Thus, we define the correction contribution Cn (or, equivalently, the model enrichment) as:

Zn�Zc
n ¼Cn, (2)

where Zc
n refers the model prediction.

Taking as a proof of concept a dynamic linear system with control inputs, the correction term is
searched as:

Cnþ1 ¼WCnþVμn, (3)

whereW andV are thematrices defining the time evolution of the correction term. Thus, the total response
of the system is finally predicted by using:

Znþ1≈Zc
nþ1þWCnþVμn: (4)

By taking into consideration that Zc is stable and integrated independently of the correction term, the
stability condition of the system should apply just on the correction term.

We propose an approach to guarantee the construction of stable systemswith low computational cost in
the next section. In addition, this technique can be used either to build models from scratch or the
correction term of the HT approach.

3. Efficiently Learning Stable Linear Dynamical Systems and DMDc Models

Frequently, difficulties to learn stable models arise when learning linear dynamical systems,
specially when dealing with high-dimensional data. This is an important issue to deal with because
of the growing importance of the data-driven approximations. For instance, it is usual to search the
best linear approach of a set of high-dimensional data to make, for example, fast predictions of the
system or to develop control strategies. In fact, there is a growing success of techniques such as the
DMD to discover dynamical systems from high-dimensional data (Schmid, 2010; Kutz et al., 2016).
This success steams from its capability of providing an accurate decomposition of a complex system
into spatiotemporal coherent structures while constructing the model dynamics evolving on a low-
rank subspace.

However, when operating in the above scenarios, sometimes the best model computed with state-of-
the-art algorithms fails to obtain a stable time-integration. In fact, for a given a set of data, the problem to
guarantee a stable system is defined by Equation (7) below but, unfortunately, the feasible region
constrained by the spectral radius is nonconvex and no general methodology exists to solve it (Huang
et al., 2016).Moreover, if a fast procedure is needed to obtain a correctionmodel in a real-time application,
this problem is further exacerbated.

For these reasons, this paper proposes a methodology to compute a stable model for a given dataset at
low computational cost. The strategy is discussed for a discrete linear system, for a DMDmodel and for a
DMD with control (DMDc) model. In addition, other strategies are discussed.

Let us assume the following dynamical systems defined in Equations (5) and (6), the first one without
considering inputs,

Znþ1 ¼MZn, (5)

and the second one considering inputs,

Znþ1 ¼ M N½ � Zn

μn

� �
¼ eMeZn, (6)

where M and N are the matrices defining the time evolution of the system. To guarantee stability in the
above systems, the following condition must be satisfied:

ρ Mð Þ≤1, (7)

where ρ �ð Þ denotes the spectral radius.
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Therefore, in relation to Equation (6), the solution minimizes:

X1� eMeX0

�� ��2
F s:t: ρ Mð Þ≤1, (8)

with eX0 ¼ eZ0, eZ1, …, eZns�1

� �
,

X1 ¼ Z1, Z2, …, Zns½ �,
where ns is the number of different snapshots for the training and the matrices eX0 andX1 contain the data
to construct the model. In them, each column corresponds to a snapshot of the system at a given time
instant.

Unfortunately, as already said, the feasible region constrained by ρ Mð Þ≤1 is nonconvex and no
general methodology exists to solve it (Huang et al., 2016). This can lead to the problems already
discussed where an unstable model is obtained or, in other cases, simply an extremely bad model is
extracted due to a failure of the optimization methodology employed.

The proposed approach, which can always guarantee the creation of a stable model, is based on an
observation of the following inequality, which is satisfied by any matrix norm:

ρ Að Þ≤ Ak k: (9)

To prove it, letω be an eigenvalue ofA, and let x 6¼ 0 be a corresponding eigenvector. FromAx¼ωx,
we have:

AX¼ωX,

where X¼ x,⋯,x½ �.
It follows that:

ωXk k¼ ∣ω∣ Xk k,
and taking into account that,

AXk k≤ Ak k Xk k,
it follows that,

∣ω∣ Xk k≤ Ak k Xk k:
Simplifying the above expression by Xk k (> 0) gives:

∣ω∣ ≤ Ak k,
that taking the maximum over all eigenvalues ω gives the desired proof.

Taking for the reasoning the following induced norm,

Ak k1 ¼ max
1≤ j≤m1

Xm2

i¼1

∣aij∣,

where m1 is the number of columns, and m2 is the number of rows—which is simply the maximum
absolute column sum of the matrix. It can be observed that by decreasing the absolute value of the matrix
coefficients, a smaller matrix norm is obtained, and if it is decreased sufficiently, a smaller ρ Að Þ is got,
because of Equation (9).

Therefore, the idea to obtain a stable system is to shrink the matrix coefficients of M. In fact, we
propose to do so by using the ridge regression (Hastie et al., 2009), also known as a special case of the
Tikhonov regularization. Many advantages can be obtained from this choice. For instance, a closed
mathematical expression is obtained. This implies that there is no need to use complex optimization
procedures (that can fail to converge). In addition, there is a low added computational cost when changing
the ordinary least squares problem to the ridge one.
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This way, we proved a new feature and use for the ridge regression. Ridge regression was employed in
certain way for regression of dynamical systems, see, for example, Erichson et al. (2019), but just to use
the classical function of ridge: to deal with ill-posed problems. Now,we have extended the employment of
the technique to a broader problem area: the construction of stable dynamical systems.

To reformulate the resolution of the systems (5) and (6), and then extend the procedure for the DMDc
(a more general version of the DMD considering control inputs), two options are envisaged. The first one
is solving the following problem:

bM¼ arg min
M

X1�MX0k k2Fþ λ2 Mk k2F
n o

¼ arg min
M

X1 0½ ��M X0 λI½ �k k2F ¼ arg min
M

X1�MX0

�� ��2
F ,

(10)

where:

X0 ¼ Z0, Z1, …, Zns�1½ �,
X1 andX0 are the augmented matrices, I is an identity matrix of sizeD�D, and 0 is a zero matrix of size
D�D.

The solution of the above problem can be computed using the Moore–Penrose pseudoinverse,
therefore: bM¼X1 X0

� �†
,

where † is the Moore–Penrose pseudoinverse.
A second procedure to solve Equation (10) is to employ a ridge regression for each variable to be

predicted. Concerning the system (6),

bM¼ arg mineM X1� eMeX0

�� ��2
Fþ λ2 Mk k2F

n o

¼ arg mineM X1 01½ �� eM X0 λI

U0 02

" #�����
�����
2

F

¼ arg mineM X1� eMY0

�� ��2
F ,

(11)

where:

U0 ¼ μ1, μ2, …, μns�1

� �
,

X1 and Y0 are the augmented matrices, I is an identity matrix of size D�D, 01 is a zero matrix of size
D�D, and 02 is a zero matrix of size d�D.

In addition, the same procedures used to solve system (10) can be used to solve (11), either theMoore–
Penrose pseudoinverse or the individual ridge regressions.

The above model can be extended in the context of high-dimensional systems when using the DMDc
taking the formulation expressed in Equation (11). To do that, we take the singular value decomposition
(SVD) of matrix Y0 ¼ eΞeΣeV∗

(where the star symbol * indicates the conjugate transpose). Therefore:

eM¼X1 Y0
� �† ¼X1eVeΣ�1eΞ∗

:

Approximations of the operators M and N can be found as follows:

eM¼ M, N½ � ¼ X1eVeΣ�1eΞ∗
1, X1eVeΣ�1eΞ∗

2

h i
,

where er is the truncation value of the SVD applied to decompose matrix Y0 ¼ eΞeΣeV∗
, eΞ∗ ¼ eΞ∗

1, eΞ∗
2

h i
,

and the sizes of eΞ∗
1 and eΞ∗

2 are er�D and er�d, respectively.
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For high-dimensional systems (D≫1) a reduced-order approximation can be solved for instead,
leading to a more tractable computational model. Thus, we look for a transformation to a lower-
dimensional subspace on which the dynamics evolve.

The output space X1 is chosen to find the reduced-order subspace. Consequently, the SVD of X1 is
defined as:

X1 ¼ΞΣV∗,

where the truncation value for this SVDwill be denoted as r. Please note that usually both SVDswill have
different truncation values.

Then, by employing the change of coordinates Z¼ΞbZ (or equivalently bZ¼Ξ∗Z), the following
reduced-order approximations can be obtained,

Znþ1 ¼MZnþNμn,

ΞbZnþ1 ¼MΞbZnþNμn,

so that bZnþ1 ¼ bMbZnþ bNμn, (12)

where:

bM¼Ξ∗X1eVeΣ�1eΞ∗
1Ξ,bN¼Ξ∗X1eVeΣ�1eΞ∗
2,

and the sizes of bM and bN are r� r and r�d, respectively.
To select the penalty factor, when the standard procedure leads to a matrix that violates the stability

condition, several options can be envisaged. Here, we propose to use the bisection method (which
guarantees convergence toward the solution) or the regula falsi method (to speed up the process). Of
course, faster algorithms can be used such as the Illinois algorithm, but our experience suggests that the
former ones are enough in practice.

For example, if the bisection method is selected, the zero of the following function is sought:

f λð Þ¼ ρdesired�ρ M λð Þð Þ, (13)

where ρdesired is a chosen value very close to one, representing the target when the initial constructedmodel
violates the stability condition.

Taking into consideration that the bracketing interval at step k of the algorithm is λak ,λ
b
k

� �
, then the

Equation (14) is employed to compute the new solution estimate for the penalty λck at step k:

λck ¼
λak þ λbk

2
: (14)

If f λck
� �

is satisfactory, the iteration stops. If this is not the case, the sign of f λck
� �

is examinated and the
bracking interval is updated for the following iteration so that there is a zero crossing within the new
interval.

4. Application to a Dynamical System

4.1. System to model and types of data

The modeled system corresponds to an air distribution system of an aircraft and is characterized by eight
variables defining the state of the system: six temperatures Ti

n, i¼ 1,2,…,6, and two pressures p j
n, j¼ 1,2.

The model should also take into account three control variables μkn, k¼ 1,2,3, for each time instant n.
With the knowledge and experience of Dassault Aviation, two models are constructed with the help of

the software Dymola (Dassault Systemes, 2021):
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• CM: This model deliberately fails to provide accurate predictions due to over-simplification. It is
important to note that in industry, this type of model is often physics-based (although this is not
mandatory) but still requires an important computing time.

• A high-fidelity model that will therefore be considered as the ground truth (GT), which is
consequently still more time consuming. This model is going to emulate in this work the real state
of the system.

Due to confidentiality issues, Dassault Aviation simulated different flights with bothmodels and provided
three different types of pseudo-experimental data (PED) which are employed in the present work:

• The CM data. These data correspond to the predictions of the CM for the given set of simulated
flights.

• The GT data. These data correspond to the predictions of the GT model. It will be considered in the
present work for evaluation purposes.

• PED. A white noise is added artificially to the GT data. Consequently, these data will emulate
experimental measurements including experimental errors.

Additionally, in Figures 2 and 3, a comparison is shown between the three types of data (CM, GT, and
PED) for a given flight simulation.

At this point, three different approaches were tested:

• Extracting a model from scratch from GT data (Section 4.2).
• Obtaining a model from scratch using the noisy PED (Section 4.3).
• Extracting a correction term to enrich the CM, thus constructing the HT (Section 4.4).

Figure 2.Comparison of the state evolutionZ tð Þ¼ p1,p2,T1,T2,T3,T4,T5,T6½ � for a given flight between
the CM and the ground truth (GT).
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Advantages and weaknesses of each approach will be discussed. The mathematical details of the CM and
GT models are omitted for confidentiality reasons. However, this is not important for presenting,
discussing and employing the proposed methodology and, moreover, a successful outcome will be a
sign that the proposed approach can address current industrial needs.

4.2. Extracting a model from scratch using the GT data

4.2.1. Procedure and results
It is interesting to analyse whether the proposed approach presented in Section 3 is able to learn a model
from scratch employing the GT data. Therefore, this section is focused on this goal. In next sections, we
will analyse if it is able to obtain similar results when learning in the presence of noise (PED data) and
finally, we will see the advantages of using the HT rational instead of the complete data-driven approach.

We sketch the technique in the diagram of Figure 4. As it can be noticed, the system is characterized by
eight variables defining the state of the system (six temperatures Ti

n, i¼ 1,2,…,6, and two pressures p j
n,

j¼ 1,2) and three control variables μkn, k¼ 1,2,3 for each time instant n.
In the present case, we consider the simplest modeling approach in which the model consists in a

simple linear application that maps the present state and control parameters Zn and μn, respectively, onto
the next system state Znþ1.

The available data consist inF¼ 82 flights, each one leading to eight time seriesZf
n, withf¼ 1,…,F,

and n¼ 1,…,nf (the number of collected data depends on the flight, these having different duration). It is
important to note that, for any flight tnþ1� tn ¼Δt, with constant Δt, for any component state and any
flight.

We define the extended state as shown in Section 3:

eZn ¼
Zn

μn

	 

: (15)

Figure 3. Comparison of the system evolution, Z tð Þ¼ p1,p2,T1,T2,T3,T4,T5,T6½ �, for a given flight
between the ground truth (GT) and the pseudo-experimental (noisy) data, PED.
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To learn themodel, we select arbitrarily two flights from theF available,f¼r andf¼s, and define
the training matrices:

eX0 ¼
Zr
0 ⋯ Zr

nr Zs
0 ⋯ Zs

ns�1

μr0 ⋯ μrnr μs0 ⋯ μsns�1

	 

, (16)

and

X1 ¼ Zr
1 ⋯ Zr

nr Zs
1 ⋯ Zs

ns½ �, (17)

that allows extracting the model by solving the problem indicated in Equation (11) or its reduced
counterpart (12).

Then, as soon as the model is extracted, we proceed to predict the state evolution for each one of theF
flights, from their initial states, by simply writing at each time tn, n¼ 1,…,nf,

eZf
n ¼ Zf

n

μfn

 !
, (18)

and applying the updating of Equations (6) or (12). Training data are composed of two flights while the
other eighty are used to test the performance of the present approach.

Figure 5 compares the predicted states at each time instant by integrating the just unveiled model from
the initial condition. It employs a GT data series corresponding to one particular, previously unseen flight.
It can be observed that the proposed approach achieves an excellent agreement for variables p1, p2, T1, T2,
T3, and T4.

On the other hand, although the error in variables T5 and T6 is larger it achieves to follow the general
trend, despite the fast time evolutions that these variables exhibit. The same tendency is observed in all the
flights as in Figure 6) proves. To better capture the fast evolutions of these two variables, the procedure
described in Section 2.1 for addressing nonlinear behaviors (Sancarlos et al., 2020) could be employed.
However, in this work it is preferred to improve the accuracy in the prediction of these special variables by
employing a Hybrid approach, for the reasons exposed in Section 4.4.

In Figure 7, it is observed that a similar accuracy is obtained for more than 85 % of the flights in the
testing set (concerning variables p1, p2, T1, and T2). A similar conclusion follows from Figure 8 for
variables T3 and T4. Therefore, it is concluded that the model has a good ability for generalization taking
into consideration that just two flights are considered in the training.

However, the error in variables T5 and T6 can reach high values in a considerable part of the testing set.
To address that, the HT rationale will be proposed and discussed.

Before that, we will see what happens if stability is not enforced when extracting the GT model from
scratch in Section 4.2.2 as well as the improvements of the proposed procedure.

Figure 4.Diagram illustrating the inputs and the state vector of the proposed DMDc model to reproduce
the pruned data of the system.
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4.2.2. Checking explicitly the improvements of the proposed approach to learn stable systems: Example when
proceeding from the GT data
In the above section, the results when modeling the GT data were shown when using the stabilization
procedure for the DMDc proposed in this work. However, it is interesting to analyze what happens when
using other algorithms or by simply using standard procedures to observe the benefits of the proposed
stabilization.

To this end, the GT data for a particular flight is considered. The time evolution of the system can be
observed in Figure 9.

Figure 5. Prediction of the GT data using the proposed technique for a flight which is not used in the
training set. “GT” refers to GT data series described in Section 4.1 and “Pred” refers to the stabilized

DMDc model obtained with the proposed approach discussed in Section 3.

Figure 6.Error in the prediction of T3, T4, T5, and T6 for different flights which are not in the training set.
The prediction error in variables T5 and T6 is higher than the other ones due to their fast time evolution.
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The first objective is to see if we can approximate the dynamics of Figure 9 by constructing a standard
DMDc model without stabilizing it. Moreover, we are interested in observing if stability issues arise.

Therefore, a model is constructed following the DMDc procedure with the state vector and inputs
exposed in Section 4.2.1.

As shown in Figure 10 below, the DMDc model reports stability issues giving useless predictions.

Figure 7.Error in the prediction of p1, p2, T1, and T2 of the proposed technique for lights which are not in
the training set.

Figure 8. Error in the prediction of T3 and T4 of the proposed technique for flights which are not in the
training set.
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Nevertheless, by applying the proposed stabilization approach to the DMDc algorithm (as discussed in
Section 3), a stable model is easily obtained quick and fast. The flight predicted by the proposed approach
is shown in Figure 11. It is worth noting the great improvement observed by comparing the standard
nonstabilized DMDc model (Figure 10) with the stabilized one (Figure 11) able to capture complex
dynamics while completely overcoming the stability issues.

Now, in the next section, we will examine the possibility of unveiling an accurate model from noisy
data. In this way, two important aspects will be analyzed: the interest of employing a HTapproach and the
ability of the proposed technique to filter noise.

4.3. Extracting a model from scratch using noisy data (PED)

In this section, we attempt to unveil a model from scratch using noisy data. This will allow us to study the
robustness of the approach in the filtering process.

After applying the technique in different flights and studying the reconstruction error by considering
different extended states eZ, the proposed model is composed of:

eZn ¼

Zn

μn
μn�1

ωn

Wn

0BBBBBB@

1CCCCCCA, (19)

where:

ωn ¼
Xn
i¼0

μi tiþ1� tið Þ,

and

Figure 9. GT data for the example in Section 4.2.2.
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Figure 10. Prediction Z tð Þ¼ p1,p2,T1,T2,T3,T4,T5,T6½ � of the GT obtained through DMDc. This
prediction tries to reproduce the flight of Figure 9 but fails to provide with stable results.

Figure 11. Comparison between the reference dynamics of Figure 9 and the prediction of the modified,
stable DMDc model. Huge improvements are observed when comparing with Figure 10. The state vector

of the system is Z tð Þ¼ p1,p2,T1,T2,T3,T4,T5,T6½ �.
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Wn ¼
Xn
i¼0

ωi tiþ1� tið Þ:

The same methodology of the previous section is applied, by using the new extended states eZ. This
way, we can address the more complex behavior of the noisy data. In this case, nine flights of different
duration are used for the training set.

In Figure 12, a comparison is shown between the dynamics predicted by the DMDc model obtained
from scratch using the PED and the PED itself (see Section 4.1), for a flight contained in the training set.
Here, it is observed that the model can capture the dynamics of the system with an excellent accuracy, by
just employing the initial state of the system and the corresponding control inputs while filtering the noise
contained in the training data.

In Figure 13, a comparison is shown between the dynamics predicted by the DMDc model obtained
from scratch using the PED and the PED itself (see Section 4.1), for a flight contained in the testing set
(never considered in the model construction). In these plots, it is shown that a good agreement is obtained
for all the variables with the exception of T5 and T6. Similar results are reported in the other flights of the
testing set.

Variables T5 and T6 are more challenging to predict because of their fast time evolution. Nevertheless,
we are going to deal with them in the next section. Therefore, the HTconcept, which follows, is expected
leading to more accurate results.

4.4. Extracting the correction model: HT paradigm

As discussed in Section 2.2, constructing a model of the real system from scratch is not the most valuable
route when addressing complex systems. For the system analyzed in the present work, outputs p1, p2, T1,

Figure 12. Comparison between the model obtained from scratch using PED data and the PED data
itself. In this figure, the reconstruction of a flight contained in the training set is shown. “PED” refers to
the pseudo-experimental data with noise described in Section 4.1 and “Pred” refers to the stabilized
DMDc model obtained with the proposed approach discussed in Section 3. It can be observed that an

excellent agreement is obtained for every variable while filtering the noise.
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T2, T3, and T4 are predicted to a great accuracy for the approaches shown in Sections 4.2 and 4.3. On the
other hand, outputs T5 and T6 present difficulties. In these cases, an interesting option consists in
expressing the state of the system from an additive correction of the CM. Therefore, in this case, the
proposed model is going to capture just the ignorance that the CM contains.

One of the advantages of this concept is that themain response is provided by the physics-basedmodel,
thus guaranteeing that the model is going to exhibit a behavior coherent with the physical phenomenon
under scrutiny as well as being explained by practitioners. In addition, the part of the response which has
difficulties in being modeled—for instance, the appearance of degradation of the system—can be
approximated by the data-driven model.

TheHTconcept is illustrated in Figure 1. Note that only the first measurement is mandatory to runwhat
we coined as the ΔM. Therefore, knowing the initial state of the system, the real response can be
reproduced adding the correction model to the CM without further measurements.

Again, the extended state ΔeZ for the discrepancy model is:

ΔeZn ¼

ΔZn

μn
μn�1

ωn

Wn

0BBBBBB@

1CCCCCCA, : (20)

Nine flights are considered in the training set. As expected for a real-life application, themeasured data
(i.e., the PED) is employed to obtain the discrepancy to be modeled within the HT concept.

Figure 13. Comparison between the model obtained from scratch using PED data and the PED data
itself. In this figure, the reconstruction of a flight which is not contained in the training set is shown.

“PED” refers to the pseudo-experimental data with noise described in Section 4.1 and “Pred” refers to
the stabilized DMDc model obtained with the proposed approach discussed in Section 3. It can be
observed that a good agreement is obtained for all the variables with the exception of T5 and T6.
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Figures 14–16 are obtained by just integrating from the initial state of the system and by employing and
enriching the CM prediction without any further measurement. This proves the excellent agreement that
can be achieved within the HT rationale.

In Figure 14, a comparison is shown between the HT prediction and the PED for a previously unseen
flight. In these plots, an excellent agreement is noticed for all the variables.Moreover, predictions filter the
noisy measurements.

An error criterion is defined to compare the prediction of the HT approach with the accuracy of the
measuring instruments:

erri tð Þ¼ zGTi tð Þ� zHTi tð Þ
Δzmax ,GT

i

, (21)

errmax
meas ¼

max zGTi � zmi
� �

Δzmax ,GT
i

, (22)

where:

• i refers to the ith variable zi of the state vector.
• zHTi is the predicted value of the HT for zi.
• zmi is the measured value of zi. These data include the corresponding noise. In other words, these data
are the PED.

• zGTi is the true value of zi which is theoretically unknown and cannot be accessed by an observer in a
real application. We use this value for evaluation purposes.

Figure 14. Prediction of the hybrid twin (HT) approach considering a flight in the testing set. “PED”
refers to the pseudo-experimental datawith noise described in Section 4.1 and“HTPred” refers to theHT
approachwhose correction term corresponds to a stabilizedDMDcmodel obtained with themethodology
discussed in Section 3. The correction term was constructed using the PED. It can be observed that an

excellent agreement is obtained for all the variables.
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• Δzmax ,GT
i is the difference between the maximum and the minimum value of zGTi considering all the

flights.

Using Equations (21) and (22), it is possible to compare the accuracy of the HTwith the one obtained by
measuring the data (i.e., the PED). Moreover, the relative errors are computed taking as a base the
maximum variation of each variable when regarding all the available flights. Figure 17 shows the
maximum variation of a signal as well as the deviation caused by the noise to illustrate the concept.

Observing Figures 15 and 16, we can confirm that the HT concept allow us to improve, not only the
accuracy of the CM but the accuracy of the measuring instruments regardless of whether or not flights
come from training by filtering the noise. In this way, two goals are achieved at the same time: enriching
the CM by learning the difference with the measured data while filtering the noise.

Therefore, the HT concept is a valuable route to enrich physics-based models with data-driven
corrections. It is important to note that for HT to be applied, the CM must not be extremely bad, since
in this case a direct data-driven or reduced-order modeling approach would be preferred (because there is
no point in correcting such a model).

5. Conclusions

This work presents a fast and efficient methodology, covering several variants to learn dynamical models
while guaranteeing a low computational cost as well as the achievement of stable dynamical time
integrations. This technique was used with success to predict a practical scenario under the HT rationale,
being able to impose stability in the correction term. In addition, the proposed technique filters noise
improving the knowledge of the system state.

Figure 15.Errorof the hybrid twin (HT) approach (blue line) considering a flight which is not used for the
training. The red line refers to the maximum error in the pseudomeasurements (PED). The error criterion

is defined in Equations (21) (blue line) and (22) (red line).
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We also compared the proposed technique in two scenarios:when it is employed to obtain models from
scratch versus when it is employed for an enrichment in the HT rationale.

We concluded that for more complex systems the HT paradigm seems advantageous for two reasons.
The first one is that more complex behaviors can be captured (as variables T5 and T6). The second one is
that, in the HT, the main response is relied on the physics-based model thus guaranteeing that the model is

Figure 16. Error of the hybrid twin (HT) approach (blue line) considering different flights which are not
used for the training. The red line refers to the maximum error in the pseudo measurements. The error

assigned to a flight is the mean value of the error defined in Equation (21).

Figure 17. Sinewavewith noise. In the plot, themaximum variation of the signal is indicated aswell as the
deviation caused by the noise to illustrate the concept used to define the error criterion.
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going to exhibit a behavior coherent with the physical phenomenon at hand. Consequently, just the part of
the response which has difficulties in being modeled is carried out by the data-driven model, for instance,
degradation or aging.
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