A VARIATION OF THE KOEBE MAPPING IN A DENSE SUBSET OF S

D. BSHOUTY AND W. HENGARTNER

1. Introduction. Let $H(U)$ be the linear space of holomorphic functions defined on the unit disk U endowed with the topology of normal (locally uniform) convergence. For a subset $E \subset H(U)$ we denote by \bar{E} the closure of E with respect to the above topology. The topological dual space of $H(U)$ is denoted by $H^{\prime}(U)$.

Let $D, 0 \in D$, be a simply connected domain in \mathbf{C}. The unique univalent conformal mapping ϕ from U onto D, normalized by $\phi(0)=0$ and $\phi^{\prime}(0)>0$ will be called "the Riemann Mapping onto D ". Let S be the set of all normalized univalent functions

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n}(f) z^{n}
$$

in $H(U)$. In connection with the famous Theorem of De Branges: $\left|a_{n}(f)\right| \leqq n$ for all $f \in S$ and $n \in \mathbf{N}$, and equality holds only for the Koebe function

$$
k_{1}(z)=z /(1-z)^{2}
$$

and its rotations

$$
k_{\eta}(z)=z /(1-\eta z)^{2} ;|\eta|=1,
$$

Bombieri [2] proved that

$$
\begin{aligned}
& \lim _{a_{2} \rightarrow 2} ; f \in S \quad\left[n-\operatorname{Re} a_{n}(f)\right] /\left[2-\operatorname{Re} a_{2}(f)\right]>0 \text { for even } n, \text { and } \\
& \lim _{a_{3} \rightarrow 3 ; f \in S}\left[n-\operatorname{Re} a_{n}(f)\right] /\left[3-\operatorname{Re} a_{3}(f)\right]>0 \text { for odd } n
\end{aligned}
$$

and conjectured that
(1.1) $\lim _{a_{2} \rightarrow 2 ; f \in S}\left[n-\operatorname{Re} a_{n}(f)\right] /\left[m-\operatorname{Re} a_{m}(f)\right]$

$$
=\inf _{\theta \in[0,2 \pi]} s_{n}(\theta) / s_{m}(\theta)
$$

where

$$
s_{n}(\theta)=\sin (n \theta)-n \sin (\theta)
$$

He uses there a combination of Schiffer's variation and the Loewner differential equation. Other studies on such variations can be found in [3].

In this article we shall study an elementary variation of k_{1}. Let

$$
\begin{aligned}
& L=\left\{f(z)=z(1-h(z)) /(1-z)^{2}=k_{1}(z)(1-h(z))\right. \\
& \\
& L_{0}=\{f \in L \in H(\bar{U})\} \text { and } \\
& \\
&
\end{aligned}
$$

In Section 2 we show that

$$
\overline{L_{0} \cap S}=S \quad \text { and } \quad{\overline{L_{0}} \cap S_{\mathbf{R}}}=S_{\mathbf{R}}
$$

where

$$
S_{\mathbf{R}}=\left\{f \in S ; a_{n}(f) \in \mathbf{R} \text { for all } n \in \mathbf{N}\right\}
$$

is a subset of

$$
\begin{aligned}
& T_{\mathbf{R}}=\left\{t(z)=z+\sum_{n=2}^{\infty} a_{n}(t) z^{n} \in H(U)\right. \\
& \left.\quad a_{n}(t) \in \mathbf{R} \text { for all } n \in \mathbf{N} \text { and } \operatorname{Re}\left\{\left(1-z^{2}\right) t(z) / z\right\}>0 \text { in } U\right\}
\end{aligned}
$$

It is therefore reasonable to study variations of k_{1} in $L \cap S$ ($L \cap S_{\mathbf{R}}$ respectively). Our main result is given in Theorem 3.1; the first part of which connects some variations of k_{1} with functions in $T_{\mathbf{R}}$. More surprising is the second part, where explicit variations of k_{1} in $S \cap L$ are constructed.

In Section 4 we give two applications of our variations. In Theorem 4.1 we give an elementary proof of

$$
\begin{align*}
\inf _{\theta \in[0,2 \pi]} s_{n}(\theta) / s_{m}(\theta) & \leqq\left[n-a_{n}(f)\right] /\left[m-a_{m}(f)\right] \tag{1.2}\\
& \leqq \sup _{\theta \in[0,2 \pi]} s_{n}(\theta) / s_{m}(\theta)
\end{align*}
$$

for all $f \in T_{\mathbf{R}}, f \neq k_{1}$ and k_{-1}, and we show that these bounds are best possible in $S_{\mathbf{R}}$. In the second application we show that Bombieri's Conjecture, stated above, holds for all variations of k_{1} stated in Theorem 3.1.

Finally, we shall use frequently the notations

$$
\begin{aligned}
& \Delta(R)=\{z ;|z|<R\}, \quad \Delta(R=1)=U \\
& A\left(R_{1}, R_{2}\right)=\left\{z ; R_{1}<|z|<R_{2}\right\} \text { and } \Delta^{2}(R)=\Delta(R) \times \Delta(R)
\end{aligned}
$$

Furthermore, if $f_{\epsilon} \in H(U)$, we write

$$
F_{\epsilon}(z, \zeta)=\left[f_{\epsilon}(z)-f_{\epsilon}(\zeta)\right] /(z-\zeta) \in H\left(U^{2}\right)
$$

where

$$
F_{\epsilon}(z, z)=f_{\epsilon}^{\prime}(z)
$$

2. A dense subclass in S. Let L be defined by

$$
\begin{aligned}
& L=\left\{f(z)=\frac{z(1-h(z))}{(1-z)^{2}} ; h \in H(\bar{U})\right\} \text { and } \\
& L_{0}=\{f \in L ; h(1) \neq 1\}
\end{aligned}
$$

If $f \in L \cap S$ and $h \not \equiv 0$, then $h(0)=0$ and $\operatorname{Re} h^{\prime}(0)>0$. Indeed,

$$
\operatorname{Re} a_{2}(f)=2-\operatorname{Re} h^{\prime}(0)<2
$$

In this section we show
Theorem 2.1. We have: $\overline{L_{0} \cap S}=S$. In other words, the set of functions in S having a pole of order two at $z=1$ is dense in S.

Proof. The proof is given in six steps. Let $f \in S$.
Step 1. Since $f_{r}(z)=f(r z) / r, 0<r<1$, converges normally to $f(z)$ as r tends to one, we may assume that $f(U)$ is bounded by an analytic Jordan curve.

Step 2. Let γ be an open arc of $\partial f(U)$ and Γ be a half straight line in $\mathbf{C} \backslash f(U)$ joining $(\partial f(U) \backslash \gamma)$ with infinity. Denote by Ω the domain

$$
\Omega=\mathbf{C} \backslash[(\partial f(U) \backslash \gamma) \cup \Gamma]
$$

and let f_{γ} be the Riemann Mapping onto Ω. By the Carathéodory Kernel Theorem f_{γ} converges normally to f as the length of $\gamma,|\gamma|$, tends to zero. Therefore we may assume that $f=f_{\gamma} / f_{\gamma}^{\prime}(0)$ for an appropriate γ. Observe that f has now a pole of order two at some point $\eta_{0} \in \partial U$.

Step 3. If $\eta_{0}=1$, put $w_{r}(z)=f(z)$ and go to Step 6; if $\eta_{0}=-1$, replace $f(z)$ by $e^{-i \theta} f\left(e^{i \theta} z\right)$ where θ is a small positive number. Therefore, we may assume that $\eta_{0} \neq \mp 1$.

Step 4. Let $\eta_{0}=e^{i \phi_{0}}$. With no loss of generality we may assume that $0<\phi_{0}<\pi$; otherwise consider $\overline{f(\bar{z})}$. Fix $r \in(0,1)$ and consider the domains

$$
D_{r, t}=U \backslash\left\{[r, 1] \cup E_{r, t}\right\}, \quad 0<t<\pi
$$

where

$$
E_{r, t}=\left\{z=r e^{i \theta} ;|\theta| \leqq t\right\} .
$$

Let g_{t} be the Riemann Mapping onto $D_{r, t}$.
Denote by $E_{r, t}^{\prime}$ the set of primend of $E_{r, t}$ attained by the radial limits

$$
\lim _{\rho \uparrow r} \rho e^{i \theta}, \quad|\theta| \leqq t .
$$

Since

$$
\omega\left(E_{r, t}^{\prime}, 0, D_{r, t}\right)>t / \pi
$$

we have

$$
g_{t}\left(r e^{i t}\right)=e^{i \beta(t)}, \quad t<\beta(t)<\pi
$$

and therefore $g_{t}^{-1}(1)$ consists of two points $\eta_{1}=e^{-i \phi_{1}(t)}$ and $\bar{\eta}_{1}$ where $t<\phi_{1}(t)<\pi$. Hence we have

$$
0<\phi_{0}<\phi_{1}(t)<\pi \text { for all } t \in\left[\phi_{0}, \pi\right] .
$$

Put $\alpha=\left(\phi_{0}+\pi\right) / 2$. Then $\zeta=e^{-i \psi}, \psi>0$, can be chosen so that

$$
0<\phi_{0}<\phi_{1}(\alpha)-\psi<\pi .
$$

In what follows we adopt the notation $\zeta \cdot E=\{\zeta w ; w \in E\}$ whenever E is a set in C. Consider the Riemann mapping

$$
q(z)=\bar{\zeta} g_{\alpha}(\zeta z)
$$

from U onto $\bar{\zeta} \cdot D_{r, \alpha}$. Then

$$
q^{-1}(1)=e^{-i \phi_{2}} \quad \text { where } 0<\phi_{0}<\phi_{1}(\alpha)-\psi<\phi_{2}<\pi .
$$

Note that q is analytic at the preimage of one, i.e., at $e^{-i \phi_{2}}$.
In the next step r is kept fixed and a continuous chain of domains is considered varying between $\bar{\zeta} \cdot D_{r, \alpha}$ and U in order to exhibit a Riemann Mapping $h_{r, t_{0}}$ from U into U such that $h_{r, t_{0}}\left(\bar{\eta}_{0}\right)=1$ and $h_{r, t_{0}}$ is analytic at $\bar{\eta}_{0}$.

Step 5. For given $r \in(0,1)$ consider the family of increasing domains

$$
D_{\tau}= \begin{cases}\bar{\zeta} \cdot D_{r, \alpha-\tau} & \text { for } 0 \leqq \tau \leqq \alpha \\ \bar{\zeta} \cdot\{U \backslash[c(\tau), 1]\} & \text { for } \alpha \leqq \tau \leqq \pi\end{cases}
$$

where

$$
c(\tau)=((1-r) \tau+\pi r-\alpha) /(\pi-\alpha) .
$$

Denote by $h_{r, t}$ the Riemann Mapping onto D_{τ} and put

$$
h_{r, \tau}^{-1}(1)=e^{-i \phi_{2}(\tau)}, \quad 0<\phi_{2}(\tau)<\pi .
$$

Then $h_{r, \tau}$ defines a Loewner chain from $h_{r, 0}=q$ to $h_{r, \pi}$ which is the identity mapping. For

$$
F=\left\{z=e^{i \theta}, 2 \psi \leqq \theta \leqq 2 \pi\right\}
$$

we have by the symmetry of D_{τ} with respect to the axis $\{w=\lambda \bar{\zeta}$; $\lambda \in \mathbf{R}\}$

$$
\omega\left(F, 0, D_{\tau}\right)=1-\left(\phi_{2}(\tau)+\psi\right) / \pi
$$

is a continuous increasing function in τ and hence $\phi_{2}(\tau)$ decreases
continuously from ϕ_{2} to zero. Therefore a t_{0} exists where $-\phi_{2}\left(t_{0}\right)=-\phi_{0}$, i.e.,

$$
h_{r, t_{0}\left(\bar{\eta}_{0}\right)}=1 .
$$

Step 6. Put

$$
H_{r}(z)=f\left(\eta_{0} h_{r, t_{0}}\left(\bar{\eta}_{0} z\right)\right)
$$

and

$$
w_{r}(z)=H_{r}(z) / H_{r}^{\prime}(0) .
$$

Then $w_{r} \in S$ and converges normally to f as r tends to one. Observe that w_{r} has a pole of order two at $z=1$. We then assume $f=w_{r}$.

Step 7. For $0<\rho<1$, let

$$
l_{\rho}(z)=\left[w_{r}(\rho z+(1-\rho))-w_{r}(1-\rho)\right] / \rho w_{r}^{\prime}(1-\rho) \in S
$$

Then l_{ρ} converges normally to w_{r} as ρ tends to one and has the desired properties.

Theorem 2.2. We also have $\overline{L_{0} \cap \mathrm{~S}_{\mathbf{R}}}=S_{\mathbf{R}}$.
Indeed, Step 1 of the above proof says that we may assume $f \in S_{\mathbf{R}} \cup$ $H(\bar{U})$. In step 2 we take γ to be an $\operatorname{arc}\left\{f\left(e^{i t}\right),|t|<\delta_{0}\right\}$ and Γ the halfline $(-\infty, f(-1)]$. Then we may go directly to Step 7 .
3. A variation in $L \cap S$ of the Koebe function. We consider a variation in $L \cap S$ of the Koebe function k_{1} of the form

$$
f_{\epsilon}(z)=\frac{z+\epsilon w(z)+g(z, \epsilon)}{(1-z)^{2}} ; \quad 0<\epsilon<\epsilon_{0}
$$

where

$$
w(z) \in H(\bar{U}), \quad w(z)+\overline{w(\bar{z})} \not \equiv 0, \quad g(\cdot, \epsilon) \in H(\bar{\Delta}(R))
$$

for some $R>1$ and $g(z, \epsilon) / \epsilon$ converges uniformly to zero in $\bar{\Delta}(R)$ as ϵ tends to zero. By the normalization of the class S we have

$$
w(0)=w^{\prime}(0)=g(0, \epsilon)=\frac{\partial g(0, \epsilon)}{\partial z}=0 .
$$

Moreover, since $\operatorname{Re} a_{2}\left(f_{\epsilon}\right)<2$, we have

$$
\operatorname{Re} w^{\prime \prime}(0) \leqq 0
$$

Indeed, put

$$
g(z, \epsilon)=\sum_{n=2}^{\infty} g_{n}(\epsilon) z^{n}
$$

then for every natural $n \geqq 2, g_{n}(\epsilon) / \epsilon$ converges to zero as ϵ tends to zero. This, in conjunction with

$$
\operatorname{Re} a_{2}\left(f_{\epsilon}\right)=\operatorname{Re}\left\{2+\epsilon w^{\prime \prime}(0) / 2+g_{2}(\epsilon)\right\}<2 \text { for } 0<\epsilon<\epsilon_{1}
$$

implies that $\operatorname{Re} w^{\prime \prime}(0) \leqq 0$. Next we show that $\operatorname{Re} w^{\prime \prime}(0)=0$ cannot occur so that $f_{\epsilon}(z)$ reduces to the form

$$
\begin{equation*}
f_{\epsilon}(z)=\frac{z-\epsilon z h(z)+g(z, \epsilon)}{(1-z)^{2}} ; \quad \epsilon \in\left(0, \epsilon_{0}\right) \tag{3.1}
\end{equation*}
$$

where $h \in H(\bar{U}), h(0)=0, \operatorname{Re} h^{\prime}(0)>0$ and g as before. To see this, just note that for every natural $n \geqq 3$ we have

$$
\begin{aligned}
& \frac{n-\operatorname{Re} a_{n}\left(f_{\epsilon}\right)}{2-\operatorname{Re} a_{2}\left(f_{\epsilon}\right)} \\
& =\frac{\operatorname{Re}\left\{\sum_{j=2}^{n}\left(\epsilon a_{j}(w)+g_{j}(\epsilon)\right)(n-j+1)\right\}}{\operatorname{Re}\left\{\epsilon a_{2}(w)+g_{2}(\epsilon)\right\}} ; \quad 0<\epsilon<\epsilon_{1}
\end{aligned}
$$

which must be bounded from above and below (see [1]). If $\operatorname{Re} a_{2}(w)=0$, then $\operatorname{Re} a_{n}(w)=0$ for all natural $n \geqq 3$, which contradicts the assumption that

$$
w(z)+\overline{w(\bar{z})} \not \equiv 0 .
$$

Put

$$
t(z)=(h(z)+\overline{h(\bar{z}))} / 2 \quad \text { and } \quad s(z)=(h(z)-\overline{h(\bar{z}))} / 2 i .
$$

Then $h(z)$ admits a unique representation $t(z)+i s(z)$, where t and s are in $H(\bar{U})$ and have real coefficients.

Our main result gives necessary conditions and sufficient conditions on h and g so that the variation (3.1) is in $S \cap L$ for small ϵ.

Theorem 3.1. A) Let $h \in H(\bar{U}), h(0)=0, \operatorname{Re} h^{\prime}(0)>0$. Suppose that for $\epsilon \in\left(0, \epsilon_{0}\right)$ we have $g(\cdot, \epsilon) \in H(\bar{\Delta}(R))$ for some $R>1$ such that $g(\cdot, \epsilon) / \epsilon$ converges uniformly to zero on $\bar{\Delta}(R)$ as ϵ tends to zero and that

$$
g(0, \epsilon) \equiv \frac{\partial g(0, \epsilon)}{\partial z} \equiv 0
$$

If

$$
\mathrm{f}_{\epsilon}(z)=[z-\epsilon h(z)+g(z, \epsilon)] /(1-z)^{2}
$$

is in $L \cap S$ for all $\epsilon \in\left(0, \epsilon_{0}\right)$, then

$$
t(z)=[h(z)+\overline{h(\bar{z})}] /\left[2 \operatorname{Re} h^{\prime}(0)\right] \in T_{\mathbf{R}}
$$

B) Conversely, let s be any function in $H(\bar{U})$ with real coefficients,
$u \in T_{\mathbf{R}}, t(z)=u(r z) / r$ for some $r \in(0,1)$ and $h=t+$ is. Then there is an $\epsilon_{0}>0$ such that
(3.2) $f_{\epsilon}(z)=z(1-\epsilon h(z)) /(1-z)^{2} \in L \cap S$
for all $\epsilon \in\left(0, \epsilon_{0}\right)$.
In proving Theorem 3.1 we shall study the equation

$$
\begin{align*}
\frac{f_{\epsilon}(z)-f_{\epsilon}(\zeta)}{z-\zeta} & =\frac{1-z \zeta-\epsilon E_{1}(z, \zeta)+G_{1}(z, \zeta, \epsilon)}{(1-z)^{2}(1-\zeta)^{2}} \tag{3.3}\\
& \equiv \frac{F_{\epsilon}(z, \zeta)}{(1-z)^{2}(1-\zeta)^{2}}=0
\end{align*}
$$

in $U \times U$, where

$$
\begin{align*}
& E_{1}(z, \zeta)=\left[(1-\zeta)^{2} z h(z)-(1-z)^{2} \zeta h(\zeta)\right] /(z-\zeta) \\
& G_{1}(z, \zeta, \epsilon)=\left[(1-\zeta)^{2} g(z, \epsilon)-(1-z)^{2} g(\zeta, \epsilon) /(z-\zeta) \text { in } \mathrm{A}\right) \tag{3.4}
\end{align*}
$$

and

$$
G(z, \zeta, \epsilon) \equiv 0 \text { in } \mathbf{B})
$$

are in $H\left(\bar{\Delta}^{2}(R)\right)$ with respect to the variables z and ζ. From Cauchy's formula we conclude that $G_{1}(\cdot, \cdot, \epsilon) / \epsilon$ converge uniformly to zero in $\bar{\Delta}^{2}(\widetilde{R})$, $1<\widetilde{R}<R$, as ϵ tends to zero.

For the proof of Theorem 3.1 we need some lemmas. First (Lemma 3.2) we show that for small ϵ and fixed ζ in a given annalus $A\left(R_{1}, R_{2}\right)$, $R_{1}<1<R_{2}, F_{\epsilon}(\cdot, \zeta)$ has a unique zero in $\Delta\left(R_{2}\right)$. This zero, denoted by $z(\zeta, \epsilon)$, has the form

$$
z(\zeta, \boldsymbol{\epsilon})=1 / \zeta+\epsilon c_{1}(\zeta)+o(\epsilon)
$$

(Lemma 3.3) and is analytic in ζ (Lemma 3.5). Lemma 3.6 is purely computational and Lemmas 3.4 and 3.7 prepare the proof of statement B) of Theorem 3.1.

Let

$$
E(z, \zeta) \in H\left(\bar{\Delta}^{2}(R)\right)
$$

and, for $\epsilon \in \Delta\left(\epsilon_{0}\right)$, let

$$
G(\cdot, \cdot, \epsilon) \in H\left(\bar{\Delta}^{2}(R)\right)
$$

such that $G(\cdot, \cdot, \epsilon) / \epsilon$ converges uniformly to zero in $\bar{\Delta}^{2}(\widetilde{R}), 1<\widetilde{R}<R$, as ϵ tends to zero. Choose $R_{2} \in(1, \widetilde{R})$ and define

$$
0<R_{1}=\left(2 R_{2}-1\right)^{-1 / 2}<1 .
$$

For $n=0,1$ let

$$
M_{n}>\operatorname{Max}_{\Delta^{2}\left(R_{2}\right)}\left|\partial^{n} E(z, \zeta) / \partial z^{n}\right|
$$

Then there is an $\epsilon_{1} \in\left(0, \epsilon_{0}\right)$ such that for all $\epsilon \in \Delta\left(\epsilon_{1}\right)$

$$
\operatorname{Max}_{\bar{\Delta}^{2}\left(R_{2}\right)}\left|\partial^{n} G(z, \zeta, \epsilon) / \partial z^{n}\right| \leqq \epsilon M_{n} .
$$

Lemma 3.2. There is an $\epsilon_{2} \in\left(0, \epsilon_{1}\right)$ such that for each

$$
\zeta \in A\left(R_{1}, R_{2}\right)=\left\{\zeta ; R_{1}<|\zeta|<R_{2}\right\}
$$

and each $\epsilon \in \Delta\left(\epsilon_{2}\right) \subset \mathbf{C}$

$$
\begin{equation*}
F_{\epsilon}(z, \zeta)=1-z \zeta-\epsilon E(z, \zeta)+G(z, \zeta, \epsilon)=0 \tag{3.5}
\end{equation*}
$$

has a unique solution $z(\zeta, \epsilon)$ in $\Delta\left(R_{2}\right)$.
Proof. Let

$$
\epsilon_{2}=\operatorname{Min}\left\{\epsilon_{1}, \frac{1}{2},\left(1-R_{1}\right)^{2} /\left(4 R_{1} M_{0}\right)\right\} .
$$

Then for $\zeta \in A\left(R_{1}, R_{2}\right), \epsilon \in \Delta\left(\epsilon_{2}\right)$ and $|z|=R_{2}$ we have

$$
\begin{aligned}
& |z \zeta-1| \geqq|z \zeta|-1 \geqq R_{2} R_{1}-1 \\
& =\frac{\left(1-R_{1}\right)^{2}}{2 R_{1}} \geqq 2 \epsilon_{2} M_{0}>|\epsilon E(z, \zeta)-G(z, \zeta, \epsilon)| .
\end{aligned}
$$

Observe also that $|\zeta|>R_{1}$ implies that $|1 / \zeta|<R_{2}$. By Rouché's theorem we conclude that for fixed $\zeta \in A\left(R_{1}, R_{2}\right)$ and $\epsilon \in \Delta\left(\epsilon_{2}\right)$ the number of zeros of $F_{\epsilon}(z, \zeta)$ in $|z|<R_{2}$ is equal to one. We denote this zero by $z(\zeta, \epsilon)$.

The following estimate for $z(\zeta, \epsilon)$ from the above lemma holds. We have

$$
|z(\zeta, \epsilon)-1 / \zeta| \leqq 2|\epsilon| \cdot M_{0} / R_{1}
$$

and therefore

$$
\begin{aligned}
& \left|z(\zeta, \epsilon)-\frac{1}{\zeta}+\frac{\epsilon E(1 / \zeta, \zeta)}{\zeta}\right| \\
& =|\{\epsilon[E(z(\zeta, \epsilon), \zeta)-E(1 / \zeta, \zeta)]-G(z(\zeta, \epsilon), \zeta, \epsilon)\}| /|\zeta| \\
& \leqq \frac{|\epsilon|}{R_{1}} \int_{1 / \zeta}^{z(\zeta, \epsilon)}\left|\frac{\partial E(z, \zeta)}{\partial z}\right||d z|+\frac{|G(z(\zeta, \epsilon), \zeta, \epsilon)|}{R_{1}} \\
& \leqq \frac{2|\epsilon|^{2}}{R_{1}^{2}} M_{1} M_{0}+\frac{|G(z(\zeta, \epsilon), \zeta, \epsilon)|}{R_{1}} .
\end{aligned}
$$

In other words, we get
Lemma 3.3. For $\zeta \in A\left(R_{1}, R_{2}\right)$ and $\epsilon \in \Delta\left(\epsilon_{2}\right)$ we have

$$
z(\zeta, \boldsymbol{\epsilon})=\frac{1}{\zeta}+\epsilon \cdot c_{1}(\zeta)+o(\epsilon)
$$

where $c_{1}(\zeta)=-E(1 / \zeta, \zeta) / \zeta$ and $o(\epsilon) / \epsilon$ converges uniformly to zero in $A\left(R_{1}, R_{2}\right)$.

Lemma 3.4. Let $K \subset\left\{R_{1}<r_{0} \leqq|\zeta| \leqq 1\right\}$ be a subset on which

$$
\operatorname{Re}\left\{\zeta c_{1}(\zeta)\right\} \geqq \delta>0 .
$$

Then there is an $\epsilon_{7}(\delta) \in\left(0, \epsilon_{2}\right)$ such that $|z(\zeta, \epsilon)| \geqq 1$ for all $\zeta \in K$ and all $\epsilon \in\left(0, \epsilon_{7}\right)$.

Proof. For $\zeta \in K$ and $\epsilon \in\left(0, \epsilon_{2}\right)$ we have from Lemma 3.3 that

$$
|z(\zeta, \epsilon)|^{2} \geqq|\zeta|^{2}|z(\zeta, \epsilon)|^{2}=1+2 \epsilon \operatorname{Re}\left\{\zeta c_{1}(\zeta)\right\}+o(\epsilon)
$$

where $o(\epsilon) / \epsilon$ converges uniformly to zero in K as ϵ tends to zero.
A local version of Lemma 3.3 is attained by the Implicit Function Theorem. Indeed, since

$$
\left.\frac{\partial F_{\epsilon}(z, \zeta)}{\partial z}\right|_{z(\zeta, \epsilon)}=-\zeta-\epsilon \frac{\partial E(z, \zeta)}{\partial z}+\left.\frac{\partial G(z, \zeta, \epsilon)}{\partial z}\right|_{z(\zeta, \epsilon)} \neq 0
$$

for each $\zeta \in A\left(R_{1}, R_{2}\right)$ and $\epsilon \in \Delta\left(\epsilon_{3}\right)$ with

$$
\epsilon_{3}=\operatorname{Min}\left\{\epsilon_{2},\left(4 R_{2} M_{1}\right)^{-1}\right\}
$$

we have
Lemma 3.5. Let $\zeta_{0} \in A\left(R_{1}, R_{2}\right)$ and $\epsilon \in \Delta\left(\epsilon_{3}\right)$. Then there is a neighborhood $V_{\epsilon}\left(\zeta_{0}\right)$ of ζ_{0} in \mathbf{C}, where

$$
z(\cdot, \boldsymbol{\epsilon}) \in H\left(V_{\boldsymbol{\epsilon}}\left(\zeta_{0}\right)\right)
$$

Furthermore, if for $(z, \zeta) \in \bar{\Delta}^{2}(R)$

$$
G(z, \zeta, \cdot) \in H\left(\Delta\left(\epsilon_{3}\right)\right)
$$

then there is a neighborhood $V\left(\zeta_{0}\right)$ of $\left(\zeta=\zeta_{0}, \epsilon=0\right)$ in \mathbf{C}^{2} such that $z(\zeta, \epsilon) \in H\left(V\left(\zeta_{0}\right)\right)$ and admits there the representation

$$
z(\zeta, \epsilon)=\frac{1}{\zeta_{0}}+\epsilon c_{1}\left(\zeta_{0}\right)+O\left(\left|\zeta-\zeta_{0}\right|\right)+O\left(\epsilon^{2}\right)
$$

In the sequel, we confine our $E(z, \zeta)$ to the form (3.4) and prove
Lemma 3.6. Let $E(z, \zeta)$ be as in (3.4). Then we have
a) $\operatorname{Re}\left\{\zeta c_{1}(\zeta)\right\}= \begin{cases}\frac{2 \zeta}{(1+\zeta)^{2}} \operatorname{Re}\left\{\frac{\left(1-\zeta^{2}\right)}{\zeta} t(\zeta)\right\} & \text { for }|\zeta|=1, \zeta \neq-1, \\ 4 \operatorname{Re} h^{\prime}(-1)=4 t^{\prime}(-1) & \text { if } \zeta=-1 .\end{cases}$

If furthermore $G(z, \zeta, \epsilon) \equiv 0$, then
b) $z(1, \epsilon) \equiv 1$ for $\epsilon \in \Delta\left(\epsilon_{2}\right)$, and
c) for $\zeta_{0}=1$ and $(\zeta=1+\eta, \epsilon) \in V(1)($ see Lemma 3.5) we have
(3.6) $(1+\eta) z(1+\eta, \epsilon)=1-\eta^{2} \epsilon h^{\prime}(1)-\epsilon \eta^{3} B_{1}(\eta, \epsilon)-\epsilon^{2} \eta^{2} B_{2}(\eta, \epsilon)$
where B_{1} and B_{2} are analytic in $V(1)$.
Proof. Let $\zeta \in A\left(R_{1}, R_{2}\right)$. Then

$$
\begin{equation*}
\zeta c_{1}(\zeta)=-E(1 / \zeta, \zeta)=\frac{(1-\zeta)}{(1+\zeta)}[h(\zeta)-h(1 / \zeta)] \tag{3.7}
\end{equation*}
$$

and

$$
\lim _{\zeta \rightarrow-1} \zeta c_{1}(\zeta)=4 h^{\prime}(-1)
$$

For $|\zeta|=1$ and $\zeta \neq-1$ we have

$$
\begin{aligned}
\operatorname{Re}\left\{\zeta c_{1}(\zeta)\right\} & =\operatorname{Re}\left\{\frac{(1-\zeta)}{(1+\zeta)}[h(\zeta)-h(\bar{\zeta})]\right\} \\
& =\operatorname{Re}\left\{\frac{(1-\zeta)}{(1+\zeta)}[h(\zeta)+\overline{h(\bar{\zeta})]}\}\right. \\
& =\frac{2 \zeta}{(1+\zeta)^{2}} \operatorname{Re}\left\{\frac{\left(1-\zeta^{2}\right)}{\zeta} t(\zeta)\right\}
\end{aligned}
$$

b) For $\epsilon \in \Delta\left(\epsilon_{2}\right)$ we have by Lemma 3.2 a unique solution $z(1, \epsilon)$ in $\Delta\left(R_{2}\right)$ of

$$
F_{\epsilon}(1, z)=(1-z)-\epsilon h(1)(1-z)=0
$$

and therefore $z(1, \boldsymbol{\epsilon}) \equiv 1$.
c) Since $c_{1}(1)=0$, we need to know some higher terms of the development of $z(\zeta, \epsilon) \equiv z(1+\eta, \epsilon)$ in $V(1)$ (Lemma 3.5). Consider

$$
(1+\eta) z(1+\eta, \epsilon)=\sum_{k, j=0}^{\infty} a_{k j} \eta^{k} \epsilon^{j}
$$

Since

$$
\zeta z(\zeta, \boldsymbol{\epsilon})=1-\epsilon E(z(\zeta, \epsilon), \zeta)
$$

we have $a_{00}=1$ and $a_{k 0}=0$ for all $k \in \mathbf{N}$. Furthermore we conclude from b) above that $a_{0 j}=0$ for all $j \in \mathbf{N}$. Consequently

$$
\begin{equation*}
(1+\eta) z(1+\eta, \epsilon)=1+\sum_{k, j=1}^{\infty} a_{k j} \eta^{k} \epsilon^{j} \equiv 1+\sum_{k=1}^{\infty} d_{k}(\epsilon) \eta^{k} \tag{3.8}
\end{equation*}
$$

Next, we compare the coefficients $a_{k j}$ and $d_{k}(\epsilon)$ from (3.8) in the equation

$$
F_{\epsilon}(z(1+\eta, \epsilon), 1+\eta)=0
$$

to conclude that $a_{11}=0, a_{12}=0, a_{21}=-h^{\prime}(1)$ and

$$
d_{1}(\epsilon)\left(d_{1}(\epsilon)-2\right)(1-\epsilon h(1)) \equiv 0 .
$$

Since $d_{1}(\epsilon)$ converges to zero as ϵ tends to zero, we have $d_{1}(\epsilon) \equiv 0$.
In the next lemma we consider the case $G(z, \zeta, \epsilon) \equiv 0$. Let $\zeta \in$ $A\left(R_{1}, R_{2}\right)$. Put $\zeta=r e^{i t}$ and

$$
\phi\left(r e^{i t}, \boldsymbol{\epsilon}\right)=\left|z\left(r e^{i t}, \boldsymbol{\epsilon}\right)\right|^{2} \quad \text { for } \epsilon \in \Delta\left(\epsilon_{3}\right)
$$

Lemma 3.7. Let $E(z, \zeta)$ be as in (3.4) and $G \equiv 0$. Then there is a neighborhood $W, \bar{W} \subset V(1)$, of $(\zeta=1, \epsilon=0)$ such that

$$
\frac{\partial \phi}{\partial r}\left(r e^{i t}, \epsilon\right)<0 \quad \text { in } W .
$$

Proof. Since $\epsilon \in \Delta\left(\epsilon_{3}\right)$ and $\phi \in C^{\infty}$ in a neighborhood of $(1,0)$, we have

$$
\begin{aligned}
& \frac{\partial F_{\epsilon}(z(\zeta, \epsilon), \zeta)}{\partial r} \\
& =\frac{-\partial z\left(r e^{i t}, \epsilon\right)}{\partial r} \cdot r e^{i t}-e^{i t} z\left(r e^{i t}, \epsilon\right)-\frac{\epsilon \partial E(z(\zeta, \epsilon), \zeta)}{\partial r} \partial r \equiv 0 .
\end{aligned}
$$

But by Lemma 3.6. b), $z(1, \epsilon) \equiv 1$ for $\epsilon \in \Delta\left(\epsilon_{3}\right)$ and therefore we have

$$
\left.\frac{\partial z\left(r e^{i t}, \epsilon\right)}{\partial r}\right|_{(1,0)}=-1
$$

which implies that

$$
\frac{\partial \phi(1,0)}{\partial r}=\left.2 \operatorname{Re}\left\{\bar{z}\left(r e^{i t}, \epsilon\right) \frac{\partial z\left(r e^{i t}, \epsilon\right)}{\partial r}\right\}\right|_{(1,0)}=-2
$$

The existence of W follows from the continuity of $\partial \phi / \partial r$.
Proof of Theorem 3.1. A) Let f_{ϵ} satisfy the hypothesis of Theorem 3.1. A. Then

$$
\frac{f_{\epsilon}(z)-f_{\epsilon}(\zeta)}{z-\zeta}=\frac{1-z \zeta-\epsilon E_{1}(z, \zeta)-G_{1}(z, \zeta, \epsilon)}{(1-z)^{2}(1-y)^{2}} \neq 0 \quad \text { in } U \times U
$$

for all $\epsilon \in\left(0, \epsilon_{0}\right)$, where E_{1} and G_{1} are of the form (3.4). Let \widetilde{R}, R_{2} and R_{1} be as stated before Lemma 3.2. With no loss of generality we may assume that $\epsilon_{0} \in\left(0, \epsilon_{3}\right), \epsilon_{3}$ being defined immediately before Lemma 3.5.

Fix $\zeta_{0} \in \partial U, \zeta_{0} \neq \pm 1$. We show that

$$
\left|z\left(\zeta_{0}, \boldsymbol{\epsilon}\right)\right| \geqq 1 \quad \text { for all } \epsilon \in\left(0, \epsilon_{0}\right)
$$

Indeed, let $V_{\epsilon}\left(\zeta_{0}\right)$ as in Lemma 3.5 and consider the subset

$$
V_{1}=V_{\epsilon}\left(\zeta_{0}\right) \cap U
$$

Then for $\zeta \in V_{1}$ we have $|z(\zeta, \epsilon)|>1$ which implies that $\left|z\left(\zeta_{0}, \epsilon\right)\right| \geqq 1$.
By Lemma 3.3 we have

$$
\left|z\left(\zeta_{0}, \boldsymbol{\epsilon}\right)\right|^{2}=\left|\zeta_{0} z\left(\zeta_{0}, \boldsymbol{\epsilon}\right)\right|^{2}=1+2 \epsilon \operatorname{Re}\left\{\zeta_{0} c_{1}\left(\zeta_{0}\right)\right\}+o(\boldsymbol{\epsilon}) \geqq 1
$$

which, by Lemma 3.6.a), implies that

$$
\begin{aligned}
& \operatorname{Re}\left\{\zeta_{0} c_{1}\left(\zeta_{0}\right)\right\} \\
& =\frac{2 \zeta_{0}}{\left(1+\zeta_{0}\right)^{2}} \operatorname{Re}\left\{\frac{\left(1-\zeta_{0}^{2}\right)}{\zeta_{0}} t\left(\zeta_{0}\right)\right\} \geqq 0 \quad\left(\zeta_{0} \neq \pm 1\right)
\end{aligned}
$$

and therefore

$$
\operatorname{Re}\left\{\frac{\left(1-\zeta_{0}^{2}\right)}{\zeta_{0}} t\left(\zeta_{0}\right)\right\} \geqq 0
$$

on ∂U. Since

$$
\frac{\left(1-\zeta^{2}\right)}{\zeta} t(\zeta) \in H(\bar{U})
$$

we conclude that

$$
\operatorname{Re}\left\{\frac{\left(1-\zeta^{2}\right)}{\zeta}\right\} t(\zeta) \geqq 0
$$

in U. As we have observed in the beginning of this section that $\operatorname{Re} h^{\prime}(0)=$ $t^{\prime}(0)>0$, we conclude that

$$
\operatorname{Re}\left\{\frac{\left(1-\zeta^{2}\right)}{\zeta} t(\zeta)\right\}>0
$$

in U and

$$
t(z) / t^{\prime}(0) \in T_{\mathbf{R}}
$$

B) We shall make use of the following well-known result (see [5]): If $F(z, \zeta) \in H\left(\bar{\Delta}^{2}(r)\right)$, then $F(z, \zeta) \neq 0$ in $\bar{\Delta}^{2}(r)$ if and only if
I) $F(z, z) \neq 0$ in $\bar{\Delta}(r)$, and
II) $F(z, \zeta) \neq 0$ for all $(z, \zeta) \in\{(|z|=r) \times(|\zeta|=r)\}$.

Let $f_{\epsilon}(z)$ be as in (3.2). Then

$$
\frac{f_{\epsilon}(z)-f_{\epsilon}(\zeta)}{z-\zeta}=\frac{1-z \zeta-\epsilon E_{1}(z, \zeta)}{(1-z)^{2}(1-\zeta)^{2}} \equiv \frac{\hat{F}_{\epsilon}(z, \zeta)}{(1-z)^{2}(1-\zeta)^{2}}
$$

where

$$
E_{1}(z, \zeta) \in H\left(\bar{\Delta}^{2}\left(R_{2}\right)\right) \quad \text { for some } R_{2}>1
$$

and has the form (3.4). Put

$$
R_{1}=\left(2 R_{2}-1\right)^{-1 / 2}
$$

We show that there is an $\epsilon_{0}>0$ such that

$$
\hat{F}_{\epsilon}(z, \zeta) \neq 0 \text { in } U^{2} \text { for all } \epsilon \in\left(0, \epsilon_{0}\right)
$$

This is done in three steps.
Step 1. We show that there is an $\epsilon_{4}>0$ such that

$$
\hat{F}_{\epsilon}(z, z)=(1-z)^{4} f_{\epsilon}^{\prime}(z) \neq 0
$$

for all z in U and $\epsilon \in\left(0, \epsilon_{4}\right)$. Indeed we have

$$
\begin{aligned}
\hat{F}_{\epsilon}(z, z) & =1-z^{2}-\epsilon(1-z)\left[(1-z) z h^{\prime}(z)+(1+z) h(z)\right] \\
& \equiv(1-z) \cdot[1+z-\epsilon T(z)], \quad T \in H(\bar{U})
\end{aligned}
$$

Then the only possible zeros in U of $\hat{F}_{\epsilon}(z, z)$ satisfy

$$
1+z_{\boldsymbol{\epsilon}}-\epsilon T\left(z_{\epsilon}\right)=0
$$

and are of the form

$$
\begin{aligned}
z_{\epsilon} & =-1+\epsilon T\left(z_{\epsilon}\right) \\
& =-1+\epsilon\left[\left(2-\epsilon T\left(z_{\epsilon}\right)\right)\left(-1+\epsilon T\left(z_{\epsilon}\right)\right) \cdot h^{\prime}\left(-1+\epsilon T\left(z_{\epsilon}\right)\right)\right. \\
& \left.+\epsilon T\left(z_{\epsilon}\right) \cdot h\left(z_{\epsilon}\right)\right] \\
& =-1-2 \epsilon h^{\prime}(-1)+O\left(\epsilon^{2}\right)
\end{aligned}
$$

where $O\left(\epsilon^{2}\right) / \epsilon^{2}$ is uniformly bounded in \bar{U}. Since

$$
\operatorname{Re} h^{\prime}(-1)=u^{\prime}(-r)>0
$$

there is an $\epsilon_{4}>0$ such that $\operatorname{Re} z_{\epsilon}<-1$ for $\epsilon \in\left(0, \epsilon_{4}\right)$ and therefore

$$
\hat{F}_{\epsilon}(z, z) \neq 0 \quad \text { in } U .
$$

Step 2. Next, we show that there is a $\rho_{0}>0$ and $\epsilon_{5}>0$ such that

$$
\hat{F}_{\epsilon}(z, \zeta) \neq 0 \text { in } U \times\left[\left\{|\zeta-1| \leqq \rho_{0}\right\} \cap \bar{U}\right] \text { for all } \epsilon \in\left(0, \epsilon_{5}\right)
$$

For $\zeta \in A\left(R_{1}, R_{2}\right)$, let $z(\zeta, \epsilon)$ solve $\hat{F}_{\epsilon}(z, \zeta)=0$ as in Lemma 3.2. Since $\operatorname{Re} h^{\prime}(1)=u^{\prime}(r)>0$,
let

$$
\gamma=\left|\arg h^{\prime}(1)\right|<\frac{\pi}{2}
$$

and choose $d>0$ and $\epsilon_{6}>0, \epsilon_{6}<\epsilon_{2}$ such that
a) $\quad W_{1}=(\bar{U} \cap\{\operatorname{Re} \zeta \geqq 1-d\}) \times\left(0, \epsilon_{6}\right) \subset W$
(see Lemma 3.7), and
b) $d<1-\cos \frac{\pi-2 \gamma}{4}$.

Next, let $\left(\zeta=r e^{i t}, \boldsymbol{\epsilon}\right) \in W_{1}$ and put $1+\eta_{0}=e^{i t}$. Using Lemma 3.6. c) and Lemma 3.7, we get

$$
\begin{aligned}
\phi\left(r e^{i t}, \epsilon\right)>\phi\left(e^{i t}, \epsilon\right) & =\left|z\left(1+\eta_{0}, \epsilon\right)\right|^{2} \\
& =\left|\left(1+\eta_{0}\right) z\left(1+\eta_{0}, \epsilon\right)\right|^{2} \\
& =\left|1-\epsilon \eta_{0}\left[h^{\prime}(1)+\eta_{0} B_{1}\left(\epsilon, \eta_{0}\right)+\epsilon B_{2}\left(\epsilon, \eta_{0}\right)\right]\right|^{2} \\
& \geqq 1-2 \epsilon \operatorname{Re}\left\{\eta _ { 0 } ^ { 2 } \left[h^{\prime}(1)+\eta_{0} B_{1}\left(\epsilon, \eta_{0}\right)\right.\right. \\
& \left.\left.+\epsilon B_{2}\left(\epsilon, \eta_{0}\right)\right]\right\} .
\end{aligned}
$$

Since $B_{1}, B_{2} \in H(\bar{W})$ we may choose $\rho_{0} \in(0, d)$ and $\epsilon_{5} \in\left(0, \epsilon_{6}\right)$ such that

$$
\begin{align*}
\left|\arg \left[h^{\prime}(1)+\eta B_{1}(\epsilon, \eta)+\epsilon B_{2}(\epsilon, \eta)\right]-\arg h^{\prime}(1)\right| & \leqq \frac{\pi-2 \gamma}{4} ; \tag{3.9}\\
\epsilon & \in\left(0, \epsilon_{5}\right), \eta \in \Delta\left(\rho_{0}\right) .
\end{align*}
$$

On the other hand $\zeta=1+\eta_{0} \in \partial U$ and $\left|\eta_{0}\right| \leqq \rho_{0}<d$ implies $\operatorname{Re} \zeta>1-d$ and therefore, by b) above, η_{0}^{2} lies in the sector

$$
|\pi-\arg w|<\frac{\pi-2 \gamma}{4}
$$

which in conjunction with (3.9) yields

$$
\operatorname{Re}\left\{\eta_{0}^{2}\left[h^{\prime}(1)+\eta_{0} B_{1}\left(\epsilon, \eta_{0}\right)+\epsilon B_{2}\left(\epsilon, \eta_{0}\right)\right]\right\} \leqq 0 .
$$

This in turn implies that

$$
|z(1+\eta, \epsilon)| \geqq 1 \text { for } \epsilon \in\left(0, \epsilon_{5}\right) \text { and } \eta \in \Delta\left(\rho_{0}\right) .
$$

In other words,

$$
\begin{aligned}
& \hat{F}_{\epsilon}(z, \zeta) \neq 0 \text { for all } \zeta \in\left\{|\zeta-1| \leqq \rho_{0}\right\} \cap \bar{U}, \\
& z \in U \text { and } \epsilon \in\left(0, \epsilon_{5}\right) .
\end{aligned}
$$

Step 3. We now show the existence of $\epsilon_{7}>0$ and an $r_{0} \in(0,1)$ such that
$F_{\epsilon}(z, \zeta)$ does not vanish on $\{|z|=r\} \times\{|\zeta|=r\}$ for all $r \in\left(r_{0}, 1\right)$ and all $\epsilon \in\left(0, \epsilon_{7}\right)$. By assumption and Lemma 3.6. a), we have

$$
\frac{2 \zeta}{(1+\zeta)^{2}} \operatorname{Re}\left\{\frac{\left(1-\zeta^{2}\right)}{\zeta}\right\} t(\zeta)>0
$$

except for $\zeta=1$. Therefore for $|\zeta|=1,|\zeta-1| \geqq \rho_{0} ; \operatorname{Re}\left\{\zeta c_{1}(\zeta)\right\} \geqq \beta$ for some $\beta>0$. By continuity there is an $r_{0} \in\left(1-\rho_{0}, 1\right)$ such that

$$
\operatorname{Re}\left\{\zeta c_{1}(\zeta)\right\} \geqq \beta / 2>0 \text { on } \bar{A}\left(r_{0}, 1\right) \cap\left\{|\zeta-1| \geqq \rho_{0}\right\}
$$

and by Lemma 3.4, there is an $\epsilon_{7}>0, \epsilon_{7}<\epsilon_{5}$, such that $|z(\zeta, \epsilon)| \geqq 1$ for all

$$
\epsilon \in\left(0, \epsilon_{7}\right) \quad \text { and } \quad \zeta \in A\left(r_{0}, 1\right) \cap\left\{|\zeta-1| \geqq \rho_{0}\right\}
$$

In particular we have shown that for all ϵ,

$$
0<\epsilon<\epsilon_{0}=\operatorname{Min}\left(\epsilon_{4}, \epsilon_{5}, \epsilon_{7}\right)
$$

and for all $r \in\left(r_{0}, 1\right)$
ג) $\quad \hat{F}_{\epsilon}(z, z) \neq 0 \quad$ in $\bar{\Delta}(r)$, and
ß) $\quad \hat{F}_{\epsilon}(z, \zeta) \neq 0 \quad$ for all $(z, \zeta) \in\{|z|=r\} \times\{|\zeta|=r\}$,
and therefore \hat{F}_{ϵ} does not vanish in U^{2} for all $\epsilon \in\left(0, \epsilon_{0}\right)$.
For $S_{\mathbf{R}} \cap L$ we have even more:
Theorem 3.8. Let $f \in T_{\mathbf{R}} \cap L$ and let h be defined by

$$
f(z)=z\left(1-\left[2-a_{2}(f)\right] h(z)\right) /(1-z)^{2} .
$$

Then either $h \equiv 0$ or $h \in T_{\mathbf{R}}$.
Proof. Suppose $f(z) \neq z /(1-z)^{2}$. Then $\left(2-a_{2}(f)\right)>0$. Now

$$
\begin{aligned}
& h(z)=z+\sum_{k=2}^{\infty} h_{k} z^{k} \in H(\bar{U}), \\
& h_{k} \in \mathbf{R} \text { for all } k \geqq 2 \text {, and for } z \in \partial U, z \neq \mp 1 \text { we have } \\
& \operatorname{Re}\left\{\frac{\left(1-z^{2}\right)}{z} h(z)\right\}
\end{aligned}=\frac{-1}{2-a_{2}(f)} \operatorname{Re}\left\{\left[\frac{f(z)}{k_{1}(z)}-1\right]\left[\frac{1-z^{2}}{z}\right]\right\}, ~\left(\frac{-2 \operatorname{Im}\{z\} \cdot \operatorname{Im}\left\{f(z) / k_{1}(z)\right\}}{2-a_{2}(f)} .\right.
$$

Since $\left(1-z^{2}\right) h(z) / z \in H(\bar{U})$, and $h^{\prime}(0)=1$, we conclude that

$$
\operatorname{Re}\left\{\frac{\left(1-z^{2}\right)}{z} h(z)\right\}>0
$$

in U and so $h \in T_{\mathbf{R}}$.
Corollary 3.9. Theorem 3.8 holds in particular for $f \in S_{\mathbf{R}} \cap L$.
4. Applications. We give now two examples to show how these variations can be used. Our first application is

Theorem 4.1. Let

$$
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j} \in S_{\mathbf{R}}, \quad f \neq k_{1} \text { and } k_{-1}
$$

Then for all m and $n \geqq 2$ we have

$$
\begin{align*}
c(n, m) & =\inf _{\theta \in[0,2 \pi]} s_{n}(\theta) / s_{m}(\theta) \tag{4.1}\\
& \leqq \frac{n-a_{n}(f)}{m-a_{m}(f)} \leqq \sup _{\theta \in[0,2 \pi]} s_{n}(\theta) / s_{m}(\theta)=d(n, m)
\end{align*}
$$

where

$$
s_{n}(\theta)=\sin (n \theta)-n \sin \theta .
$$

The given bounds are best possible in $S_{\mathbf{R}}$.
For the proof we shall use the following lemma. Let $\Lambda_{1}, \Lambda_{2} \in H^{\prime}(U)$ satisfy the following property:
(4.2) $\Lambda_{1}, \Lambda_{2} \geqq 0$ on $T_{\mathbf{R}}$ and both vanish only for one function $\hat{h} \in T_{\mathbf{R}}$. Let also

$$
E\left(T_{\mathbf{R}}\right)=\left\{\frac{z}{(1-\eta z)(1-\bar{\eta} z)} ;|\eta|=1\right\}
$$

be the set of extreme points of $T_{\mathbf{R}}$. Note, that $\hat{h} \in E\left(T_{\mathbf{R}}\right)$ and put

$$
M=\sup \left\{\Lambda_{1}(h) / \Lambda_{2}(h), h \neq \hat{h}, h \in T_{\mathbf{R}}\right\}
$$

We have
Lemma 4.2. Let Λ_{1} and Λ_{2} be in $H^{\prime}(U)$ satisfying the property (4.2). Then

$$
M=\sup \left\{\Lambda_{1}(h) / \Lambda_{2}(h) ; h \neq \hat{h}, h \in E\left(T_{\mathbf{R}}\right)\right\}
$$

Proof. Without loss of generality we may assume that $\Lambda_{1} / \Lambda_{2}$ is not constant on $T_{\mathbf{R}} \backslash\{\hat{h}\}$.

Step 1. We first show that the set $\left\{\Lambda_{1}(h) / \Lambda_{2}(h) ; h \in T_{\mathbf{R}}, h \neq \hat{h}\right\}$ is connected. Indeed, fix $h \in T_{\mathbf{R}}, h \neq \hat{h}$ and let

$$
h_{r}(z)= \begin{cases}h(r z) / r & \text { for } 0<r \leqq 1 \\ z & \text { for } r=0\end{cases}
$$

Since $\hat{h} \in E\left(T_{\mathbf{R}}\right)$, we conclude that $h_{r} \neq \hat{h}$ for all $r \in[0,1]$. Therefore the function

$$
\phi(r)=\Lambda_{1}\left(h_{r}\right) / \Lambda_{2}\left(h_{r}\right)
$$

is continuous in $[0,1]$ and its values connect $\Lambda_{1}(h) / \Lambda_{2}(h)$ with $\Lambda_{1}(z) / \Lambda_{2}(z)$.
Step 2. If $M<\infty$ let $g_{j} \in T_{\mathbf{R}}$ such that

$$
\Lambda_{1}\left(g_{j}\right) / \Lambda_{2}\left(g_{j}\right)=M-1 /(j+1)
$$

and $g_{j} \neq \hat{h}$ for all $j \geqq j_{0}, j \in \mathbf{N}$. Then we have for $j \geqq j_{0}$

$$
\Lambda_{1}\left(g_{j}\right)-[M-1 / j] \Lambda_{2}\left(g_{j}\right)=\frac{1}{j(j+1)} \Lambda_{2}\left(g_{j}\right)>0
$$

Put

$$
L_{j}=\Lambda_{1}-[M-1 / j] \Lambda_{2} \in H^{\prime}(U) .
$$

Since $L_{j}\left(g_{j}\right)>0$, there is a $t_{j} \in E\left(T_{\mathbf{R}}\right)$ such that

$$
L_{j}\left(t_{j}\right) \geqq L_{j}\left(g_{j}\right)>0
$$

Observe that $t_{j} \neq \hat{h}$ since $L_{j}(\hat{h})=0$.
Step 3. If $M=\infty$, there are $g_{j} \in T_{\mathbf{R}}$ such that

$$
\Lambda_{1}\left(g_{j}\right) / \Lambda_{2}\left(g_{j}\right)=j+1 ; j \geqq j_{0}, j \in \mathbf{N}
$$

and $g_{j} \neq \hat{h}$ for all $j \geqq j_{0}$. Since

$$
L_{j}\left(g_{j}\right) \equiv \Lambda_{1}\left(g_{j}\right)-j \Lambda_{2}\left(g_{j}\right)=\Lambda_{2}\left(g_{j}\right)>0
$$

there is a $t_{j} \in E\left(T_{\mathbf{R}}\right), t_{j} \neq \hat{h}$, such that

$$
L_{j}\left(t_{j}\right) \geqq L_{j}\left(g_{j}\right)>0
$$

Step 4. In Step 2 and Step 3, for arbitrary $M \in(0, \infty]$, we have found $t_{j} \in E\left(T_{\mathbf{R}}\right), t_{j} \neq \hat{h}$, such that

$$
\lim _{j \rightarrow \infty} \Lambda_{1}\left(t_{j}\right) / \Lambda_{2}\left(t_{j}\right)=M
$$

Corollary 4.3. Let $\Lambda_{1}, \Lambda_{2} \in H^{\prime}(U)$ satisfy the property (4.2). Then

$$
\begin{aligned}
m & \equiv \inf \left\{\Lambda_{1}(h) / \Lambda_{2}(h), h \neq \hat{h}, h \in T_{\mathbf{R}}\right\} \\
& =\inf \left\{\Lambda_{1}(h) / \Lambda_{2}(h), h \neq \hat{h}, h \in E\left(T_{\mathbf{R}}\right)\right\}
\end{aligned}
$$

Proof of Theorem 4.1. Step 1. It is enough to proof the theorem for functions in $L \cap S_{\mathbf{R}}$. Indeed, we have seen (Theorem 2.2) that

$$
\overline{L \cap S_{\mathbf{R}}}=S_{\mathbf{R}}
$$

If $f \in S_{\mathbf{R}}, f \neq k$, and k_{-1}, then there are $f_{j} \in L \cap S_{\mathbf{R}}, f_{j} \neq k_{1}$ and k_{-1} converging normally to f. In particular, since $\left|a_{n}(f)\right|<n$ for all $n \geqq 2$, we have

$$
\lim _{j \rightarrow \infty} \frac{n-a_{n}\left(f_{j}\right)}{m-a_{m}\left(f_{j}\right)}=\frac{n-a_{n}(f)}{m-a_{m}(f)} ; \quad n, m \geqq 2
$$

Step 2. Let $f \in L \cap S_{\mathbf{R}}, f \neq k_{1}$ and k_{-1}. We show that for n, $m \geqq 2$,

$$
\begin{equation*}
\frac{n-a_{n}(f)}{m-a_{m}(f)}=\frac{a_{n}\left[z h(z) /(1-z)^{2}\right]}{a_{m}\left[z h(z) /(1-z)^{2}\right]}=\frac{\Lambda_{1}(h)}{\Lambda_{2}(h)}, \quad h \in T_{\mathbf{R}} \tag{4.3}
\end{equation*}
$$

where $\Lambda_{1}, \Lambda_{2} \in H^{\prime}(U)$ are nonnegative on $T_{\mathbf{R}}$. Furthermore $\Lambda_{2}(h)\left(\Lambda_{1}(h)\right.$ respectively) $=0$ on $T_{\mathbf{R}}$ if and only if $h=\hat{h}=k_{-1}$ and m (n respectively) is odd. Indeed, by Theorem 3.8 we have

$$
f(z)=k_{1}(z)-\left(2-a_{2}(f)\right) h(z) \cdot z /(1-z)^{2}, \quad h \in T_{\mathbf{R}} .
$$

In particular

$$
n-a_{n}(f)=\left(2-a_{2}(f)\right) a_{n}\left(h(z) \cdot z /\left(1-z^{2}\right)\right), \quad n \geqq 2
$$

and (4.3) follows. To see that Λ_{2} is nonnegative on $T_{\mathbf{R}}$, just note that
$\Lambda_{2}\left(\frac{z}{(1-\eta z)(1-\bar{\eta} z)}\right)= \begin{cases}\frac{\eta}{(1-\eta)^{2}} \frac{\operatorname{Im}\left\{\eta^{m}-m \eta\right\}}{\operatorname{Im} \eta} \\ =\frac{\eta}{(1-\eta)^{2}} \frac{s_{m}(\theta)}{\operatorname{Im} \eta}>0 ;|\eta|=1, \eta \neq \mp 1, \\ m\left(m^{2}-1\right) / 6 & ; \eta=1 \\ m / 2 & ; \eta=-1 \\ 0 & ; \eta=-1, m \text { even, } \\ 0 & m \text { odd. }\end{cases}$
It remains to show that $\Lambda_{2}(h)\left(\Lambda_{1}(h)\right.$ respectively $)=0$ if and only if $h=k_{-1}$ and m is odd. Indeed, for $h \in T_{\mathbf{R}}$ there is a probability measure μ on the Borel σ-algebra of ∂U such that

$$
h(z)=\int_{|\eta|=1} \frac{z}{(1-\eta z)(1-\bar{\eta} z)} d \mu
$$

Since $\Lambda_{2} \in H^{\prime}(U)$, we have

$$
\Lambda_{2}(h)=\int_{|\eta|=1} \Lambda_{2}\left(\frac{z}{(1-\eta z)(1-\bar{\eta} z)}\right) d \mu \geqq 0
$$

where equality holds if and only if μ is concentrated at the point $\eta=-1$, i.e., $h=k_{-1}$.

Step 3. We prove now the upper bound inequality and distinguish among the following cases
a) n even, m odd: In this case we have

$$
M=\infty \quad \text { and } \quad \sup _{\theta \in[0,2 \pi]} s_{n}(\theta) / s_{m}(\theta)=\infty
$$

b) m even: In this case $\Lambda_{2}(h)>0$ for all $h \in T_{\mathbf{R}}$, and therefore $\Lambda_{1}(h) / \Lambda_{2}(h)$ is a continuous functional on $T_{\mathbf{R}}$. Hence $M<\infty$. There exist $g_{j} \in T_{\mathbf{R}}$ such that

$$
\Lambda_{1}\left(g_{j}\right) / \Lambda_{2}\left(g_{j}\right) \geqq M-1 / j, \quad j \in \mathbf{N},
$$

and therefore

$$
L_{j}\left(g_{j}\right) \equiv \Lambda_{1}\left(g_{j}\right)-\left(M-\frac{1}{j}\right) \Lambda_{2}\left(g_{j}\right)>0
$$

Then, there is a $t_{j} \in E\left(T_{\mathbf{R}}\right)$ such that

$$
L_{j}\left(t_{j}\right) \geqq L_{j}\left(g_{j}\right)>0
$$

and so for some $\eta_{j}=e^{i \theta_{j}}, \eta_{j} \neq-1$,

$$
M-1 / j<\frac{\Lambda_{1}\left(t_{j}\right)}{\Lambda_{2}\left(t_{j}\right)}=\frac{\operatorname{Im}\left(\eta_{j}^{n}-n \eta_{j}\right)}{\operatorname{Im}\left(\eta_{j}^{m}-m \eta_{j}\right)}=\frac{s_{n}\left(\theta_{j}\right)}{s_{m}\left(\theta_{j}\right)} \leqq d(m, n) .
$$

Let us remark that this case is contained in a very general theorem of Ruscheweyh [4].
c) n odd, m odd: In this case Λ_{1} and Λ_{2} satisfy the condition (4.2) where $\hat{h}=k_{-1}$. By Lemma 4.2

$$
M=\sup _{\theta \in[0,2 \pi]} \operatorname{Im}\left(\eta^{n}-n \eta\right) / \operatorname{Im}\left(\eta^{m}-m \eta\right)=d(n, m) .
$$

d) Finally we show that the upper bound is best possible for functions in $S_{\mathbf{R}}$. To do so, let $t \in E\left(T_{\mathbf{R}}\right), t \neq k_{-1}$ and $r \in(0,1)$. Then by Theorem 3.1. B, there is an $\epsilon_{0}(r)$ such that

$$
f_{\epsilon, r}(z)=k(z)(1-\epsilon t(r z) / r) \in S_{\mathbf{R}} \cap L
$$

for all $\epsilon \in\left(0, \epsilon_{0}(r)\right)$. Pick any of such ϵ, then

$$
\frac{n-a_{n}\left(f_{\epsilon, r}\right)}{m-a_{m}\left(f_{\epsilon, r}\right)}=\frac{\Lambda_{1}(t(r z) / r)}{\Lambda_{2}(t(r z) / r}
$$

which converges to $\Lambda_{1}(t) / \Lambda_{2}(t)$ as r tends to one. Choosing

$$
t_{j} \in E\left(T_{\mathbf{R}}\right), t_{j} \neq k_{-1} \quad \text { and } \quad \lim _{j \rightarrow \infty} \Lambda_{1}\left(t_{j}\right) / \Lambda_{2}\left(t_{j}\right)=M
$$

we conclude that $d(n, m)$ is best possible.
Step 4. The lower bound inequality follows by the same arguments using Corollary 4.3 and it is also best possible in $S_{\mathbf{R}}$ by Theorem 3.1. B.

In our next application we show that the Bombieri conjecture (see introduction) is valid for variations of k_{1} discussed in Theorem 3.1. A.

Theorem 4.4. Let f_{ϵ} satisfy the same hypothesis of Theorem 3.1. A. Then, for all $m, n \geqq 2$, we have

$$
c(n, m) \leqq \lim _{\epsilon \rightarrow 0} \frac{n-\operatorname{Re} a_{n}\left(f_{\epsilon}\right)}{m-\operatorname{Re} a_{m}\left(f_{\epsilon}\right)} \leqq d(n, m)
$$

where $c(n, m)$ and $d(n, m)$ are defined in Theorem 4.1. The bounds are best possible.

Proof. Since f_{ϵ} is of the form (3.1), we have

$$
\operatorname{Re} h^{\prime}(0)>0 \quad \text { and }(h(z)+\overline{h(\bar{z})}) / 2 \operatorname{Re} h^{\prime}(0)=t(z) / t^{\prime}(0) \in T_{\mathbf{R}}
$$

Hence

$$
\frac{n-\operatorname{Re} a_{n}\left(f_{\epsilon}\right)}{m-\operatorname{Re} a_{m}\left(f_{\epsilon}\right)}=\frac{\operatorname{Re} a_{n}\left[\left(z t(z)+t^{\prime}(0) g(z, \epsilon) / \epsilon\right) /(1-z)^{2}\right]}{\operatorname{Re} a_{m}\left[\left(z t(z)+t^{\prime}(0) g(z, \epsilon) / \epsilon\right) /(1-z)^{2}\right]}
$$

converges to $\Lambda_{1}(t) / \Lambda_{2}(t) \in[c(n, m), d(n, m)]$. We show that these bounds are best possible. For every $t(z)=u(r z) / r, 0<r<1$ and $u \in T_{\mathbf{R}}$, there is an $\epsilon_{0}(t)$ (Theorem 3.1. B) such that for all $\epsilon \in\left(0, \epsilon_{0}(t)\right) f_{\epsilon}$ defined by (3.2) is in S. Then

$$
\frac{n-\operatorname{Re} a_{n}\left(f_{\epsilon}\right)}{m-\operatorname{Re} a_{m}\left(f_{\epsilon}\right)}=\frac{a_{n}\left(k_{1}(z) \cdot u(r z) / r\right)}{a_{m}\left(k_{1}(z) \cdot u(r z) / r\right)}
$$

is independent of ϵ. Therefore, every value of

$$
\left\{\Lambda_{1}(u(r z) / r) / \Lambda_{2}(u(r z) / r), u \in T_{\mathbf{R}}\right\}
$$

is attained, so that we can get as close as we please to $c(n, m)$ or $d(n, m)$.

References

1. E. Bombieri, Sull'integrazione approssimata dell'equazione differenziale di Loewner e le sue applicazioni alla theoria delle funzioni univalenti, Universita di Milano (1963).
2. -On the local maximum property of the Koebe function, Invent. Math. 4, 26-67.
3. P. L. Duren and M. Schiffer, The theory of the second variation in extremum problems for univalent functions, J. Anal. Math. 10 (1962/63), 193-252.
4. S. Ruscheweyh, Duality of Hadamard products with applications to extremal problems for functions regular in the unit disk, Trans. Amer. Math. Soc. 210 (1975), 63-74.
5. T. Sheil-Small, The Hadamard product and linear transformations of classes of analytic functions, J. Anal. Math. 34 (1978), 204-239.

Technion,

Haifa, Israel;
Université Laval,
Québec, Québec

