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THE DYNAMICS OF AN ACTION OF 5p(2n, Z)

ANTHONY NIELSEN

S.G. Dani and S. Raghavan showed the linear action of 5p(2n, Z) on the space of
symplectic p-frames for p ^ n is topologically transitive. We give an alternative
proof, from the prime number theorem and the congruence subgroup theorem, and
show the action of every finite index subgroup of 5p(2n, Z) is topologically transitive.

1. INTRODUCTION

Recall that the symplectic groups Sp(2n, R) and Sp(2n, Z) are the subgroups of
SL(2n, R) and SL(2n, Z) respectively of matrices A which satisfy A1 JA — J where

A Euclidean p-frame over R2n is a p-tuple (ui , . . . , up) of linearly independent vectors in
R2n. For 1 ^ p < n, a symplectic p-frame is a Euclidean p-frame which satisfies u\ JUJ = 0
for all i, j when the Ui are written as column vectors. The space of symplectic p-frames
is the subset of (R2n)p of all symplectic p-frames with the relative topology. An action
of a group G on a topological space X is topologically transitive if for each g € G the
bijection g on X is a homeomorphism and for each pair of nonempty open sets U,V C X
there is some g € G such that gU n V ^ B . The action is topologically k-transitive if the
action induced on Xk is topologically transitive.

Dani and Raghavan ([5]), based on Moore's ergodicity theorem, showed the linear
action of SL(n, Z) on R" is topologically (n — l)-transitive and the action of Sp(2n, Z)
on the space of symplectic p-frames is topologically transitive. Our main result is an
alternative proof in the 5p(2n, Z) case which applies to the finite index subgroups.

THEOREM 1. For p < n, the linear action on the space of symplectic p-frames of
every finite index subgroup of Sp(2n, Z) is topologically transitive.

The proof, in Section 4, is a modification of the one used in [4] to show the actions on
Rn of the finite index subgroups of SL(n, Z) are topologically (n—l)-transitive. Sections 2
and 3 introduce the underlying theorems, the prime number theorem modulo m and the
congruence subgroup theorem.

Received 17th November, 2004

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 SA2.00+0.00.

399

https://doi.org/10.1017/S0004972700038399 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038399
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2. DIRICHLET'S THEOREM

Dirichlet's theorem on primes in arithmetic progressions says, provided m ^ 2 and
a and m are relatively prime, there are infinitely many primes equal to a modulo m, and
if, for x > 0, nm(x,a) is the number of primes ^ x equal to o modulo m and (p is the
Euler totient function, then

7rm(z,a)logx 1
lim = —-—-.

()

See [1, Chapter 7]. An easy corollary is

p(k,a)
hm

where p(A;,a) denotes the kth prime equal to a modulo m.

The following argument is due to Mendes France in the Math Review of [6]. It

shows the quotients of primes are dense in the positive reals (originally proved by

Sierpiriski in [9]). If x > 0 and \kx\ is the integer part of kx, since lim \kx\lkx

— lim log[A;2;J/logA;x — 1,

<p(m)kx log kx

Therefore

p(lfc*],a) PdfcxJ.q) pflfccj.a)
X — lim —; r-r-. ; ; rrr = lim —; r— = lim — r—.

k-*oo (p(m)klogk + ip(m}klogx fc-«» ip{m)k\ogk *->oo p(k,a)

LEMMA 1 . Let U, V be nonempty open sets in K'. For each m ^ 2 and 1

U x V contains a point of the form

(p(m)k\ogk

where the Tj and Sj are each ±m times a prime—except for r* and Sj which are just ± a

prime and equal to 1 modulo m—and the primes are all distinct.

P R O O F : Choose a point {xi,.. .,x2n',yi,-• • ,V2n) in U x V whose entries are all
nonzero and distinct in absolute value. For the Xj other than Xi

\xj[ = Um p{[k\xi\/ml±\)
m *-»oo <p(m)k\ogk

where ±1 agrees in sign with Xj, and likewise for the yj other than y*. For Xi and y,
similar equations hold but without \xt\ or |yj| divided by m. For a sufficiently large k

the primes in the numerators on the right are all distinct, and for a possibly larger k the
quotients on the right, after those that correspond to negative Xj or y; are multiplied by
— 1 and those that don't correspond to xt or yi are multiplied by m, form the desired
4n-tuple in U x V. D
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3. T H E C O N G R U E N C E SUBGROUP T H E O R E M

Let p denote the maps Z n -> Z ^ and Z n x n -> Z£,xn which reduce modulo m the
entries of an n-tuple of integers and a n u x n matrix of integers. For n ^ 2, the kernels
of the group homomorphisms p : SL(n, Z) —>• SX(n, Zm) are denoted Gn<m and called
the principal congruence subgroups of SL(n, Z); a congruence subgroup is one which
contains a principal congruence subgroup. The congruence subgroup theorem says, for
n ^ 3, every finite index subgroup of SL{n, Z) is a congruence subgroup. It was proved
separately in [3] and [8]. A principal congruence subgroup of Sp(2n, Z) is an intersection
Sp(2n, Z)nG2n,m for some m, and a congruence subgroup is one which contains a principal
congruence subgroup. A version of the congruence subgroup theorem says that for n ^ 2
every finite index subgroup of Sp(2n, Z) is a congruence subgroup ([3, Theoreme 3]).

For I G P let gcd(x) mean the component-wise greatest common divisor. It is not
difficult to show the orbit of x in Z" under the obvious action of SL(n, Z) is the y € Zn

such that gcd(y) = gcd(x). Humphreys in [7, Section 17.2] shows that the Gn,m-suborbit
of x is the set of y € Zn such that gcd(y) = gcd(z) and p(y) = p(x).

4. P R O O F OF THE THEOREM

The following lemma is well known. See [2, Theorem 3.8].

LEMMA 2 . Each symplectic p-frame u = (u\,..., up) forms the first p columns of

some element in Sp(2n,E).

PROOF: The vectors w which satisfy wtJui = 0 for 1 < i < p make up the orthogonal
complement of Ju relative to the standard inner product on R2n—a (2n — p)-dimensional
subspace which contains u itself. Therefore, while p < n we can extend u to a symplectic
n-frame by induction.

If u is a symplectic n-frame, the orthogonal complement of J{u\,... ,un) has di-
mension n and is contained in the orthogonal complement of J(u2,. •. ,un) which has
dimension n + 1. So there is un+i G K2n with uf,+1 Jui — —1 and ut

n+lJui — 0 for
2 ^ i ^ n. It must be that un +i is linearly independent of u i , . . . , un, else u\ Jun+i would
be zero. Now, the orthogonal complement of J(u\,... ,un+i) has dimension n - 1 and
is contained in the orthogonal complement of J{ux, U3, . . . , un+i) which has dimension n.

So there is un+<i with ut
n+2Ju2 = — 1 and ul

n+2Jui = 0 for i = 1 and 3 ^ i ^ n + 1 and
linearly independent of u i , . . . , u n + i ; and so on. Arranged as columns, u x , . . . , u2n form
an element in 5p(2n,K). D

LEMMA 3 . Let u = (ui,..., uv) be a symplectic p-frame contained in an open set

U of (R2n)p. Tien there arep open sets U{ ofR2n with u{ G U{, Ut x ••• x Up C U, and

such that the following holds: ifl^q<p and w = (w\,..., wq) is a symplectic q-frame

with W( € Ui for each i, there is wq+i e Uq+\ which makes ( ioi , . . . ,wq+i) a symplectic

(q + I)-frame.
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PROOF: We shall define a continuously differentiate function / : (R2")9 x R2n

—> R2". Take an element in Sp(2n,R) with U\,...,uq as its first q columns and then
replace those columns with variable columns x^ 1 ^ i ^ q. Call the resulting matrix A.

If y is another variable column, / takes ( x l 7 . . . , xq\ y) to

AlJy + en+q+l

where en+q+i is the element in the usual basis for R2n. Notice / ( u i , •. -, uq\ uq+\) — 0 and
the Jacobian

d(fl,...,f2n)

d{yi,.--,y2n)

evaluated at ( u i , . . . , uq; uq+\) is detA = 1. Therefore, by the implicit function theorem,

there is an open neighbourhood V of (u i , . . . ,uq) in (R2 n) ' and a continuously differen-

t i a t e function g : V —> R2n such that g(ui,..., uq) — uq+i and

f(xi,...,xq\g(xi,...,xq)) = 0 for a l l (xi,...,xq) € V.

Now choose open neighbourhoods Ui of each of the u* of u sufficiently small that U\ x • • • x
Up CU and each ( x i , . . . , xp) € U\ x • • • x Up is a Euclidean p-frame. Set q = p — 1 and let
g be the function as above which takes (ult..., up_i) to up. Make U\,..., Up-i smaller,
if necessary, so that g maps U\ x • • • x Up-i into Up: if ( tu i , . . . , iup-i) is a symplectic
(p — l)-frame in Ui x • • • x C/p_i, ( iui , . . . , wp_i; 5(t«i,.. •, wP-i)) is a symplectic p-frame.
Next, set q = p — 2 and repeat—this time make Ui,..., Up-i smaller still, if necessary,
so that the new g maps U\ x • • • x (7P_2 into Up-\. Once q reaches 1 the Ut will be as
required. D

For the next lemma it helps to think of a symplectic matrix in terms of its columns.
If x £ R2n let x be the first half of x, that is, the first n-tuple, and x be the second. The
product xlJy can be written x • y — x • y_. If x i , . . . , x2n are the columns of a matrix, it
is symplectic if Xj • xj — x7 • Xj is 0 for j > i except for j = n + i when it must be 1.

Alternatively, if the matrix in block form is I I, the conditions are AtC — ClA = 0,
\C D)

AlD - ClB = / , BlD - DlB = 0. In particular, 5p(2, Z) = SL{2, Z).
LEMMA 4 . Let r = ( r i , . . . , r2 n) have the properties in the statement of Lemma 1

for some i ^ n, and assume also rn+l,... ,rn+i-i = 0. Then there is a matrix in

Sp(2n, Z) n G2n,m with e i , . . . , ej_i, r its first i columns.

PROOF: First consider the case i < n; so n ^ 2. Let k = n — (i — 1) and

r - (r,r) = (ru ... ,rit... , r n , 0 , . . . , 0 , r n + i , . . . , r 2 n ) .

The A;-tuple (r^, . . . , r n ) reduces modulo m to (1,0, . . . , 0 ) and has gcd 1. Therefore,

by Section 3, there is an element A' 6 Gk,m whose first column is (r*,... ,rn). Use A'
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to construct A € Gn,m with e\,... , ej_i e Rn and r its first i columns. Let C be the
symmetric matrix with ith column and row Alr and zeros elsewhere. By the construction
of A, the first i — 1 entries of Afr are zero, and

Sp(2n, Z) n G2n,n

meets the requirements. Now consider the case i = n. Because (rn,r2n) reduces to (1,0)

and has gcd 1 there is ( 1 € G2m with a = rn and c = r2n. A matrix which meets
\c d)

the requirements is

0

—br y —br2 • • •

1

0
-dr2 D

The proof of the main theorem follows.

P R O O F : Since Sp(2, Z) = SL{2, Z) the theorem for n = 1 is proved in [4]. For n > 2
it suffices to show the actions of the principal congruence subgroups of Sp(2n, Z) are
topologically transitive. Let m ^ 2 and u = (ui,..., up), v — (vi,..., vp) be symplectic
p-frames contained in open sets U, V respectively of (R2n)p. We are after a matrix in
Sp{2n, Z) n G2n,m which takes a symplectic p-frame in U to a symplectic p-frame in V.

For u € U and v € V let Ui and Vit 1 ^ i ^ p, be the open sets of R2" given by Lemma 3.

By Lemma 1, with i — 1 and I = 2n, there is a point of the form

( T ~ 1 , . • • , r 2 n ; S l , • . . , 5 2 n )

<p(m)klogk

in [/! x V\ with r! and sx equal to 1 modulo m and the other entries equal to 0 modulo

m. Lemma 4 says there are A\, B\ € 5p(2n, Z) nG2n,m with Axr — B\s = t\. If ii is the

denominator above and t\W\ — {T\, ... ,7"2n), A\ takes a symplectic 1-frame, W\ € U\, to

e\/t\. Likewise, B\ takes a symplectic 1-frame in V\ to e\/t\. We claim that the open

sets A1U2 and B1V2 both meet the subspace { i € R2n | xn+i = 0 }. Indeed, by the choice

of the Ui there is u;2 £ ^2 such that (lu^u;^) is a symplectic 2-frame, and

0 = = e[ J(Axw2) = (A1t«i)n+1;

and similarly for B\V2.
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Next, using Lemma 1 again, with i = 2 and I = 2n — 1, choose a point of the above
form in A\U2 x BXV2, this time with r2 and s2 equal to 1 modulo m, rn+1 = sn+1 = 0,
and the other entries equal to 0 modulo m. Let t2 be the denominator. By Lemma 4
there are A2,B2 6 Sp(2n, Z) n C?2n,m which fix ei and with A2r — B2s = e2. If t2A\w2

— (r\,... ,r2n) this time, (wi,w2) is a symplectic 2-frame in U\ x U2: A2A\ takes it to
{ei/ti,e2/t2). Likewise, B2Bi takes a symplectic 2-frame in Vi x V2 to {ei/ti,e2/t2).

Again, there is w3 e U3 such that (w\, w2,w'3) is a symplectic 3-frame. It follows that
A2A\U3 meets the subspace {x € E2n | i n + 1 = xn+2 = 0}, and the same is true of
B2B1V3.

In the next step we choose a point of the above form in A2AiU3 x B2BiV3, and
so on. We get A3 and B3 such that A3A2Ai and B3B2B\ take symplectic 3-frames in
U\ x C/2 x U3 and Vi xV2 x V3 respectively to (ei/ti , e2/i2, e^/h)- The process continues
till we get Ap, Bp. The matrix we are after is Bf * • • • B^Mp • • • Ax\ it takes (lOi,..., wp)

E Ui x • • • x Up to a symplectic p-frame in Vi x • • • x Vp. D
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