ALMOST SURE CONVERGENCE OF QUADRATIC FORMS IN RANDOM VARIABLES

V. K. ROHATGI*

(Received 20 April 1970)
Communicated by P. D. Finch.

Let X_{1}, X_{2}, \cdots be a sequence of random variables and let $\left\{a_{j k}\right\}, j, k=1,2, \cdots$, be a matrix of real numbers. Write

$$
S_{n}=\sum_{j, k=1}^{n} a_{j k} X_{j} X_{k}
$$

We establish the following result.
Theorem. Let $\left\{X_{n}, n \geqq 1\right\}$ be a sequence of random variables with

$$
\begin{equation*}
\mathscr{E}\left\{X_{n} \mid X_{1}, \cdots, X_{n-1}\right\}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{E}\left\{X_{n}^{2} \mid X_{1}, \cdots, X_{n-1}\right\}=1 \tag{2}
\end{equation*}
$$

for $n=2,3, \cdots$. Let $\left\{a_{j k}\right\}, j, k=1,2, \cdots$ be a matrix of real numbers and let $S_{n}=\sum_{j, k=1}^{n} a_{j k} X_{j} X_{k}$. If $\sum_{j, k=1}^{\infty} a_{j k}^{2}<\infty$ and $\sum_{k=1}^{\infty}\left|a_{k k}\right|<\infty$ then S_{n} converges almost surely.

Remarks.

1. We emphasize that we do not assume the independence of random variables X_{i}. Nor do we assume that the random variables are identically distributed.
2. If, however, the random variables are independent with $\mathscr{E} X_{n}=0$ and $\mathscr{E} X_{n}=1$ for $n=1,2, \cdots$ then our theorem yields Theorem 1 and Corollaries 1 and 2 of Varberg [1].

Proof. Following Varberg [1] we write $S_{n}=K_{n}+L_{n}+M_{n}$, where

$$
K_{n}=\sum_{j=1}^{n} X_{j} \sum_{k=1}^{j-1} a_{j k} X_{k}, \quad L_{n}=\sum_{k=1}^{n} \sum_{j=1}^{k-1} a_{j k} X_{j}, \quad \text { and } \quad M_{n}=\sum_{k=1}^{n} a_{k k} X_{k}^{2}
$$

* Research supported by the National Science Foundation under Grant No. NSF-9396.

Now note that for integers i, j, l, m with $l<i, m<i, l<j, m<j, i \neq j$ we have, because of (1), $\mathscr{E}\left\{X_{i} X_{j} X_{l} X_{m}\right\}=0$. It follows therefore that

$$
\begin{aligned}
\mathscr{E}\left\{K_{n}^{2}\right\} & =\mathscr{E}\left\{\sum_{i=1}^{n} X_{i}^{2}\left(\sum_{j=1}^{i-1} a_{i j} X_{j}\right)^{2}\right\}+\mathscr{E}\left\{\sum_{i \neq j}^{i-1} \sum_{l=1}^{i-1} a_{m=1}^{j} a_{j m} X_{i} X_{j} X_{l} X_{m}\right\} \\
& =\sum_{j=1}^{n} \mathscr{E}\left\{\left(\sum_{k=1}^{j-1} a_{j k} X_{k}\right)^{2}\right\} \\
& =\sum_{j=1}^{n} \mathscr{E}\left\{\sum_{k=1}^{j-1} a_{j k}^{2} X_{k}^{2}+\sum_{k \neq l} a_{j k} a_{j l} X_{k} X_{l}\right\} \\
& =\sum_{j=1}^{n} \sum_{k=1}^{j-1} a_{j k}^{2}<\infty .
\end{aligned}
$$

Since K_{n} is a martingale with respect to the σ-field generated by $X_{1}, X_{2}, \cdots X_{n}$ it follows by the martingale convergence theorem that K_{n} (and similarly L_{n}) converges almost surely. Finally we write

$$
M_{n}=\sum_{1}^{n} a_{k k}\left(X_{k}^{2}-1\right)+\sum_{1}^{n} a_{k k}=P_{n}+\sum_{1}^{n} a_{k k}
$$

and note that P_{n} is a martingale satisfying

$$
\mathscr{E}\left|P_{n}\right| \leqq \sum_{k=1}^{n}\left|a_{k k}\right| \mathscr{E}\left\{\left|X_{k}^{2}-1\right|\right\} \leqq 2 \sum_{1}^{n}\left|a_{k k}\right|<\infty
$$

It follows therefore that P_{n} and, hence M_{n}, converges almost surely.
Corollary 1. If $\sum_{j, k=1}^{\infty}\left|a_{j k}\right|<\infty$, then S_{n} converges almost surely.
Corollary 2. If $a_{j k}=\sum_{i=1}^{\infty} b_{j i} c_{i k}$ where $\Sigma b_{j i}^{2}<\infty$ and $\Sigma c_{i k}^{2}<\infty$, then S_{n} converges almost surely.

Reference

[1] D. E. Varberg, 'Almost sure convergence of quadratic forms in independent random variables', Ann. Math. Statist. 39 (1968), 1502-1506.

Bowling Green State University Bowling Green, Otio, U. S. A.

