THE DYNAMICS OF AN ACTION OF Sp(2n, Z)

ANTHONY NIELSEN

S.G. Dani and S. Raghavan showed the linear action of $Sp(2n, \mathbb{Z})$ on the space of symplectic *p*-frames for $p \leq n$ is topologically transitive. We give an alternative proof, from the prime number theorem and the congruence subgroup theorem, and show the action of every finite index subgroup of $Sp(2n, \mathbb{Z})$ is topologically transitive.

1. INTRODUCTION

Recall that the symplectic groups $Sp(2n, \mathbb{R})$ and $Sp(2n, \mathbb{Z})$ are the subgroups of $SL(2n, \mathbb{R})$ and $SL(2n, \mathbb{Z})$ respectively of matrices A which satisfy $A^tJA = J$ where

$$J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$$

A Euclidean p-frame over \mathbb{R}^{2n} is a p-tuple (u_1, \ldots, u_p) of linearly independent vectors in \mathbb{R}^{2n} . For $1 \leq p \leq n$, a symplectic p-frame is a Euclidean p-frame which satisfies $u_i^t J u_j = 0$ for all i, j when the u_i are written as column vectors. The space of symplectic p-frames is the subset of $(\mathbb{R}^{2n})^p$ of all symplectic p-frames with the relative topology. An action of a group G on a topological space X is topologically transitive if for each $g \in G$ the bijection g on X is a homeomorphism and for each pair of nonempty open sets $U, V \subseteq X$ there is some $g \in G$ such that $gU \cap V \neq \emptyset$. The action is topologically k-transitive if the action induced on X^k is topologically transitive.

Dani and Raghavan ([5]), based on Moore's ergodicity theorem, showed the linear action of $SL(n,\mathbb{Z})$ on \mathbb{R}^n is topologically (n-1)-transitive and the action of $Sp(2n,\mathbb{Z})$ on the space of symplectic *p*-frames is topologically transitive. Our main result is an alternative proof in the $Sp(2n,\mathbb{Z})$ case which applies to the finite index subgroups.

THEOREM 1. For $p \leq n$, the linear action on the space of symplectic p-frames of every finite index subgroup of $Sp(2n, \mathbb{Z})$ is topologically transitive.

The proof, in Section 4, is a modification of the one used in [4] to show the actions on \mathbb{R}^n of the finite index subgroups of $SL(n, \mathbb{Z})$ are topologically (n-1)-transitive. Sections 2 and 3 introduce the underlying theorems, the prime number theorem modulo m and the congruence subgroup theorem.

Received 17th November, 2004

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

A. Nielsen

2. DIRICHLET'S THEOREM

Dirichlet's theorem on primes in arithmetic progressions says, provided $m \ge 2$ and a and m are relatively prime, there are infinitely many primes equal to a modulo m, and if, for x > 0, $\pi_m(x, a)$ is the number of primes $\le x$ equal to a modulo m and φ is the Euler totient function, then

$$\lim_{x \to \infty} \frac{\pi_m(x, a) \log x}{x} = \frac{1}{\varphi(m)}$$

See [1, Chapter 7]. An easy corollary is

$$\lim_{k\to\infty}\frac{p(k,a)}{k\log k}=\varphi(m)$$

where p(k, a) denotes the kth prime equal to a modulo m.

The following argument is due to Mendès France in the Math Review of [6]. It shows the quotients of primes are dense in the positive reals (originally proved by Sierpiński in [9]). If x > 0 and $\lfloor kx \rfloor$ is the integer part of kx, since $\lim_{k \to \infty} \lfloor kx \rfloor / kx = \lim_{k \to \infty} \log \lfloor kx \rfloor / \log kx = 1$,

$$1 = \lim_{k \to \infty} \frac{p(\lfloor kx \rfloor, a)}{\varphi(m)kx \log kx}$$

Therefore

$$x = \lim_{k \to \infty} \frac{p(\lfloor kx \rfloor, a)}{\varphi(m)k \log k + \varphi(m)k \log x} = \lim_{k \to \infty} \frac{p(\lfloor kx \rfloor, a)}{\varphi(m)k \log k} = \lim_{k \to \infty} \frac{p(\lfloor kx \rfloor, a)}{p(k, a)}$$

LEMMA 1. Let U, V be nonempty open sets in \mathbb{R}^l . For each $m \ge 2$ and $1 \le i \le l$, $U \times V$ contains a point of the form

$$\frac{(r_1,\ldots,r_i,\ldots,r_l;s_1,\ldots,s_i,\ldots,s_l)}{\varphi(m)k\log k}$$

where the r_j and s_j are each $\pm m$ times a prime—except for r_i and s_i which are just $\pm a$ prime and equal to 1 modulo m—and the primes are all distinct.

PROOF: Choose a point $(x_1, \ldots, x_{2n}; y_1, \ldots, y_{2n})$ in $U \times V$ whose entries are all nonzero and distinct in absolute value. For the x_j other than x_i

$$\frac{|x_j|}{m} = \lim_{k \to \infty} \frac{p(\lfloor k | x_j | / m \rfloor, \pm 1)}{\varphi(m) k \log k}$$

where ± 1 agrees in sign with x_j , and likewise for the y_j other than y_i . For x_i and y_i similar equations hold but without $|x_i|$ or $|y_i|$ divided by m. For a sufficiently large k the primes in the numerators on the right are all distinct, and for a possibly larger k the quotients on the right, after those that correspond to negative x_j or y_j are multiplied by -1 and those that don't correspond to x_i or y_i are multiplied by m, form the desired 4n-tuple in $U \times V$.

3. The congruence subgroup theorem

Let ρ denote the maps $\mathbb{Z}^n \to \mathbb{Z}_m^n$ and $\mathbb{Z}^{n \times n} \to \mathbb{Z}_m^{n \times n}$ which reduce modulo m the entries of an n-tuple of integers and an $n \times n$ matrix of integers. For $n \ge 2$, the kernels of the group homomorphisms $\rho : SL(n,\mathbb{Z}) \to SL(n,\mathbb{Z}_m)$ are denoted $G_{n,m}$ and called the principal congruence subgroups of $SL(n,\mathbb{Z})$; a congruence subgroup is one which contains a principal congruence subgroup. The congruence subgroup theorem says, for $n \ge 3$, every finite index subgroup of $SL(n,\mathbb{Z})$ is a congruence subgroup. It was proved separately in [3] and [8]. A principal congruence subgroup of $Sp(2n,\mathbb{Z})$ is an intersection $Sp(2n,\mathbb{Z})\cap G_{2n,m}$ for some m, and a congruence subgroup is one which contains a principal congruence subgroup. A version of the congruence subgroup theorem says that for $n \ge 2$ every finite index subgroup of $Sp(2n,\mathbb{Z})$ is a congruence subgroup ([3, Théorème 3]).

For $x \in \mathbb{Z}^n$ let gcd(x) mean the component-wise greatest common divisor. It is not difficult to show the orbit of x in \mathbb{Z}^n under the obvious action of $SL(n,\mathbb{Z})$ is the $y \in \mathbb{Z}^n$ such that gcd(y) = gcd(x). Humphreys in [7, Section 17.2] shows that the $G_{n,m}$ -suborbit of x is the set of $y \in \mathbb{Z}^n$ such that gcd(y) = gcd(x) and $\rho(y) = \rho(x)$.

4. PROOF OF THE THEOREM

The following lemma is well known. See [2, Theorem 3.8].

LEMMA 2. Each symplectic p-frame $u = (u_1, \ldots, u_p)$ forms the first p columns of some element in $Sp(2n, \mathbb{R})$.

PROOF: The vectors w which satisfy $w^t J u_i = 0$ for $1 \leq i \leq p$ make up the orthogonal complement of Ju relative to the standard inner product on \mathbb{R}^{2n} —a (2n-p)-dimensional subspace which contains u itself. Therefore, while p < n we can extend u to a symplectic n-frame by induction.

If u is a symplectic *n*-frame, the orthogonal complement of $J(u_1, \ldots, u_n)$ has dimension n and is contained in the orthogonal complement of $J(u_2, \ldots, u_n)$ which has dimension n + 1. So there is $u_{n+1} \in \mathbb{R}^{2n}$ with $u_{n+1}^t J u_1 = -1$ and $u_{n+1}^t J u_i = 0$ for $2 \leq i \leq n$. It must be that u_{n+1} is linearly independent of u_1, \ldots, u_n , else $u_1^t J u_{n+1}$ would be zero. Now, the orthogonal complement of $J(u_1, \ldots, u_{n+1})$ has dimension n - 1 and is contained in the orthogonal complement of $J(u_1, \ldots, u_{n+1})$ which has dimension n. So there is u_{n+2} with $u_{n+2}^t J u_2 = -1$ and $u_{n+2}^t J u_i = 0$ for i = 1 and $3 \leq i \leq n+1$ and linearly independent of u_1, \ldots, u_{n+1} ; and so on. Arranged as columns, u_1, \ldots, u_{2n} form an element in $Sp(2n, \mathbb{R})$.

LEMMA 3. Let $u = (u_1, \ldots, u_p)$ be a symplectic *p*-frame contained in an open set U of $(\mathbb{R}^{2n})^p$. Then there are *p* open sets U_i of \mathbb{R}^{2n} with $u_i \in U_i$, $U_1 \times \cdots \times U_p \subseteq U$, and such that the following holds: if $1 \leq q < p$ and $w = (w_1, \ldots, w_q)$ is a symplectic *q*-frame with $w_i \in U_i$ for each *i*, there is $w_{q+1} \in U_{q+1}$ which makes (w_1, \ldots, w_{q+1}) a symplectic (q+1)-frame.

A. Nielsen

PROOF: We shall define a continuously differentiable function $f : (\mathbb{R}^{2n})^q \times \mathbb{R}^{2n}$ $\to \mathbb{R}^{2n}$. Take an element in $Sp(2n, \mathbb{R})$ with u_1, \ldots, u_q as its first q columns and then replace those columns with variable columns $x_i, 1 \leq i \leq q$. Call the resulting matrix A. If y is another variable column, f takes $(x_1, \ldots, x_q; y)$ to

$$A^i Jy + e_{n+q+1}$$

where e_{n+q+1} is the element in the usual basis for \mathbb{R}^{2n} . Notice $f(u_1, \ldots, u_q; u_{q+1}) = 0$ and the Jacobian

$$\frac{\partial(f_1,\ldots,f_{2n})}{\partial(y_1,\ldots,y_{2n})}$$

evaluated at $(u_1, \ldots, u_q; u_{q+1})$ is det A = 1. Therefore, by the implicit function theorem, there is an open neighbourhood V of (u_1, \ldots, u_q) in $(\mathbb{R}^{2n})^q$ and a continuously differentiable function $g: V \to \mathbb{R}^{2n}$ such that $g(u_1, \ldots, u_q) = u_{q+1}$ and

$$f(x_1,\ldots,x_q;g(x_1,\ldots,x_q)) = 0$$
 for all $(x_1,\ldots,x_q) \in V$.

Now choose open neighbourhoods U_i of each of the u_i of u sufficiently small that $U_1 \times \cdots \times U_p \subseteq U$ and each $(x_1, \ldots, x_p) \in U_1 \times \cdots \times U_p$ is a Euclidean p-frame. Set q = p-1 and let g be the function as above which takes (u_1, \ldots, u_{p-1}) to u_p . Make U_1, \ldots, U_{p-1} smaller, if necessary, so that g maps $U_1 \times \cdots \times U_{p-1}$ into U_p : if (w_1, \ldots, w_{p-1}) is a symplectic (p-1)-frame in $U_1 \times \cdots \times U_{p-1}$, $(w_1, \ldots, w_{p-1}; g(w_1, \ldots, w_{p-1}))$ is a symplectic p-frame. Next, set q = p - 2 and repeat—this time make U_1, \ldots, U_{p-2} smaller still, if necessary, so that the new g maps $U_1 \times \cdots \times U_{p-2}$ into U_{p-1} . Once q reaches 1 the U_i will be as required.

For the next lemma it helps to think of a symplectic matrix in terms of its columns. If $x \in \mathbb{R}^{2n}$ let \underline{x} be the first half of x, that is, the first n-tuple, and \overline{x} be the second. The product $x^t J y$ can be written $\underline{x} \cdot \overline{y} - \overline{x} \cdot \underline{y}$. If x_1, \ldots, x_{2n} are the columns of a matrix, it is symplectic if $\underline{x_i} \cdot \overline{x_j} - \overline{x_i} \cdot \underline{x_j}$ is 0 for j > i except for j = n + i when it must be 1. Alternatively, if the matrix in block form is $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$, the conditions are $A^t C - C^t A = 0$, $A^t D - C^t B = I$, $B^t D - D^t B = 0$. In particular, $Sp(2,\mathbb{Z}) = SL(2,\mathbb{Z})$.

LEMMA 4. Let $r = (r_1, \ldots, r_{2n})$ have the properties in the statement of Lemma 1 for some $i \leq n$, and assume also $r_{n+1}, \ldots, r_{n+i-1} = 0$. Then there is a matrix in $Sp(2n,\mathbb{Z}) \cap G_{2n,m}$ with e_1, \ldots, e_{i-1}, r its first *i* columns.

PROOF: First consider the case i < n; so $n \ge 2$. Let k = n - (i - 1) and

$$r = (\underline{r}, \overline{r}) = (r_1, \ldots, r_i, \ldots, r_n, 0, \ldots, 0, r_{n+i}, \ldots, r_{2n}).$$

The k-tuple (r_i, \ldots, r_n) reduces modulo m to $(1, 0, \ldots, 0)$ and has gcd 1. Therefore, by Section 3, there is an element $A' \in G_{k,m}$ whose first column is (r_i, \ldots, r_n) . Use A'

403

0

to construct $A \in G_{n,m}$ with $e_1, \ldots, e_{i-1} \in \mathbb{R}^n$ and \underline{r} its first *i* columns. Let *C* be the symmetric matrix with *i*th column and row $A^t \overline{r}$ and zeros elsewhere. By the construction of *A*, the first i - 1 entries of $A^t \overline{r}$ are zero, and

$$\begin{pmatrix} A & 0\\ (A^{-1})^t C & (A^{-1})^t \end{pmatrix} \in Sp(2n, \mathbb{Z}) \cap G_{2n,m}$$

meets the requirements. Now consider the case i = n. Because (r_n, r_{2n}) reduces to (1, 0) and has gcd 1 there is $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G_{2,m}$ with $a = r_n$ and $c = r_{2n}$. A matrix which meets the requirements is

$$\begin{pmatrix} 1 & r_1 & & \\ 1 & r_2 & & 0 \\ & \ddots & \vdots & & \\ & & r_n & -br_1 & -br_2 & \dots & b \\ & & 0 & 1 & & \\ & & \vdots & & 1 & \\ & & & \vdots & & 1 & \\ 0 & & & & \ddots & \\ & & & r_{2n} & -dr_1 & -dr_2 & \dots & d \end{pmatrix}$$

The proof of the main theorem follows.

PROOF: Since $Sp(2,\mathbb{Z}) = SL(2,\mathbb{Z})$ the theorem for n = 1 is proved in [4]. For $n \ge 2$ it suffices to show the actions of the principal congruence subgroups of $Sp(2n,\mathbb{Z})$ are topologically transitive. Let $m \ge 2$ and $u = (u_1, \ldots, u_p)$, $v = (v_1, \ldots, v_p)$ be symplectic *p*-frames contained in open sets U, V respectively of $(\mathbb{R}^{2n})^p$. We are after a matrix in $Sp(2n,\mathbb{Z}) \cap G_{2n,m}$ which takes a symplectic *p*-frame in *U* to a symplectic *p*-frame in *V*. For $u \in U$ and $v \in V$ let U_i and V_i , $1 \le i \le p$, be the open sets of \mathbb{R}^{2n} given by Lemma 3.

By Lemma 1, with i = 1 and l = 2n, there is a point of the form

$$\frac{(r_1,\ldots,r_{2n};s_1,\ldots,s_{2n})}{\varphi(m)k\log k}$$

in $U_1 \times V_1$ with r_1 and s_1 equal to 1 modulo m and the other entries equal to 0 modulo m. Lemma 4 says there are $A_1, B_1 \in Sp(2n, \mathbb{Z}) \cap G_{2n,m}$ with $A_1r = B_1s = e_1$. If t_1 is the denominator above and $t_1w_1 = (r_1, \ldots, r_{2n})$, A_1 takes a symplectic 1-frame, $w_1 \in U_1$, to e_1/t_1 . Likewise, B_1 takes a symplectic 1-frame in V_1 to e_1/t_1 . We claim that the open sets A_1U_2 and B_1V_2 both meet the subspace $\{x \in \mathbb{R}^{2n} \mid x_{n+1} = 0\}$. Indeed, by the choice of the U_i there is $w'_2 \in U_2$ such that (w_1, w'_2) is a symplectic 2-frame, and

$$0 = t_1(A_1w_1)^t J(A_1w_2) = e_1^t J(A_1w_2) = (A_1w_2)_{n+1};$$

and similarly for B_1V_2 .

A. Nielsen

Next, using Lemma 1 again, with i = 2 and l = 2n - 1, choose a point of the above form in $A_1U_2 \times B_1V_2$, this time with r_2 and s_2 equal to 1 modulo m, $r_{n+1} = s_{n+1} = 0$, and the other entries equal to 0 modulo m. Let t_2 be the denominator. By Lemma 4 there are $A_2, B_2 \in Sp(2n, \mathbb{Z}) \cap G_{2n,m}$ which fix e_1 and with $A_2r = B_2s = e_2$. If $t_2A_1w_2$ $= (r_1, \ldots, r_{2n})$ this time, (w_1, w_2) is a symplectic 2-frame in $U_1 \times U_2$: A_2A_1 takes it to $(e_1/t_1, e_2/t_2)$. Likewise, B_2B_1 takes a symplectic 2-frame in $V_1 \times V_2$ to $(e_1/t_1, e_2/t_2)$. Again, there is $w'_3 \in U_3$ such that (w_1, w_2, w'_3) is a symplectic 3-frame. It follows that $A_2A_1U_3$ meets the subspace $\{x \in \mathbb{R}^{2n} \mid x_{n+1} = x_{n+2} = 0\}$, and the same is true of $B_2B_1V_3$.

In the next step we choose a point of the above form in $A_2A_1U_3 \times B_2B_1V_3$, and so on. We get A_3 and B_3 such that $A_3A_2A_1$ and $B_3B_2B_1$ take symplectic 3-frames in $U_1 \times U_2 \times U_3$ and $V_1 \times V_2 \times V_3$ respectively to $(e_1/t_1, e_2/t_2, e_3/t_3)$. The process continues till we get A_p, B_p . The matrix we are after is $B_1^{-1} \cdots B_p^{-1}A_p \cdots A_1$; it takes $(w_1, \ldots, w_p) \in U_1 \times \cdots \times U_p$ to a symplectic *p*-frame in $V_1 \times \cdots \times V_p$.

References

- [1] T.M. Apostol, Introduction to analytic number theory (Springer-Verlag, New York, 1976).
- [2] E. Artin, Geometric algebra (Interscience Publishers, Inc., New York-London, 1957).
- [3] H. Bass, M. Lazard, and J.-P. Serre, 'Sous-groupes d'indice fini dans SL(n, Z)', Bull. Amer. Math. Soc. 70 (1964), 385-392.
- G. Cairns and A. Nielsen, 'On the dynamics of the linear action of SL(n,Z)', Bull. Austral. Math. Soc. 71 (2005), 359-365.
- S.G. Dani and S. Raghavan, 'Orbits of Euclidean frames under discrete linear groups', Israel J. Math. 36 (1980), 300-320.
- [6] D. Hobby and D.M. Silberger, 'Quotients of primes', Amer. Math. Monthly 100 (1993), 50-52.
- J.E. Humphreys, Arithmetic groups, Lecture Notes in Mathematics 789 (Springer-Verlag, Berlin, 1980).
- [8] J.L. Mennicke, 'Finite factor groups of the unimodular group', Ann. of Math. (2) 81 (1965), 31-37.
- [9] W. Sierpiński, *Elementary theory of numbers*, Monografie Matematyczne 42 (Państwowe Wydawnictwo Naukowe, Warsaw, 1964).

Department of Mathematics La Trobe University Melbourne Australia 3086 e-mail: A.Nielsen@latrobe.edu.au