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Abstract
To capture the airspeed-dependent dynamics of flexible aircraft, high-order aeroservoelastic systems can generally
be expressed as linear parameter-varying (LPV) models. This paper presents a comprehensive model order reduc-
tion and control design process for grid-based LPV systems, and takes the flexible aircraft FLEXOP as an example
for verification. The LPV model order reduction method is extended from projection-based linear time-invariant
methods through construction of continuous transformations. The corresponding algorithm can be programmed to
automatically perform the model order reduction for LPV systems and simultaneously ensure the state consistency
between grid points and the continuity of state-space data interpolation. By applying this method, a 680th-order
high-fidelity LPV model of the FLEXOP aircraft is reduced to a control-oriented model with only 19 states.
Considering that the frequencies of rigid-body and flexible modes are close under certain parameter conditions,
an integrated design approach for rigid-flexible coupling control is employed in this paper. Instead of separately
designing a baseline rigid-body flight controller and a flutter suppression controller for each unstable flexible mode,
a parameter-dependent dynamic output-feedback controller is designed. The resulting controller effectively expands
the flutter-free flight envelope, ensuring rigid-body attitude and velocity tracking performance while stabilising the
two originally unstable flutter modes.

Nomenclature
A, B, C, D state-space matrices of the full-order model
Ā, B̄u, B̄w, C̄y, C̄z, D̄yu, D̄yw, D̄zu, D̄zw state-space matrices of the generalised plant
Ak, Bk, Ck, Dk state-space matrices of the controller
Ar, Br, Cr, Dr state-space matrices of the reduced-order model
G1, G2 dynamic systems
IMU inertial measurement unit
LPV linear parameter-varying
LTI linear time-invariant
[Mk]i,j distance metric between �i and �j for modal matching
p roll rate
q pitch rate
ql6, qr6 wingtip pitch rates
r reference signal
R real space

† Author’s notes
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S1, S2,V,W vector spaces
u input vector
V , W, Vr, Wr transformation matrices
Va airspeed
w external disturbance of the generalised plant
x, xr state vectors
y, ȳ, z output vectors
Wideal, Wn, Wp, Wu weighting functions

Greek symbol
α angle-of-attack
β sideslip angle
γ performance index of the controller
δν ν-gap
θ pitch angle
φ roll angle
�, �i, �j, �r, �t, �V ,V , �V ,W projection matrices
ρ scheduling parameter
ω angular frequency

1.0 Introduction
Advancements in material technology make it possible to manufacture lightweight, flexible, and
high-strength structures, driving the research and application of flexible aircraft. The design of high-
aspect-ratio flexible wings becomes a popular approach to improving aircraft energy efficiency [1].
However, flexible structures are more susceptible to deformation or vibration under gust and manoeu-
vering loads [2], which may couple with rigid body motion, potentially degrading flight quality and,
in severe cases, compromising flight safety [3]. The promising prospects and accompanying challenges
have attracted a large amount of research on flexible aircraft, with typical projects including the X56-A
in the United States [4, 5], and the Flutter Free FLight Envelope eXpansion for ecOnomic Performance
improvement (FLEXOP) [6] and Flight Phase Adaptive Aero-Servo-Elastic Aircraft Design Methods
(FLiPASED) projects in the European Union [7]. The former is a flying wing configuration, the latter
two are conventional aircraft configurations, and all aim to develop and test active flutter suppression
algorithms. To achieve this goal, one of the key challenges in flexible aircraft research is rigid-flexible
coupling dynamics modeling and control design [8].

Based on existing modeling methods that are well-suited for engineering applications [9, 10], the
complexity of rigid-flexible coupling dynamics modeling primarily arises from its interdisciplinary
integration and the need for updates with experimental data [11]. Due to the inclusion of unsteady aero-
dynamics and structural dynamics, flexible aircraft models typically exhibit nonlinear and high-order
characteristics. Considering the variation of dynamic characteristics across the entire flight envelope,
the linear parameter-varying (LPV) modeling approach is commonly employed for flexible aircraft [12].
By interpolating the linear time-invariant (LTI) models derived under a family of flight conditions, a
grid-based LPV model can be obtained as an approximation for the aircraft dynamics within a spe-
cific parameter range [13]. The LPV model has the same order as the nonlinear model, and thus the
model order reduction is a necessary step before the subsequent controller design. In the previous stud-
ies of FLEXOP, constrained by the LPV model order reduction techniques at that time [14], a bottom-up
approach is applied to first reduce the order of structural dynamics and aerodynamics subsystems and
then combine them with other subsystems to get the integrated model [6, 15]. The resulting grid-based
LPV model contains 56 state variables, leaving potential room for further reduction and making it more
suitable for LPV controller design [16, 17]. This paper will take this 56th-order FLEXOP model in the
LPV form as a comparison [18], and focus on the acquisition of a lower order control-oriented model
as well as design for rigid-body control and active flutter suppression.
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The most intuitive strategy for LPV model reduction is to extend the techniques used for LTI systems
to LPV models. It is important to note that although low-order LTI models can be obtained at each grid
point using LTI model order reduction, there is no guarantee that a continuous low-order LPV model
can be constructed by interpolating these models. Taking modal truncation as an example, differences in
dynamics of local models at various grid points may lead to inconsistencies in retained states and their
order. To address this issue, a modal matching algorithm is proposed by using a distance metric based
on eigenvalues [19]. It matches the same modes across different grid points one-to-one and arranges
the modal vectors to obtain modal truncation with retaining the same states in a consistent sequence.
However, if the system has repeated eigenvalues or intersecting eigenvalue trajectories, the matching
algorithm may struggle to distinguish the related modes, which limits its applicability. Balanced trun-
cation retains states based on their input-output contribution, making it well-suited for control-oriented
model order reduction. But similar state inconsistency issues can also arise when applied to LPV sys-
tems. Several approaches have been explored for obtaining continuous balanced LPV reduced-order
models, such as finding balancing transformations by directly solving linear matrix inequalities [20, 21],
adopting common bases for deriving consistency transformations [22], constructing continuous transfor-
mations based on oblique projection approximation [23], and using genetic algorithms to automatically
determine physical states for minimising the trial-and-error process [24]. However, they tend to suffer
from accuracy issues, either due to approximations or as a result of weak consistency. Inspired by these
studies, particularly the approach involving oblique projection approximation, a method is developed
that constructs a modal matching metric and continuous transformations based on oblique projections,
achieving significant order reduction for flexible aircraft models [25, 26]. This paper will attempt to
apply this method to reduce the number of states of the FLEXOP model.

A low-order LPV model alleviates the constraints of computational resources on controller design
and implementation. This allows for a broader range of controller design methods to be considered
[27, 28]. Given the large variations in model dynamics during flight, different nonlinear control methods,
such as nonlinear model predictive control [29], adaptive control [30] and nonlinear dynamic inversion
[31], have been explored to ensure performance across the entire flight envelope [32]. Due to its ability to
directly design the controller based on the LPV model, LPV control has also been applied in some cases
[33]. This approach simplifies control design by utilising linear control techniques while accommodat-
ing parameter variations, ensuring robust performance throughout the flight envelope. Its flexibility and
effectiveness in handling large dynamic changes make it a preferred choice in modern control applica-
tions for flexible aircraft. This method is initially applied to the flutter control of a cantilever flexible
wing section [34], and later extended to control the entire flexible aircraft called mini Multi Utility
Technology Testbed (MUTT) of the University of Minnesota [35]. In the well-known NASA X-56A
project, it has been attempted for controlling body freedom flutter [36]. In the FLEXOP project, the
LPV method has also been employed for independent control design for each flutter mode, successfully
increasing the critical flutter velocity [17, 37]. However, we found that the closed-loop critical flutter
velocity can be further improved by directly utilising the multi-objective optimisation capabilities of
LPV control for integrated flutter suppression and attitude control.

The FLEXOP project has provided extensive and valuable engineering experience, practical insights,
and data for the modeling and control of flexible aircraft. Building upon these foundations, this paper
will present a comprehensive process for LPV model order reduction and LPV controller design tailored
to flexible aircraft, with the FLEXOP aircraft serving as an illustrative example. From practical aspects,
the main contributions of this paper are as follows:

1. A detailed theoretical derivation and implementation process of the projection-based LPV model
order reduction method is provided. The order of the FLEXOP demonstrator model is further
reduced using this method.

2. A dynamic output-feedback LPV controller is designed using the reduced-order model with
the rigid-flexible coupling effects considered. The flutter-free flight envelope of the FLEXOP
demonstrator is effectively expanded.
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Figure 1. The sketch of FLEXOP.

Figure 2. The integration of subsystems for rigid-flexible coupled dynamics modeling.

The remainder of this paper is organised as follows: Section 2.0 gives a brief description of the
FLEXOP demonstrator model. In Section 3.0, the theoretical background and algorithm implementation
of the LPV model order reduction technique are provided. In Section 4.0, the algorithm is applied to
reduce the order of the FLEXOP model. In Section 5.0, the LPV control problem is formulated for rigid-
body attitude control and flutter suppression. Closed-loop simulations are conducted to demonstrate the
effectiveness of the controller. The paper concludes in Section 6.0.

2.0 Brief description of the model
The model used in this paper is the demonstrator aircraft from the FLEXOP project [6], whose basic
configuration is shown in Fig. 1. It is a flexible drone with a wingspan of 7 m and aspect ratio of 20,
powered by an engine mounted on the fuselage, with a takeoff weight ranging from 55 to 66 kg. There are
eight control surfaces on the main wing and four control surfaces on the V-tail, symmetrically arranged
on both sides. The innermost WL1 and WR1 are used as lift augmentation devices, WL2 and WL3 as
well as WR2 and WR3 function as ailerons. The control surfaces on the V-tail, through symmetrical
and asymmetrical deflections, provide the functions of the elevator and rudder. The outermost WL4
and WR4 are independently used for flutter control. In addition to the sensing devices used in the rigid
aircraft, a total of 12 inertial measurement units (IMUs) are installed on both sides of the main wing to
provide information of the flexible vibration for flutter suppression control.

The rigid-flexible coupled dynamics modeling framework of the aircraft is shown in Fig. 2. The
aerodynamic model is obtained through the vortex lattice method and doublet lattice method, and supple-
mented by computational fluid dynamics methods. The structural model is built based on finite element
method and updated through experiments. The rigid-flexible coupling is achieved through the mean-
axes method, and the detailed modeling and updating process is given in the literature [18]. The order of
the high-fidelity model (the 4.0 release model development by DLR-SR) of the aircraft is 680, including
100 structural states, 544 aerodynamic states, 12 rigid body states and 24 actuator states.

Due to the coupling effects between rigid body motion, flexible deformation and unsteady aerody-
namics, the dynamic characteristics of the aircraft change significantly with flight speed. For dynamic
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Figure 3. Pole migration of the high-fidelity model.

analysis and controller synthesis, it is often represented in the form of an LPV model. By choosing 26
velocity points from 45 m/s to 70 m/s at intervals of 1 m/s and performing linearisation, a grid-based
LPV model with flight velocity as the scheduling parameter is derived.

ẋ = A (ρ) x + B (ρ) u
y = C (ρ) x + D (ρ) u

(1)

where x ∈R
nx is the state, u ∈R

nu is the input, y ∈R
ny is the measurement, A (ρ) ∈R

nx×nx , B (ρ) ∈
R

nx×nu , C (ρ) ∈R
ny×nx and D (ρ) ∈R

ny×nu are parameter-dependent system matrices. Their values at any
given ρ can be obtained through interpolation of system matrices at ρk, where ρ is the scheduling param-
eter (i.e., the airspeed in this case), with the subscript k indicating different parameter values (also called
grid points or operating points).

The pole migration of the model in the relatively low-to-mid frequency range is shown in Fig. 3,
where only the poles with nonnegative imaginary part are presented due to the symmetry property of
complex conjugate pairs. As the velocity increases, two flexible modes gradually become unstable. The
corresponding critical flutter velocities are approximately 52 m/s and 55 m/s, with frequencies of 50 rad/s
and 46 rad/s, respectively.

Considering that such a high-order model is difficult to use in controller design, a bottom-up modeling
approach is adopted in previous studies to simplify the model. By truncating the aerodynamic states and
structural modes separately before integrating the model, the model order can be reduced to 56 [6]. For
grid-based LPV systems, it is often to consider all grid points within the selected parameter space to
design the LPV controllers. If choosing dynamic output-feedback control, the order of the controller is
determined by the order of the open-loop plant, which also affects the size of the optimisation problem
when solving for the controller. From the perspective of practical application, the order of the FLEXOP
model obtained using the bottom-up modeling approach is still relatively high. In the following section,
the oblique projection-based LPV model order reduction method will be applied and the order of the
FLEXOP model will be further reduced with state consistency ensured.

3.0 LPV model order reduction
This section will start with an introduction to the basic concept of projection, followed by the description
of projection-based model order reduction methods, with an emphasis on how to extend LTI methods to
LPV systems. The corresponding LPV model order reduction algorithm is given and the implementation
process is explained in detail. Based on this method, further model order reduction for the FLEXOP is
performed.
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3.1 Basic concept of projection
As described in Section 2.0, the flexible aircraft can be represented as a grid-based LPV model of
the form given in Equation (1). If traditional LTI model order reduction methods are independently
applied at each grid point, the local transformation matrices will be selected separately. This may result
in inconsistencies in the preserved states or their order among different grid points [23]. Here, the concept
of oblique projection is introduced to avoid this issue [38].

Definition 1. A matrix � ∈R
n×n is a projection matrix (or idempotent matrix) of a real value vector

space R
n if

�2 = � (2)

Denoting Im (�) =S1 and Ker (�) =S2, � defines the projection onto S1 along S2, where Im (·)
indicates the imagine space and Ker (·) represents the null space. The real value vector space Rn can be
decomposed as the direct sum of the imagine space and null space of the projection matrix.

R
n =S1 ⊕S2 (3)

When S2 = S⊥
1 , the projection in Equation (2) is an orthogonal projection and can be expressed as

�V ,V = VVT (4)
where ( · )⊥ denotes orthogonal complement, V ∈R

n×r is an orthogonal matrix whose columns span S1.
For the general case where S2 may be distinct from S⊥

1 , the projection is an oblique projection and can
be expressed as

�V ,W = V(WTV)−1WT (5)
where V ∈R

n×r and W ∈R
n×r are two full-column rank matrices whose columns span respectively S1

and S2.
Based on the above definition of projections, several important corollaries are given below and will

be used in the projection-based LPV model order reduction.

Corollary 1. If matrices V ∈R
nf ×nr and W ∈R

nf ×nr satisfy WTV = Inr , then
(
VWT

) (
VWT

)=
V
(
WTV

)
WT = VWT holds. According to Definition 1, VWT ∈R

nf ×nf is a projection matrix.

Corollary 2. Given projection matrices �Vi ,Wi and �Vj ,Wj , if Im (Vi) ∩ Im
(
Vj

)= 0, Im (Wi) ∩ Im
(
Wj

)=
0, Im (V) ⊥Im

(
Wj

)
and Im (Wi) ⊥Im

(
Vj

)
are satisfied, then �Vi ,Wi + �Vj ,Wj is also a projection matrix

with Im (V) = Im (Vi) ⊕ Im
(
Vj

)
and Im (W) = Im (Wi) ⊕ Im

(
Wj

)
.

3.2 Projection-based method
For a high order model as shown in Equation (1), based on the projection �V(ρ),W(ρ), the model order
reduction can be started from approximating x as V (ρ) xr.

d (V (ρ) xr)

dt
= A (ρ) V (ρ) xr + B (ρ) u + r (t) (6)

where x ∈R
nf and xr ∈R

nr with nr < nf . V (ρ) ∈R
nf ×nr and the related subspaceV spanned by it is called

basis space. r (t) is the residual introduced by the approximation. Constrain the residual to be orthogonal
to a subspaceW defined by a test basis W (ρ) ∈R

nf ×nr as W(ρ)Tr (t) = 0. This leads to the governing
equation of the Petrov-Galerkin projection model order reduction [39]. Considering the LTI model at
a fixed grid point ρk, and V (ρk) and W (ρk) are constant matrices with rank

(
WT (ρk) V (ρk)

)= nr, and
there is

WT (ρk) V (ρk) ẋr = WT (ρk) (A (ρk) V (ρk) xr + B (ρk) u) (7)
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The high-dimensional state x can be projected to the reduced-order state by xr =
(WT (ρk) V (ρk) )−1WT (ρk) x as

ẋr = Ar (ρk) xr + Br (ρk) u
yr = Cr (ρk) xr + Dr (ρk) u

(8)

where

Ar (ρk) = (WT (ρk) V (ρk) )−1WT (ρk) A (ρk) V (ρk) ∈R
nr×nr

Br (ρk) = (WT (ρk) V (ρk) )−1WT (ρk) B (ρk) ∈R
nr×nu

Cr (ρk) = C (ρk) V (ρk) ∈R
ny×nr

Dr (ρk) = D (ρk) ∈R
ny×nu

(9)

The original system can be reconstructed by x̃ = V (ρk) xr. Pre-multiplying the state equation in
Equation (8) by V (ρk), the following equivalent system is obtained.

˙̃x = �V(ρk),W(ρk) (A (ρk) x̃ + B (ρk) u)

ỹ = C (ρk) x̃ + D (ρk) u
(10)

Remark 1. Equation (10) indicates that as long as the subspaces V and W remains unchanged, the
choice of bases V and W does not affect the reconstruction of the original states. Given a high-order
dynamic system, a corresponding projection-based reduced-order model is uniquely defined by its asso-
ciated Petrov-Galerkin projector �V(ρk),W(ρk), and this projector is uniquely defined by the two subspaces
V= Im (V) andW= Im (W).

Model order reduction techniques for LTI systems such as balanced truncation and proper orthogonal
decomposition both fall under the category of Petrov-Galerkin projection-based methods. IfW=V,
the related method is called a Galerkin projection method and modal truncation belongs to this category.

Remark 2. Assume that T = [Vr, Vt] and T−1 = [Wr, Wt]T are the eigenvector matrices of the system
matrix A and its inverse, respectively. By selecting V = Vr and W = Wr as the basis and test basis to
obtain the reduced-order model in Equation (8), the corresponding model order reduction method is
referred to as modal truncation.

Remark 3. If T = [Vr, Vt] and T−1 = [Wr, Wt]T are constructed based on singular value decomposition
of the product of controllability Gramian Wc and observability Gramian Wo of the system

WcWoT = T�2 (11)

where � is a diagonal matrix and the entries on the diagonal are known as Hankel singular values.
The transformation x = Txr provides a system with states hierarchically ranked according to their ability
to capture the input-output characteristics [40]. In this case, select V = Vr and W = Wr, and then the
related model order reduction method is balanced truncation. The details for constructing Wc and Wo

are described in the literature [41].
Now considering the LPV model for the whole parameter space, the basis V (ρ) and test basis W (ρ)

are parameter-dependent matrices. Still approximate x as V (ρ) xr and there is

d (V (ρ) xr)

dt
= V (ρ) ẋr +

nρ∑
i=1

∂V (ρ)

∂ρi

ρ̇ixr (12)

where nρ is the number of scheduling parameters. Then Equation (6) becomes

V (ρ) ẋr =
(

−
nρ∑
i=1

∂V (ρ)

∂ρi

ρ̇i + A (ρ) V (ρ)

)
xr + B (ρ) u + r (t) (13)
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Thus, the system matrix Ar (ρk) in Equation (9) will include a term containing parameter change rates
and can be expressed as

Ar (ρ) = (WT (ρ) V (ρ) )−1WT (ρ)

(
A (ρ) V (ρ) −

nρ∑
i=1

∂V (ρ)

∂ρi

ρ̇i

)
∈R

nr×nr (14)

Other system matrices Br (ρ), Cr (ρ) and Dr (ρ) have similar expressions as those given in
Equation (9), just replacing ρk with ρ. It is noted when extending the projection-based LTI reduction
methods to grid-based LPV models, two key issues need to be addressed: firstly, how to obtain a basis
V that allows for continuous interpolation, and secondly, how to minimise the impact of parameter vari-
ation rates on the error caused by model order reduction. These two issues will be discussed in the next
subsection.

3.3 LPV model order reduction algorithm
In practice, although the basis V (ρk) obtained from LTI model reduction at discrete grid points may not
be directly applicable for continuous interpolation, a new basis V (ρ) suitable for continuous interpo-
lation can be reconstructed using the oblique projection operator. Additionally, the error introduced by
parameter variation can be mitigated by incorporating constraints during the reconstruction process.

Take the modal decomposition as an example. According to Remark 2, the eigenvector matrix and
its inverse can be expressed in component form as

T (ρ) = [
v1 (ρ) , v2 (ρ) , · · · , vnf (ρ)

]
T−1 (ρ) = [

w1 (ρ) , w2 (ρ) , · · · , wnf (ρ)
]T (15)

According to Corollary 1, the expression vi (ρ) wT
i (ρ) in the modal decomposition is actually a

continuous oblique projection function, denoted as �i (ρ). Therefore,

A (ρ) =
nf∑

i=1

λi (ρ) vi (ρ) wT
i (ρ) =

nf∑
i=1

λi (ρ) �i (ρ) (16)

For any two component vectors in Equation (15) at grid point ρk, considering the sum of the oblique
projection matrices formed by each of them, we have

�i (ρk) + �j (ρk) = vi (ρk) wT
i (ρk) + vj (ρk) wT

j (ρk) = [
vi (ρk) , vj (ρk)

]
X · X−1

[
wi (ρk) , wj (ρk)

]T (17)

where matrix X represents an arbitrary invertible linear transformation of vectors vi (ρk) and vj (ρk).
According to Corollary 2, �i (ρk) + �j (ρk) is a uniquely defined oblique projection matrix and its sub-
spaces will not change with the transformation X. This property can be generalised to the sum of oblique
projection matrices constructed from any number of component vectors. Therefore, the local oblique
projection matrix formed by V (ρk) can be expressed as follows.

� (ρk) =
nf∑

i=1

�i (ρk) =
nr∑

i=1

�i (ρk) +
nf∑

i=nr+1

�i (ρk) = �r (ρk) + �t (ρk) (18)

As long as the partition of � (ρk) into �r (ρk) and �t (ρk) remains consistent at each grid point, a
continuous oblique projection matrix function �r (ρ) can be derived by interpolating �r (ρk) at all grid
points.

The partition of oblique projection matrices can be achieved by modal matching. This involves
grouping the same modes at different grid points and further dividing them into two categories based
on whether they are retained or truncated. Distinguishing the same modes (and the related projection
matrices) at different grid points is realised through the metric proposed in Ref. (25).

[Mk]i,j =
∣∣�i (ρk) �j (ρk+1) �i (ρk)

∣∣
|�i (ρk)| (19)
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Denoting �j (ρk+1) = (
vj (ρk) + �v

)
(wj (ρk) + �w)T, the metric can be rewritten as

[Mk]i,j =
(
δ2

i,j − δi,j�wT�v + wT
i (ρk) �v�wTvi (ρk)

)
(20)

where δi,j = wT
i (ρk) vj (ρk) is the Kronecker delta that is defined based on the orthogonality condition

of the eigenvectors. If the grid points of the LPV model are sufficiently dense, the last two terms in the
above equation are both negligible higher-order infinitesimals, and the metric [Mk]i,j should approach the
value of δi,j very closely. Thus, the following conditions can be used to determine whether the oblique
projection matrix of two adjacent grid points should be matched to the same group.⎧⎨

⎩
if[M]i,j − 1 < tol, �i (ρk) and�j (ρk+1) match,
else if[Mk]i,j < tol, �i (ρk) and�j (ρk+1) donotmatch,
else, thedistancebetweenρkandρk+1istoolarge.

(21)

where tol is the tolerance set by considering the higher order terms in Equation (19). After completing
the matching process, the oblique projection matrices can be further classified based on the requirements
for retaining or truncating specific modes, and �r (ρk) can be constructed by referring to Equation (18).

Remark 4. For some systems, there may be cases of intersecting eigenvalue trajectories or repeated
eigenvalues. In such situations, distance-based matching might result in one-to-many or many-to-many
correspondences, where �i (ρk) can match with multiple instances of �j (ρk) when j takes different
values. In this case, no further distinction is necessary. It is sufficient to ensure that these oblique pro-
jection operators, which have multiple corresponding relationships, are grouped together into �r (ρk)

or �t (ρk), and then either truncated or retained accordingly.

Then, �r (ρk) can be used to formulate a continuous transformation to achieve LPV model order
reduction by multiplying with a continuous matrix function V0 (ρ).

Vr (ρ)= �r (ρ) V0 (ρ)

Wr (ρ)= �T
r (ρ) Vr (ρ)

(
VT

r (ρ) Vr (ρ)
)−1 (22)

Thus, the reduced-order LPV model with state consistency can be obtained by substituting Vr (ρk)

and Wr (ρk) into V and W respectively in Equation (9) at each grid point ρk. The selection of the matrix
function V0 (ρ) should ensure that the matrix function �r (ρ) V0 (ρ) has the same column rank as �r (ρ),
so that the image space spanned by Vr (ρ) is equal to the one spanned by V0 (ρ). In general, a constant
basis can be used for generating V0.

U�NT = svd
(
�r (ρ1) , �r (ρ2) , · · · , �r

(
ρnk

))
V0 (ρk) ≡ Ur = U (: , 1: nr)

(23)

where svd (·) denotes the singular value decomposition. This procedure can be generalised to multi-
dimensional LPV parameters spaces. For systems with slowly varying parameters, the parameter
variation rate is negligible and the related term in Equation (14) may not be taken into account.

In this paper, the scheduling parameter ρ is the airspeed, and thus the parameter space is one-
dimensional, allowing for further derivation of a parameter-dependent matrix function V0. Assuming
V0 is already the desired Vr, substituting it into Equation (22) and differentiating the equation yields

∂�r (ρ)

∂ρ
Vr (ρ) = (I − �r (ρ))

∂Vr (ρ)

∂ρ
(24)

Since �r (ρ) is already obtained, the above equation is a differential equation with respect to Vr.
The solution to this equation is not unique as rank (I − �r (ρ)) < nf . Thus, the following constraint is
introduced.

�r (ρ)
∂Vr (ρ)

∂ρ
= 0 (25)

Pre-multiplying WT
r to both sides of the above equation yields

WT
r (ρ) �r (ρ) ∂Vr(ρ)

∂ρ
= WT

r (ρ) Vr (ρ) WT
r (ρ) ∂Vr(ρ)

∂ρ
= WT

r (ρ) ∂Vr(ρ)

∂ρ
= 0 (26)
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Algorithm 1 Oblique projection-based LPV model order reduction
Require: The full-order LPV model (as Equation (1)); The order to be retained nr

1: Calculate the number of grid points nk

2: for all i = 1 to nf and k = 1 to nk do
3: Construct projection matrices �i (ρk) = vi (ρk) wT

i (ρk)

4: end for
5: for all k = 1 to nk − 1, i = 1 to nf and j = 1 to nf do
6: Calculate the metric [Mk]i,j (Equation (19))
7: end for
8: Group the oblique projection matrices (Equation (21))
9: for k = 1 to nk do
10: Divide the groups into two categories of ’retain’ and ’truncate’, calculate �r (ρk)

(Equation (18))
11: end for
12: Calculate the constant transformation V0 (Equation (23))
13: for k = 1 to nk do
14: Calculate the transformations Vr (ρk) and Wr (ρk) (Equation (22) and (29))
15: Calculate Ar(ρk), Br (ρk),Cr (ρk), Dr (ρk) (Equation (9))
16: end for
17: return A reduced-order model (as Equation (8))

In addition to making the equation solvable, this constraint also eliminates terms related to ρ̇ in
Equation (14). Substituting Equation (25) into Equation (24) yields

∂�r (ρ)

∂ρ
Vr (ρ) = ∂Vr (ρ)

∂ρ
(27)

Using finite differences to approximate differentiation at point ρ = ρk, we have

∂�r(ρ)

∂ρ

∣∣∣
ρk

≈ �r(ρk+1)−�r(ρk)

ρk+1−ρk

∂Vr(ρ)

∂ρ

∣∣∣
ρk

≈ Vr(ρk+1)−Vr(ρk)

ρk+1−ρk

(28)

Substituting above equations into Equation (27) and solving it provide the construction method for
the continuous transformation matrix as follows.

Vr (ρk+1) = �r (ρk+1) Vr (ρk) (29)

At point k = 1, Vr (ρ1) can be derived based on Equation (23). The transformations Vr (ρk) and Wr (ρk)

at all grid points can be derived by combining Equations (22) and (29), and substituting �r (ρk) into this
combination. Then the reduced-order model can be generated according to Equation (9). In summary,
the projection-based model order reduction method can be outlined as Algorithm 1.

Remark 5. The different constructions of projection matrix �i (ρk) in the third line of Algorithm 1
correspond to different model order reduction methods. For example, when constructed according to
the eigenvectors as shown in Equation (16), the corresponding method is the modal truncation. If
constructed according to the decomposition in Equation (11), the corresponding method is balanced
truncation. Regardless of the method applied, as long as the original LPV model and the order to be
retained are provided, the algorithm can automatically generate the reduced-order model with consistent
states.
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Figure 4. ν-gap between the high-fidelity model and reduced-order models.

4.0 Model order reduction of flexop
Following the steps outlined in the previous section, the order of the high-fidelity LPV FLEXOP model
can be reduced using modal truncation and balanced truncation methods.

4.1 Main process
Assuming that high-frequency modes, which are stable and exceed the bandwidth of the aircraft, have a
negligible impact on aircraft dynamics, these modes are truncated using the modal truncation method to
derive an intermediate model with 46 states from the 680th-order high-fidelity model. Then, by focusing
on preserving the input-output characteristics, the model is further reduced using balanced truncation,
ultimately resulting in a model with only 19 states. The final retained order is determined with reference
to the ν-gap criterion, keeping it close to zero within the frequency range of [0,100] rad/s. This guar-
antees that the controller designed for reduced-order model can also achieve similar performance when
applied to the high-fidelity model. The ν-gap between systems G1 and G2 is defined as follows [42].

δν (G1, G2) (jω) = σ̄
((

I + G2G∗
2

)−1/2
(G2 − G1)

(
I + G∗

1G1

)−1/2
)

(jω) (30)

where σ̄ (·) denotes the maximum singular value, ( · )∗ represents conjugate transpose.
The ν-gaps between the high-fidelity model and the reduced-order models (46th-order and 19th-

order respectively) for inputs and outputs of wingtip control surfaces and IMUs are shown in Fig. 4. In
addition, the ν-gap between the 56th-order bottom-up model and the high-fidelity model is also provided
for comparison. Comparing the results of the 46th-order model with those of the 56th-order bottom-up
model indicates that integrating the aerodynamic-elastic model first and then applying the projection-
based LPV model order reduction method allows for retaining fewer modes without increasing the ν-
gap. When the model is reduced to the 19th-order, the ν-gap slightly increases, but near the critical
flutter frequencies, its values are still far less than 1. This is because the dynamics of the aircraft in this
frequency range are primarily dominated by the flutter modes, and the balanced truncation effectively
preserves this characteristic of the system. From the comparison of pole migrations between the 19th-
order and high-fidelity models in Fig. 5, it can be seen that, although the states of the model obtained
through balanced truncation no longer have clear physical meaning, the pole trajectories associated with
the two flutter modes remain highly consistent with those of the corresponding states in the original
model.
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Figure 5. Pole migrations of the high-fidelity model and the 19th-order model.

4.2 Comparison of frequency domain responses
The comparison of the frequency domain responses between the high-fidelity model and reduced-order
models at 54 m/s are shown in Figs 6 and 7. In the concerned frequency range, there is no significant
difference between the 46th-order model and the 56th-order bottom-up model, both of which accu-
rately reflect the input-output response of the high-fidelity model. The plots of the 19th-order model
exhibit varying differences from the high-fidelity model across different input-output pairs and fre-
quency ranges. These differences arise because the contributions of energy associated with different
input-output channels to the system vary across different frequency bands, while balanced truncation
tends to retain the components that significantly contribute to the system’s energy. For instance, because
the longitudinal position of the main wing’s control surfaces are very close to the centre of gravity, their
contributions to the pitch attitude are minimal. Consequently, the 19th-order model does not preserve
the characteristics from WL4 to the pitch rate, leading to a notable difference in the corresponding Bode
plot compared to the high-fidelity model, as shown in Fig 7. However, the low-frequency responses
of the rigid-body attitude, as well as the wingtip vibration responses near the flutter frequencies, are
effectively captured by the 19th-order model.

4.3 Comparison of time domain responses
To further verify the fidelity of the reduced-order models, open-loop time-domain simulations are also
employed. Figure 8 shows the responses of both the high-fidelity and reduced-order models to the WL4
control surface doublet command at 48 m/s. At this speed, the aircraft exhibits static stability. The distur-
bance from the wingtip control surface induces large-amplitude flexible vibrations and small-amplitude
rigid-body attitude motions, both of which gradually decay after the disturbance ends. Apart from the
inability to accurately capture the ultra-high-frequency response at the wingtip caused by sudden signal
changes, the reduced-order models are generally able to reflect the aircraft’s dynamic response well. The
bottom-up model shows smaller errors in pitch motion and speed variations, while the 46th-order and
19th-order models are more aligned with the high-fidelity model in terms of roll motion and wingtip
vibrations.

Figure 9 illustrates the responses of different models to a step throttle increment at an initial speed
of 51 m/s. The increase in throttle leads to a significant rise in the aircraft’s speed, exceeding the first
critical flutter speed of 52 m/s and approaching the second critical flutter speed of 55 m/s. During this
process, the wingtip vibrations of the aircraft gradually increase and tend to diverge. All reduced-order
models still adequately reflect the aircraft’s dynamic response. However, the fidelity of the 19th-order
and 46th-order models is obvious higher than that of the bottom-up model. Overall, the model order
reduction approach described in this paper achieves a lower-order reduction compared to the bottom-up
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(a) (b)

(c) (d)

Figure 6. Bode plots from the elevator and aileron to rigid-body motions.

model while preserving the key dynamic characteristics of the high-fidelity model. The resulting 19th-
order model can effectively represent the dynamic behaviour of the high-fidelity model and will be used
for subsequent controller design.

5.0 LPV controller design
For flexible aircraft like FLEXOP, the controller needs to achieve both rigid body attitude control and
flutter suppression. In the previous studies, the design approach separates the rigid body and flexi-
ble control. The rigid body control uses parameter-dependent proportional-integral-derivative control,
while flutter control is divided into two types: one based on structured gain scheduling control [37],
and the other on robust control [16, 17]. These methods extend the flutter boundaries of the aircraft to
some extent, but they do not explicitly account for the effects of rigid-flexible coupling in the design
synthesis. In practical applications, additional filters are necessary to prevent interactions between the
baseline controller and the flutter suppression controller. Considering the close frequency of the two
flutter modes and the increasing rigid-flexible coupling effects with velocity, this paper directly utilises
robust control theory to design an LPV attitude and velocity tracking controller capable of maintaining
the stability of flexible modes. The corresponding control problem is typically formulated as finding a
parameter-dependent controller that ensures the stability of the closed-loop system and minimises the
robust performance indices of the closed-loop system within the defined parameter range.
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(a) (b)
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Figure 7. Bode plots from the WL4 control surface to rigid-body and flexible motions.
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Figure 8. Responses of different models to the doublet deflection of WL4 at 48 m/s.

https://doi.org/10.1017/aer.2025.41 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2025.41


The Aeronautical Journal 15

0 0.5 1 1.5 2
Time (s)

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2
Time (s)

51

52

53

54

55
high-fidelity
bottom-up
46th-order
19th-order

0 0.5 1 1.5 2
Time (s)

-0.04

-0.02

0

0.02

high-fidelity
bottom-up
46th-order
19th-order

0 0.5 1 1.5 2
Time (s)

-5

-4

-3

-2

-1

0

1

high-fidelity
bottom-up
46th-order
19th-order

0 0.5 1 1.5 2
Time (s)

-4

-2

0

2 high-fidelity
bottom-up
46th-order
19th-order

0 0.5 1 1.5 2
Time (s)

-4

-2

0

2
high-fidelity
bottom-up
46th-order
19th-order

(a) (b) (c)

(d) (e) (f)

Figure 9. Responses of different models to the step throttle increment at 51 m/s.

Figure 10. Weighted interconnection of the closed-loop control system.

5.1 Dynamic output feedback control design
Figure 10 shows the structure of the closed-loop weighted control system used for the design of the LPV
dynamic output feedback controller. The reference r = [

rVa ;rθ ;rφ

]
contains target values of flight velocity,

pitch angle and roll angle. The measurement output of the aircraft model is y = [
Va, θ , q, φ, p, β, ql6, qr6

]
.

In addition to the signals that need to be tracked, it also includes pitch rate q, roll rate p, sideslip angle
β, as well as pitch rates ql6 and qr6 from the IMU L6 and R6.

Selecting induced L2 norm as the performance index, for the generalised plant depicted in Fig. 11, the
problem of LPV dynamic output feedback controller can be defined as finding a parameter-dependent
controller in the state-space representation, which can stabilise the closed-loop system and minimise
induced L2 gain from exogenous signals w to controlled outputs z. According to the result in literature
[43], it can be formulated as a convex optimisation problem with linear matrix inequality constraints.
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Table 1. Design of weighting or constraint coefficients

Parameter Target Performance Weight Coefficient
Velocity Tracking error |Videal − Va| < 0.1 m/s Wp,Va = 10
Pitch angle Tracking error |θideal − θ | < 0.72◦ Wp,θ = 80
Roll angle Tracking error |φideal − φ| < 0.72◦ Wp,φ = 80
Control surfaces Control surface command |δcs| < 0.5 Wu,δs = 2
Throttle Throttle command |δt| < 1 Wu,δt = 1

Figure 11. General framework of LPV control system.

In order to obtain the desired dynamic performance for reference tracking, an ideal model block Wideal

is introduced in Fig. 10 to generate the ideal response for the reference r.

Wideal = diag
(
Wideal,Va , Wideal,θ , Wideal,φ

)
Wideal,Va = 0.81

s2+1.44s+0.81

Wideal,θ = 2.25
s2+2.4s+2.25

Wideal,φ = 2.25
s2+2.4s+2.25

(31)

where diag(·) denotes a diagonal block composed of diagonal elements specified inside the parentheses.
The ideal models corresponding to each reference signal are defined as standard second-order systems.
The weighting function Wp is used to limit the steady-state error between the ideal and actual responses
and can be expressed as

Wp = diag
(
Wp,Va , Wp,θ , Wp,φ

)
(32)

where Wp,Va ,Wp,θ and Wp,φ are designed based on the desired error responses of speed, pitch angle and roll
angle, respectively. To avoid introducing excessive dynamic states, they are set as constants, as shown
in Table 1. The weighting matrix Wu is used to limit the amplitude of controller outputs.

Wu = diag
(
Wu,δcs , Wu,δcs , Wu,δcs , Wu,δt

)
(33)

Its diagonal components correspond sequentially to the ailerons, elevators, rudder and throttle, with
specific values provided in Table 1. In addition, Wn is used to account for the influence of measurement
noise and is defined as

Wn = diag (0.1, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01) (34)

where the diagonal elements represent the amplitude of the noise, corresponding to the measurement sig-
nal y. By interconnecting the aircraft dynamic model and weighting functions in Fig. 10, the generalised
plant P (ρ) can be obtained. It can be represented by the following state-space model.

˙̄x = Ā (ρ) x̄ + B̄u (ρ) u + B̄w (ρ) w
z = C̄z (ρ) x̄ + D̄zu (ρ) u + D̄zw (ρ) w
ȳ = C̄y (ρ) x̄ + D̄yu (ρ) u + D̄yw (ρ) w

(35)

where u represents the control input, ȳ = [
y;r
]

represents the generalised measurement output, z =[
eu;ep

]
represents the regulated output, and w = [r;n] represents the external disturbance (including ref-

erence signals). Then, based on literature [43], the linear matrix inequalities can be formulated to solve
for the parameter-dependent controller.
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Figure 12. Comparison of pole migrations of open-loop and closed-loop models.
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Figure 13. Comparison of Bode plots between open-loop and closed-loop models.

5.2 Results and discussions
By using the methods and parameter settings described in the previous subsection, a 25th-order con-
troller is obtained based on the reduced-order model, with corresponding performance index γ of 1.20.
Note that Algorithm 1 can also be used for order reduction of the LPV controller, which is further
reduced to 21st-order. The derived controller has a fastest pole of 57.3 Hz, allowing it to be implemented
on FLEXOP’s onboard hardware (with a sampling frequency of 200 Hz).

5.2.1 Frequency domain analysis
The pole trajectories of the open-loop high-fidelity model and the closed-loop system formed by con-
necting this model with the 21st-order controller are shown in Fig. 12. It can be seen that, within the
concerned speed and frequency ranges, under the influence of the designed controller, the flutter modes
that originally become unstable with increasing velocity are stabilised, and other flexible as well as rigid
modes also remain stable.

The open-loop and closed-loop frequency domain responses of the full-order model are shown in
Fig. 13. The input is selected as WL4, and the outputs are chosen to be the z-direction acceleration
and pitch rate from the IMU-L6 located at the left wingtip. The response magnitude of the closed-loop
system shows a slight increase only in a small range around 1.5 rad/s (the design frequency of the ideal
models). While in other frequency bands, especially near the flutter frequencies, the values are obvious
lower than those of the open-loop system. This indicates that the disturbance from the wingtip control
surface to the wingtip vibration will be significantly reduced, as the controller effectively increases the
damping of the flutter modes.

To evaluate the robustness of the controller, the worst-case gain and phase margins of the closed-loop
system at different flight velocities are presented in Fig.14. First, consider the margins of the individual
loops. Due to the inherently large damping of the rigid-body motion modes and their control by multiple
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(a) (b)

Figure 14. Single-loop and multi-loop margins.

control surfaces, the p and q loops clearly exhibit strong robustness, with minimal impact from flight
velocity. The loop-at-a-time margins for the channels of outermost control surfaces and sensors are close
in their value and gradually decrease as the flight velocity increases. Under the effect of the LPV con-
troller, the rate of decline in loop-at-a-time margins with flight speed is much smoother compared to
the damping decrease of the flutter modes of the aircraft. Even at a velocity close to 70 m/s, these loops
still maintain a gain margin of approximately 5 dB and a phase margin of 20 degrees. Multi-loop mar-
gins address situations where multiple loops may have uncertainties or variations either individually or
simultaneously, providing a more comprehensive robustness evaluation. In Fig.14(b), the inputs include
the throttle and all control surface channels, while the outputs consist of all the sensor signals. Due to
the mutual interactions between different loops, the margins associated with the multi-loop inputs and
outputs are reduced compared to those of the individual loops. However, as a result of the integrated
rigid-flexible coupling controller design, the closed-loop system is able to maintain a certain level of
robustness within the designed velocity range.

5.2.2 Time domain analysis
To verify the attitude tracking performance of the controller, closed-loop simulations are conducted
using the full-order high-fidelity LPV model. To better reflect engineering practice, Gaussian white noise
has been added to the sensor measurement signals. Three velocity points, 48 m/s, 54 m/s and 65 m/s, are
selected to demonstrate the capability of the designed controller in scenarios where the original model
is stable, a single flutter mode is unstable and two flutter modes are unstable. The step responses of
pitch angle tracking and roll angle tracking are given in Figs 15 and 16. With the parameter-dependent
controller, while maintaining stability, the aircraft achieves great attitude tracking in accordance with
the ideal response, with very small tracking errors and performance that is almost unaffected by changes
in velocity. Due to the damping effect of the controller, the symmetric and anti-symmetric responses of
both wingtips during pitch and roll tracking are primarily caused by rigid-body motion. The sudden
change in commands only induces small wingtip vibrations, which quickly decay to near zero.

To validate the flutter suppression capability of the designed controller with continuous changes in
scheduling parameter, velocity tracking simulations are performed within the design parameter range.
Under steady-level flight at 45 m/s, a staircase command that increases by 5 m/s every 10 seconds is
given. The aircraft’s velocity, pitch rate, z-direction accelerations of the IMU-L6 and IMU-R6, and
the control surface responses are illustrated in Fig. 17. The aircraft velocity closely tracks the ideal
response, while the wingtip vibrations are maintained within a relatively small range. At each step of
the command, very small-amplitude high-frequency oscillations can be observed, which are quickly
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Figure 15. Responses of pitch angle tracking under different velocities.
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Figure 16. Responses of roll angle tracking under different velocities.

dissipated. Compared to the open-loop simulations shown in Fig. 9, the aircraft is able to smoothly
pass through the critical flutter speeds under the damping effect of the controller. Due to the low-order
model’s omission of the high-frequency characteristics of the high-fidelity model, although the predicted
stability range of the original two flutter modes is extended to over 70 m/s, the aircraft experiences
extremely high-frequency oscillations that tend to diverge when the airspeed exceeds 68 m/s. However,
compared to the critical flutter speeds of 61 m/s and 63 m/s reported in the literatures [16, 17], the
flutter-free flight envelope of the aircraft has experienced a noticeable improvement. Although retaining
more high-frequency modes during the model order reduction process can further mitigate the effects
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Figure 17. Responses during velocity tracking.

of high-frequency distortion, but it also increases the controller’s frequency, making it impractical for
engineering implementation. The controller designed in this paper achieves a good balance between
performance and practical applicability.

6.0 Conclusions
This paper presents a detailed derivation and implementation process of the projection-based LPV model
order reduction method. The state consistency of the reduced-order model obtained through this method
can be ensured, and modal truncation and balanced truncation of the LPV model can be achieved by con-
structing reduction transformation matrices using different approaches. Utilising the proposed method,
the high-fidelity model of the FLEXOP aircraft is sequentially reduced to 46th-order and then to 19th-
order. The fidelity of the reduced models is validated by comparing their responses with those of the
full-order model in both frequency domain and time domain. Compared to the previous bottom-up mod-
eling approach, this method significantly reduces the order of the FLEXOP aircraft while preserving key
dynamic characteristics and avoids the trial-and-error process of selecting retained states across different
subsystems. Based on the obtained 19th-order model, a parameter-dependent dynamic output feedback
controller is designed. The designed controller effectively handles attitude tracking for the full-order
model while maintaining consistent performance across different parameter values. Under conditions
of continuous flight speed variation, the controller successfully stabilises the flutter modes and keeps
the aicraft’s flexible vibrations within a small range. Compared to previously published research, this
method demonstrates more effective expansion of the flight speed envelope of the FLEXOP.
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