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Abstract. In this communication, we study the statistical properties of the light intensity
in direct and coronagraphic images, in the context of ground-based Extreme Adaptive Optics
observations. The same approach can also be used for space observations with different scales.
We show that a coronagraph only affects the perfect part of the wave and leaves the uncorrected
part of the wavefront almost unaffected. This statistical model can explain the ’speckle pinning’
effect (presence of speckles at the position of the diffraction rings), as an amplification of the
speckle noise. This statistical approach can be verified on real adaptive optics data.
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1. Introduction
Direct imaging of a faint companion around a bright star is a difficult task, where the

contrast ratio and the angular separation are the relevant observable parameters. The
problem consists of detecting a faint source on top of a bright background mainly caused
by the star diffracted light. In the case of ground-based observations with adaptive op-
tics, the residual uncorrected aberrations produce random intensity fluctuations of the
background, and lead to the presence of speckles in the field. In direct non-coronagraphic
images, these speckles mainly appear at the position of the diffraction rings of the star.
This phenomenon, also known as ’speckle pinning’, Bloemhof et al. (2001), can be ex-
plained using a statistical model showing that the speckle fluctuation is amplified at the
position of the diffraction rings.

2. Statistical properties of residual speckles in AO- corrected
coronagraphic images

In this section, we study the statistical properties of speckles after a coronagraph, for
ground based observations using Extreme Adaptive Optics (ExAO). This presentation
extends that of Aime & Soummer (2004a), and Aime & Soummer (2004b).
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Figure 1. Direct (non-coronagraphic) PSFs from Palomar with AO. The narrow band, short
exposures show that the speckles are preferentially located at the position of the PSF rings
(speckle pinning). The fluctuations of these speckles is the main source of noise in high contrast
imaging.

We consider an instrument with an ExAO system and a generic coronagraph to acco-
modate any type of focal plane mask designs. We denote by the subscripts 1,2,3,4 the
four successive coronagraphic planes: the first plane corresponds to the entrance aperture
(possibly apodized), the second plane is the focal plane where a coronagraphic mask is
applied, the third plane corresponds to a relay pupil plane where a diaphragm is applied
(the Lyot Stop), and finally the fourth plane corresponds to the final focal plane.

Following the notations of Aime & Soummer (2004a), at any instant, we can write the
wavefront complex amplitude at the entrance pupil as the coherent sum of two terms,
a deterministic term A corresponding to a perfect plane wave, and a random term a(r)
corresponding to the uncorrected part of the wavefront. This term a(r) can also include
either phase or amplitude errors and has zero mean:

Ψ1(r) = [A + a(r)] P (r), (2.1)

where the function P (r) describes the aperture transmission, and r = (x, y) is the coor-
dinate vector, used in both pupil and field.

In the first focal plane, a coronagraphic mask is applied at the center of the image
of the star image. Writing the mask transmission as 1 − M(r), allows to accomodate
any type of mask coronagraphs. For example, a classical hard-edged Lyot coronagraph,
is described using a top-hat function for M . The complex amplitude of the wave in the
focal plane is given by a scaled Fourier Transform (FT) of this pupil amplitude Goodman
(1996):

Ψ2(r) =
1

ıλf
F [Ψ1(r)] (1 − M(r)) , (2.2)

where the symbol ̂ denotes the FT, f the telescope focal length, λ the monochromatic
wavelength, and the notation F the scaled FT:

F [Ψ1(r)] = Ψ̂1

(
r

λf

)
. (2.3)

For clarity, we will omit in the following the scaling factor 1/ıλf that appears between
each of the planes, as a proper re-scaling leads to the same result, and we have:

Ψ2(r) = (AF [P (r)] + F [a(r)P (r)]) (1 − M(r)) , (2.4)

In the next pupil plane, the complex amplitude before the Lyot stop P ′(r) is:
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Ψ3(r) =AP (r) − 1
λ2f2

AP (r) ∗ F [M(r)]

+ a(r)P (r) − 1
λ2f2

a(r)P (r) ∗ F [M(r)] (2.5)

The first line is proportional to the Lyot stop complex amplitude for a perfect corona-
graph Soummer et al. (2003). The factor 1/λ2f2 is due to the two-dimension change of
variable in the convolution product. In the case of an APLC, the Lyot stop is identical
to the pupil. In either case, we have: P (r)P ′(r) = P ′(r).

In the final focal plane, with the notations S(r) = F [a(r)P ′(r)], we obtain:

Ψ4(r) = AΨcoro(r) + S(r) − 1
λ2f2

(S(r)M(r)) ∗ F [P ′(r)], (2.6)

where Ψcoro denotes the focal wave amplitude of the coronagraph in the perfect case.
The convolution term of Eq.2.6 can be neglected outside the mask area: the extension

of the term S(r)M(r) is limited to the mask size and the equivalent width of F [P ′(r)] is
one resolution element. Therefore, the spatial extension of their convolution product is
limited approximately to the mask size, which is illustrated in Fig. 2.

Figure 2. illustration corresponding to Eq.2.6. Left is the speckle term S(r) = F [a(r) P (r)]
(modulus). Center: the cross term S(r)M (r)∗F [P ′(r)]. This illustrates that the cross-terms can
be neglected outside the mask area. Right: Modulus of the subtraction of the two amplitudes:
this shows there is no modification outside the central region corresponding to the mask size.

We obtain a similar expression to the case without coronagraph with C(r) = A F [P (r)]
Aime & Soummer (2004a):

Ψ4(r) = C̃(r) + S(r). (2.7)

The wave amplitude after a coronagraph appears as a sum of a deterministic term C̃(r),
and a random term S(r), at each position in the focal plane, outside the mask area. The
term C̃(r) corresponds to the focal amplitude after the coronagraph. Static aberrations
(deterministic) can also be included in this term. The second component is a random
term, associated with the speckles, identical to that of Aime & Soummer (2004a): S(r) =
F [a(r)P (r)]. The coronagraph has a negligible effect of the speckle part, as illustrated
and Fig. 2.

In the case of coronagraphic images as well as in direct images Aime & Soummer
(2004a), the statistics of the focal plane complex amplitude follows a non-central gaus-
sian statistics. This problem is formally equivalent to the study of laser speckles over
a coherent background in the context of holography. The probability density function
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Figure 3. Probability Density Function of the light intensity at 3 different positions in the
focal plane, corresponding to different background field amplitude C(r) (or intensity levels Ic.
The hard lines correspond to the result of a numerical simulation using 3000 instantaneous PSF
(PAOLA Software, Jolissaint 2004). The dotted curves correspond to the theoretical model fitted
to the numerical simulations.. The width of the distribution clearly increases with an increase in
the level of the constant intensity background: this explains speckle pinning: speckle fluctuations
are amplified by the constant background corresponding to the perfect part of the wave.

(PDF) of Ψ2(x, y) was given by Goodman (1975):

P(ξ, η) =
1

π < |S(x, y)|2 >
exp

(
−(ξ − C(x, y))2 + η2

< |S(x, y)|2 >

)
, (2.8)

where ξ and η denote the real and imaginary part of Ψ2(x, y) at the position (x, y).
The corresponding PDF for the intensity, known as a modified Rician density, was

given by Goodman (1975) and also used by Cagigal and Canales (1998), Cagigal and
Canales (2000):

PI (I) =
1
Is

exp
(
−I + Ic

Is

)
I0

(
2
√

I
√

Ic

Is

)
, (2.9)

where I0 denotes the zero-order modified Bessel function of the first kind. This PDF
is also valid in the case of coronagraphic images, Ic being the coronagraphic response
to a perfect wave. A numerical simulation is shown in Fig. 3 to illustrate this Rician
distribution. The intensity statistics are generated from the simulated PSFs, at a given
radius. PDFs examples are given for three different radii, one at the top of an Airy ring
(strong pinning effect), one at a PSF zero (no speckle pinning) and one at an intermediate
position.

Speckle pinning can be easily explained from the analysis of these intensity PDFs:
speckle intensity and fluctuations are amplified by the coherent part of the wave ampli-
tude C(r), or intensity Ic . This can be seen directly on the PDFs in Fig. 3, where the
widths increase with Ic . Depending on the amplitude of the Airy pattern at successive
rings, the intensity Ic is alternatively large and small and the variance of the speckles is
amplified accordingly. At the zeroes of the PSF, no amplification occurs and the statistics
is equivalent to that of a fully developed speckle pattern (exponential statistics). In the
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Figure 4. This is the comparison between the empirical PDF and the statistical model, for a
given pixel in the field. The model used here corresponds to the integration of 4 independent
speckle realizations. The empirical PDF at this location has been obtained using 1500 short
exposure images in the K-band with the Palomar AO system.

case of a perfect coronagraph, speckle pinning is totally suppressed and all the residual
speckles are similar to laser speckles with exponential statistics.

These statistics has been verified on direct images (non-coronagraphic) by Fitzgerald
& Graham (2005) using AO data at the Lick Observatory. Using data from Palomar,
we also find good agreement between the statistical model and the data. The data con-
sists of non-coronagraphic images, obtained with the Palomar AO system and narrow
band filters in the K-band. The exposure times of 120ms integrate several realizations of
speckles, assuming a typical lifetime of 30-40 ms in K-band. It is possible to generalize
the rician model to obtain the PDF for the sum of M independant speckle realizations.
The corresponding statistics for such integrated speckles is also known as a non-central
chi square distribution of order M :

P(I) =
M

Is

(
I

Ic

)M −1
2

e−
M (I +I c )

I s IM −1

(
2
√

I
√

IcM

Is

)
(2.10)

Using a Kolmogorov-Smirnov test, it is possible to study the compatibility between the
model and the data as a function of the speckle lifetime. We find the best agreement
between model and data for M = 4 (sum of 4 independent realizations in each exposure),
which is compatible with the expected lifetime in K-band. We give an example in Fig. 4
where a good agreement is obtained between data and model.

A direct application of this statistical model is to provide the variance of the speckle
noise which can be used for further simulations to predict the performance of instruments
with coronagraphs.
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