THE DYNAMICS OF AN ACTION OF $S p(2 n, Z)$

Anthony Nielsen

Abstract

S.G. Dani and S. Raghavan showed the linear action of $S p(2 n, \mathbb{Z})$ on the space of symplectic p-frames for $p \leqslant n$ is topologically transitive. We give an alternative proof, from the prime number theorem and the congruence subgroup theorem, and show the action of every finite index subgroup of $S p(2 n, \mathbb{Z})$ is topologically transitive.

1. Introduction

Recall that the symplectic groups $S p(2 n, \mathbb{R})$ and $S p(2 n, \mathbb{Z})$ are the subgroups of $S L(2 n, \mathbb{R})$ and $S L(2 n, \mathbb{Z})$ respectively of matrices A which satisfy $A^{t} J A=J$ where

$$
J=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

A Euclidean p-frame over $\mathbb{R}^{2 n}$ is a p-tuple (u_{1}, \ldots, u_{p}) of linearly independent vectors in $\mathbb{R}^{2 n}$. For $1 \leqslant p \leqslant n$, a symplectic p-frame is a Euclidean p-frame which satisfies $u_{i}^{t} J u_{j}=0$ for all i, j when the u_{i} are written as column vectors. The space of symplectic p-frames is the subset of $\left(\mathbb{R}^{2 n}\right)^{p}$ of all symplectic p-frames with the relative topology. An action of a group G on a topological space X is topologically transitive if for each $g \in G$ the bijection g on X is a homeomorphism and for each pair of nonempty open sets $U, V \subseteq X$ there is some $g \in G$ such that $g U \cap V \neq \emptyset$. The action is topologically k-transitive if the action induced on X^{k} is topologically transitive.

Dani and Raghavan ([5]), based on Moore's ergodicity theorem, showed the linear action of $S L(n, \mathbb{Z})$ on \mathbb{R}^{n} is topologically $(n-1)$-transitive and the action of $S p(2 n, \mathbb{Z})$ on the space of symplectic p-frames is topologically transitive. Our main result is an alternative proof in the $S p(2 n, \mathbb{Z})$ case which applies to the finite index subgroups.

Theorem 1. For $p \leqslant n$, the linear action on the space of symplectic p-frames of every finite index subgroup of $S p(2 n, \mathbb{Z})$ is topologically transitive.

The proof, in Section 4, is a modification of the one used in [4] to show the actions on \mathbb{R}^{n} of the finite index subgroups of $S L(n, \mathbb{Z})$ are topologically $(n-1)$-transitive. Sections 2 and 3 introduce the underlying theorems, the prime number theorem modulo m and the congruence subgroup theorem.

[^0]
2. Dirichlet's theorem

Dirichlet's theorem on primes in arithmetic progressions says, provided $m \geqslant 2$ and a and m are relatively prime, there are infinitely many primes equal to a modulo m, and if, for $x>0, \pi_{m}(x, a)$ is the number of primes $\leqslant x$ equal to a modulo m and φ is the Euler totient function, then

$$
\lim _{x \rightarrow \infty} \frac{\pi_{m}(x, a) \log x}{x}=\frac{1}{\varphi(m)}
$$

See [1, Chapter 7]. An easy corollary is

$$
\lim _{k \rightarrow \infty} \frac{p(k, a)}{k \log k}=\varphi(m)
$$

where $p(k, a)$ denotes the k th prime equal to a modulo m.
The following argument is due to Mendès France in the Math Review of [6]. It shows the quotients of primes are dense in the positive reals (originally proved by Sierpinski in [9]). If $x>0$ and $\lfloor k x\rfloor$ is the integer part of $k x$, since $\lim _{k \rightarrow \infty}\lfloor k x\rfloor / k x$ $=\lim _{k \rightarrow \infty} \log \lfloor k x\rfloor / \log k x=1$,

$$
1=\lim _{k \rightarrow \infty} \frac{p(\lfloor k x\rfloor, a)}{\varphi(m) k x \log k x}
$$

Therefore

$$
x=\lim _{k \rightarrow \infty} \frac{p(\lfloor k x\rfloor, a)}{\varphi(m) k \log k+\varphi(m) k \log x}=\lim _{k \rightarrow \infty} \frac{p(\lfloor k x\rfloor, a)}{\varphi(m) k \log k}=\lim _{k \rightarrow \infty} \frac{p(\lfloor k x\rfloor, a)}{p(k, a)} .
$$

Lemma 1. Let U, V be nonempty open sets in \mathbb{R}^{l}. For each $m \geqslant 2$ and $1 \leqslant i \leqslant l$, $U \times V$ contains a point of the form

$$
\frac{\left(r_{1}, \ldots, r_{i}, \ldots, r_{l} ; s_{1}, \ldots, s_{i}, \ldots, s_{l}\right)}{\varphi(m) k \log k}
$$

where the r_{j} and s_{j} are each $\pm m$ times a prime-except for r_{i} and s_{i} which are just \pm a prime and equal to 1 modulo m-and the primes are all distinct.

Proof: Choose a point $\left(x_{1}, \ldots, x_{2 n} ; y_{1}, \ldots, y_{2 n}\right)$ in $U \times V$ whose entries are all nonzero and distinct in absolute value. For the x_{j} other than x_{i}

$$
\frac{\left|x_{j}\right|}{m}=\lim _{k \rightarrow \infty} \frac{p\left(\left\lfloor k\left|x_{j}\right| / m\right\rfloor, \pm 1\right)}{\varphi(m) k \log k}
$$

where ± 1 agrees in sign with x_{j}, and likewise for the y_{j} other than y_{i}. For x_{i} and y_{i} similar equations hold but without $\left|x_{i}\right|$ or $\left|y_{i}\right|$ divided by m. For a sufficiently large k the primes in the numerators on the right are all distinct, and for a possibly larger k the quotients on the right, after those that correspond to negative x_{j} or y_{j} are multiplied by -1 and those that don't correspond to x_{i} or y_{i} are multiplied by m, form the desired $4 n$-tuple in $U \times V$.

3. The congruence subgroup theorem

Let ρ denote the maps $\mathbb{Z}^{n} \rightarrow \mathbb{Z}_{m}^{n}$ and $\mathbb{Z}^{n \times n} \rightarrow \mathbb{Z}_{m}^{n \times n}$ which reduce modulo m the entries of an n-tuple of integers and an $n \times n$ matrix of integers. For $n \geqslant 2$, the kernels of the group homomorphisms $\rho: S L(n, \mathbb{Z}) \rightarrow S L\left(n, \mathbb{Z}_{m}\right)$ are denoted $G_{n, m}$ and called the principal congruence subgroups of $S L(n, \mathbb{Z})$; a congruence subgroup is one which contains a principal congruence subgroup. The congruence subgroup theorem says, for $n \geqslant 3$, every finite index subgroup of $S L(n, \mathbb{Z})$ is a congruence subgroup. It was proved separately in [3] and [8]. A principal congruence subgroup of $S p(2 n, \mathbb{Z})$ is an intersection $S p(2 n, \mathbb{Z}) \cap G_{2 n, m}$ for some m, and a congruence subgroup is one which contains a principal congruence subgroup. A version of the congruence subgroup theorem says that for $n \geqslant 2$ every finite index subgroup of $S p(2 n, \mathbb{Z})$ is a congruence subgroup ($[3$, Théorème 3$]$).

For $x \in \mathbb{Z}^{n}$ let $\operatorname{gcd}(x)$ mean the component-wise greatest common divisor. It is not difficult to show the orbit of x in \mathbb{Z}^{n} under the obvious action of $S L(n, \mathbb{Z})$ is the $y \in \mathbb{Z}^{n}$ such that $\operatorname{gcd}(y)=\operatorname{gcd}(x)$. Humphreys in [7, Section 17.2] shows that the $G_{n, m}$-suborbit of x is the set of $y \in \mathbb{Z}^{n}$ such that $\operatorname{gcd}(y)=\operatorname{gcd}(x)$ and $\rho(y)=\rho(x)$.

4. Proof of the theorem

The following lemma is well known. See [2, Theorem 3.8].
LEMMA 2. Each symplectic p-frame $u=\left(u_{1}, \ldots, u_{p}\right)$ forms the first p columns of some element in $S p(2 n, \mathbb{R})$.

Proof: The vectors w which satisfy $w^{t} J u_{i}=0$ for $1 \leqslant i \leqslant p$ make up the orthogonal complement of $J u$ relative to the standard inner product on $\mathbb{R}^{2 n}-\mathrm{a}(2 n-p)$-dimensional subspace which contains u itself. Therefore, while $p<n$ we can extend u to a symplectic n-frame by induction.

If u is a symplectic n-frame, the orthogonal complement of $J\left(u_{1}, \ldots, u_{n}\right)$ has dimension n and is contained in the orthogonal complement of $J\left(u_{2}, \ldots, u_{n}\right)$ which has dimension $n+1$. So there is $u_{n+1} \in \mathbb{R}^{2 n}$ with $u_{n+1}^{t} J u_{1}=-1$ and $u_{n+1}^{t} J u_{i}=0$ for $2 \leqslant i \leqslant n$. It must be that u_{n+1} is linearly independent of u_{1}, \ldots, u_{n}, else $u_{1}^{t} J u_{n+1}$ would be zero. Now, the orthogonal complement of $J\left(u_{1}, \ldots, u_{n+1}\right)$ has dimension $n-1$ and is contained in the orthogonal complement of $J\left(u_{1}, u_{3}, \ldots, u_{n+1}\right)$ which has dimension n. So there is u_{n+2} with $u_{n+2}^{t} J u_{2}=-1$ and $u_{n+2}^{t} J u_{i}=0$ for $i=1$ and $3 \leqslant i \leqslant n+1$ and linearly independent of u_{1}, \ldots, u_{n+1}; and so on. Arranged as columns, $u_{1}, \ldots, u_{2 n}$ form an element in $S p(2 n, \mathbb{R})$.

Lemma 3. Let $u=\left(u_{1}, \ldots, u_{p}\right)$ be a symplectic p-frame contained in an open set U of $\left(\mathbb{R}^{2 n}\right)^{p}$. Then there are p open sets U_{i} of $\mathbb{R}^{2 n}$ with $u_{i} \in U_{i}, U_{1} \times \cdots \times U_{p} \subseteq U$, and such that the following holds: if $1 \leqslant q<p$ and $w=\left(w_{1}, \ldots, w_{q}\right)$ is a symplectic q-frame with $w_{i} \in U_{i}$ for each i, there is $w_{q+1} \in U_{q+1}$ which makes $\left(w_{1}, \ldots, w_{q+1}\right)$ a symplectic ($q+1$)-frame.

Proof: We shall define a continuously differentiable function $f:\left(\mathbb{R}^{2 n}\right)^{q} \times \mathbb{R}^{2 n}$ $\rightarrow \mathbb{R}^{2 n}$. Take an element in $S p(2 n, \mathbb{R})$ with u_{1}, \ldots, u_{q} as its first q columns and then replace those columns with variable columns $x_{i}, 1 \leqslant i \leqslant q$. Call the resulting matrix A. If y is another variable column, f takes $\left(x_{1}, \ldots, x_{q} ; y\right)$ to

$$
A^{t} J y+e_{n+q+1}
$$

where e_{n+q+1} is the element in the usual basis for $\mathbb{R}^{2 n}$. Notice $f\left(u_{1}, \ldots, u_{q} ; u_{q+1}\right)=0$ and the Jacobian

$$
\frac{\partial\left(f_{1}, \ldots, f_{2 n}\right)}{\partial\left(y_{1}, \ldots, y_{2 n}\right)}
$$

evaluated at $\left(u_{1}, \ldots, u_{q} ; u_{q+1}\right)$ is $\operatorname{det} A=1$. Therefore, by the implicit function theorem, there is an open neighbourhood V of $\left(u_{1}, \ldots, u_{q}\right)$ in $\left(\mathbb{R}^{2 n}\right)^{q}$ and a continuously differentiable function $g: V \rightarrow \mathbb{R}^{2 n}$ such that $g\left(u_{1}, \ldots, u_{q}\right)=u_{q+1}$ and

$$
f\left(x_{1}, \ldots, x_{q} ; g\left(x_{1}, \ldots, x_{q}\right)\right)=0 \text { for all }\left(x_{1}, \ldots, x_{q}\right) \in V
$$

Now choose open neighbourhoods U_{i} of each of the u_{i} of u sufficiently small that $U_{1} \times \cdots \times$ $U_{p} \subseteq U$ and each $\left(x_{1}, \ldots, x_{p}\right) \in U_{1} \times \cdots \times U_{p}$ is a Euclidean p-frame. Set $q=p-1$ and let g be the function as above which takes $\left(u_{1}, \ldots, u_{p-1}\right)$ to u_{p}. Make U_{1}, \ldots, U_{p-1} smaller, if necessary, so that g maps $U_{1} \times \cdots \times U_{p-1}$ into U_{p} : if $\left(w_{1}, \ldots, w_{p-1}\right)$ is a symplectic ($p-1$)-frame in $U_{1} \times \cdots \times U_{p-1},\left(w_{1}, \ldots, w_{p-1} ; g\left(w_{1}, \ldots, w_{p-1}\right)\right)$ is a symplectic p-frame. Next, set $q=p-2$ and repeat-this time make U_{1}, \ldots, U_{p-2} smaller still, if necessary, so that the new g maps $U_{1} \times \cdots \times U_{p-2}$ into U_{p-1}. Once q reaches 1 the U_{i} will be as required.

For the next lemma it helps to think of a symplectic matrix in terms of its columns. If $x \in \mathbb{R}^{2 n}$ let \underline{x} be the first half of x, that is, the first n-tuple, and \bar{x} be the second. The product $x^{t} J y$ can be written $\underline{x} \cdot \bar{y}-\bar{x} \cdot \underline{y}$. If $x_{1}, \ldots, x_{2 n}$ are the columns of a matrix, it is symplectic if $\underline{x_{i}} \cdot \overline{x_{j}}-\overline{x_{i}} \cdot \underline{x_{j}}$ is 0 for $j>i$ except for $j=n+i$ when it must be 1 . Alternatively, if the matrix in block form is $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, the conditions are $A^{t} C-C^{t} A=0$, $A^{t} D-C^{t} B=I, B^{t} D-D^{t} B=0$. In particular, $S p(2, \mathbb{Z})=S L(2, \mathbb{Z})$.

LEMMA 4. Let $r=\left(r_{1}, \ldots, r_{2 n}\right)$ have the properties in the statement of Lemma 1 for some $i \leqslant n$, and assume also $r_{n+1}, \ldots, r_{n+i-1}=0$. Then there is a matrix in $S p(2 n, \mathbb{Z}) \cap G_{2 n, m}$ with $e_{1}, \ldots, e_{i-1}, r$ its first i columns.

Proof: First consider the case $i<n$; so $n \geqslant 2$. Let $k=n-(i-1)$ and

$$
r=(\underline{r}, \bar{r})=\left(r_{1}, \ldots, r_{i}, \ldots, r_{n}, 0, \ldots, 0, r_{n+i}, \ldots, r_{2 n}\right)
$$

The k-tuple $\left(r_{i}, \ldots, r_{n}\right)$ reduces modulo m to $(1,0, \ldots, 0)$ and has gcd 1 . Therefore, by Section 3 , there is an element $A^{\prime} \in G_{k, m}$ whose first column is $\left(r_{i}, \ldots, r_{n}\right)$. Use A^{\prime}
to construct $A \in G_{n, m}$ with $e_{1}, \ldots, e_{i-1} \in \mathbb{R}^{n}$ and \underline{r} its first i columns. Let C be the symmetric matrix with i th column and row $A^{t} \bar{r}$ and zeros elsewhere. By the construction of A, the first $i-1$ entries of $A^{t} \bar{r}$ are zero, and

$$
\left(\begin{array}{cc}
A & 0 \\
\left(A^{-1}\right)^{t} C & \left(A^{-1}\right)^{t}
\end{array}\right) \in S p(2 n, \mathbb{Z}) \cap G_{2 n, m}
$$

meets the requirements. Now consider the case $i=n$. Because ($r_{n}, r_{2 n}$) reduces to $(1,0)$ and has gcd 1 there is $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G_{2, m}$ with $a=r_{n}$ and $c=r_{2 n}$. A matrix which meets the requirements is

$$
\left(\begin{array}{cccccccc}
1 & & & r_{1} & & & & \\
& 1 & & r_{2} & & & 0 & \\
& & \ddots & \vdots & & & & \\
& & & r_{n} & -b r_{1} & -b r_{2} & \ldots & b \\
& & & 0 & 1 & & & \\
& & & & & 1 & & \\
& 0 & & & & & \ddots & \\
& & & r_{2 n} & -d r_{1} & -d r_{2} & \ldots & d
\end{array}\right)
$$

The proof of the main theorem follows.
Proof: Since $S p(2, \mathbb{Z})=S L(2, \mathbb{Z})$ the theorem for $n=1$ is proved in [4]. For $n \geqslant 2$ it suffices to show the actions of the principal congruence subgroups of $\operatorname{Sp}(2 n, \mathbb{Z})$ are topologically transitive. Let $m \geqslant 2$ and $u=\left(u_{1}, \ldots, u_{p}\right), v=\left(v_{1}, \ldots, v_{p}\right)$ be symplectic p-frames contained in open sets U, V respectively of $\left(\mathbb{R}^{2 n}\right)^{p}$. We are after a matrix in $S p(2 n, \mathbb{Z}) \cap G_{2 n, m}$ which takes a symplectic p-frame in U to a symplectic p-frame in V. For $u \in U$ and $v \in V$ let U_{i} and $V_{i}, 1 \leqslant i \leqslant p$, be the open sets of $\mathbb{R}^{2 n}$ given by Lemma 3.

By Lemma 1, with $i=1$ and $l=2 n$, there is a point of the form

$$
\frac{\left(r_{1}, \ldots, r_{2 n} ; s_{1}, \ldots, s_{2 n}\right)}{\varphi(m) k \log k}
$$

in $U_{1} \times V_{1}$ with r_{1} and s_{1} equal to 1 modulo m and the other entries equal to 0 modulo m. Lemma 4 says there are $A_{1}, B_{1} \in S p(2 n, \mathbb{Z}) \cap G_{2 n, m}$ with $A_{1} r=B_{1} s=e_{1}$. If t_{1} is the denominator above and $t_{1} w_{1}=\left(r_{1}, \ldots, r_{2 n}\right), A_{1}$ takes a symplectic 1-frame, $w_{1} \in U_{1}$, to e_{1} / t_{1}. Likewise, B_{1} takes a symplectic 1-frame in V_{1} to e_{1} / t_{1}. We claim that the open sets $A_{1} U_{2}$ and $B_{1} V_{2}$ both meet the subspace $\left\{x \in \mathbb{R}^{2 n} \mid x_{n+1}=0\right\}$. Indeed, by the choice of the U_{i} there is $w_{2}^{\prime} \in U_{2}$ such that (w_{1}, w_{2}^{\prime}) is a symplectic 2 -frame, and

$$
0=t_{1}\left(A_{1} w_{1}\right)^{t} J\left(A_{1} w_{2}^{\prime}\right)=e_{1}^{t} J\left(A_{1} w_{2}^{\prime}\right)=\left(A_{1} w_{2}^{\prime}\right)_{n+1}
$$

and similarly for $B_{1} V_{2}$.

Next, using Lemma 1 again, with $i=2$ and $l=2 n-1$, choose a point of the above form in $A_{1} U_{2} \times B_{1} V_{2}$, this time with r_{2} and s_{2} equal to 1 modulo $m, r_{n+1}=s_{n+1}=0$, and the other entries equal to 0 modulo m. Let t_{2} be the denominator. By Lemma 4 there are $A_{2}, B_{2} \in \operatorname{Sp}(2 n, \mathbb{Z}) \cap G_{2 n, m}$ which fix e_{1} and with $A_{2} r=B_{2} s=e_{2}$. If $t_{2} A_{1} w_{2}$ $=\left(r_{1}, \ldots, r_{2 n}\right)$ this time, $\left(w_{1}, w_{2}\right)$ is a symplectic 2-frame in $U_{1} \times U_{2}: A_{2} A_{1}$ takes it to $\left(e_{1} / t_{1}, e_{2} / t_{2}\right)$. Likewise, $B_{2} B_{1}$ takes a symplectic 2 -frame in $V_{1} \times V_{2}$ to $\left(e_{1} / t_{1}, e_{2} / t_{2}\right)$. Again, there is $w_{3}^{\prime} \in U_{3}$ such that ($w_{1}, w_{2}, w_{3}^{\prime}$) is a symplectic 3 -frame. It follows that $A_{2} A_{1} U_{3}$ meets the subspace $\left\{x \in \mathbb{R}^{2 n} \mid x_{n+1}=x_{n+2}=0\right\}$, and the same is true of $B_{2} B_{1} V_{3}$.

In the next step we choose a point of the above form in $A_{2} A_{1} U_{3} \times B_{2} B_{1} V_{3}$, and so on. We get A_{3} and B_{3} such that $A_{3} A_{2} A_{1}$ and $B_{3} B_{2} B_{1}$ take symplectic 3 -frames in $U_{1} \times U_{2} \times U_{3}$ and $V_{1} \times V_{2} \times V_{3}$ respectively to ($e_{1} / t_{1}, e_{2} / t_{2}, e_{3} / t_{3}$). The process continues till we get A_{p}, B_{p}. The matrix we are after is $B_{1}^{-1} \cdots B_{p}^{-1} A_{p} \cdots A_{1}$; it takes $\left(w_{1}, \ldots, w_{p}\right)$ $\in U_{1} \times \cdots \times U_{p}$ to a symplectic p-frame in $V_{1} \times \cdots \times V_{p}$.

References

[1] T.M. Apostol, Introduction to analytic number theory (Springer-Verlag, New York, 1976).
[2] E. Artin, Geometric algebra (Interscience Publishers, Inc., New York-London, 1957).
[3] H. Bass, M. Lazard, and J.-P. Serre, 'Sous-groupes d'indice fini dans SL(n, \mathbf{Z})', Bull. Amer. Math. Soc. 70 (1964), 385-392.
[4] G. Cairns and A. Nielsen, 'On the dynamics of the linear action of SL(n,Z)', Bull. Austral. Math. Soc. 71 (2005), 359-365.
[5] S.G. Dani and S. Raghavan, 'Orbits of Euclidean frames under discrete linear groups', Israel J. Math. 36 (1980), 300-320.
[6] D. Hobby and D.M. Silberger, 'Quotients of primes', Amer. Math. Monthly 100 (1993), 50-52.
[7] J.E. Humphreys, Arithmetic groups, Lecture Notes in Mathematics 789 (Springer-Verlag, Berlin, 1980).
[8] J.L. Mennicke, 'Finite factor groups of the unimodular group', Ann. of Math. (2) 81 (1965), 31-37.
[9] W. Sierpiński, Elementary theory of numbers, Monografie Matematyczne 42 (Państwowe Wydawnictwo Naukowe, Warsaw, 1964).

Department of Mathematics
La Trobe University
Melbourne
Australia 3086
e-mail: A.Nielsen@latrobe.edu.au

[^0]: Received 17th November, 2004
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

