ALMOST SURE CONVERGENCE OF QUADRATIC FORMS IN RANDOM VARIABLES

V. K. ROHATGI*

(Received 20 April 1970)

Communicated by P. D. Finch.

Let X_1, X_2, \cdots be a sequence of random variables and let $\{a_{jk}\}, j, k = 1, 2, \cdots$, be a matrix of real numbers. Write

$$S_n = \sum_{j,k=1}^n a_{jk} X_j X_k.$$

We establish the following result.

THEOREM. Let $\{X_n, n \ge 1\}$ be a sequence of random variables with

(1)
$$\mathscr{E}\{X_n \mid X_1, \cdots, X_{n-1}\} = 0$$

and

(2)
$$\mathscr{E}\{X_n^2 | X_1, \cdots, X_{n-1}\} = 1$$

for $n = 2, 3, \cdots$. Let $\{a_{jk}\}, j, k = 1, 2, \cdots$ be a matrix of real numbers and let $S_n = \sum_{j,k=1}^n a_{jk} X_j X_k$. If $\sum_{j,k=1}^\infty a_{jk}^2 < \infty$ and $\sum_{k=1}^\infty |a_{kk}| < \infty$ then S_n converges almost surely.

Remarks.

1. We emphasize that we do not assume the independence of random variables X_i . Nor do we assume that the random variables are identically distributed.

2. If, however, the random variables are independent with $\mathscr{E}X_n = 0$ and $\mathscr{E}X_n = 1$ for $n = 1, 2, \cdots$ then our theorem yields Theorem 1 and Corollaries 1 and 2 of Varberg [1].

PROOF. Following Varberg [1] we write $S_n = K_n + L_n + M_n$, where

$$K_n = \sum_{j=1}^n X_j \sum_{k=1}^{j-1} a_{jk} X_k, \quad L_n = \sum_{k=1}^n \sum_{j=1}^{k-1} a_{jk} X_j, \text{ and } M_n = \sum_{k=1}^n a_{kk} X_k^2.$$

* Research supported by the National Science Foundation under Grant No. NSF-9396.

257

Now note that for integers i, j, l, m with $l < i, m < i, l < j, m < j, i \neq j$ we have, because of (1), $\mathscr{E}{X_iX_jX_lX_m} = 0$. It follows therefore that

$$\mathscr{E}\{K_{n}^{2}\} = \mathscr{E}\left\{\sum_{i=1}^{n} X_{i}^{2}\left(\sum_{j=1}^{i-1} a_{ij}X_{j}\right)^{2}\right\} + \mathscr{E}\left\{\sum_{i\neq j}\sum_{l=1}^{i-1}\sum_{m=1}^{j-1} a_{ll}a_{jm}X_{l}X_{l}X_{m}\right\}$$
$$= \sum_{j=1}^{n} \mathscr{E}\left\{\left(\sum_{k=1}^{j-1} a_{jk}X_{k}\right)^{2}\right\}$$
$$= \sum_{j=1}^{n} \mathscr{E}\left\{\sum_{k=1}^{j-1} a_{jk}^{2}X_{k}^{2} + \sum_{k\neq l} a_{jk}a_{jl}X_{k}X_{l}\right\}$$
$$= \sum_{j=1}^{n}\sum_{k=1}^{j-1} a_{jk}^{2} < \infty.$$

Since K_n is a martingale with respect to the σ -field generated by $X_1, X_2, \dots X_n$ it follows by the martingale convergence theorem that K_n (and similarly L_n) converges almost surely. Finally we write

$$M_n = \sum_{1}^{n} a_{kk}(X_k^2 - 1) + \sum_{1}^{n} a_{kk} = P_n + \sum_{1}^{n} a_{kk}$$

and note that P_n is a martingale satisfying

$$\mathscr{E}\left|P_{n}\right| \leq \sum_{k=1}^{n} \left|a_{kk}\right| \mathscr{E}\left\{\left|X_{k}^{2}-1\right|\right\} \leq 2 \sum_{1}^{n} \left|a_{kk}\right| < \infty.$$

It follows therefore that P_n and, hence M_n , converges almost surely.

COROLLARY 1. If $\sum_{j,k=1}^{\infty} |a_{jk}| < \infty$, then S_n converges almost surely.

COROLLARY 2. If $a_{jk} = \sum_{i=1}^{\infty} b_{ji} c_{ik}$ where $\sum b_{ji}^2 < \infty$ and $\sum c_{ik}^2 < \infty$, then S_n converges almost surely.

Reference

 D. E. Varberg, 'Almost sure convergence of quadratic forms in independent random variables', Ann. Math. Statist. 39 (1968), 1502–1506.

Bowling Green State University Bowling Green, Ohio, U. S. A.