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LIMIT CYCLES OF LIÉNARD EQUATIONS 
WITH NON LINEAR DAMPING 

A.M. URBINA, G. LEON DE LA BARRA, 
M. LEON DE LA BARRA AND M. CANAS 

ABSTRACT. We consider the Liénard's equation x = f(x)x - JC2"-1 , n G N, with 
f(x) polynomial. By using the generalized polar coordinates we establish the maximum 
possible number of small amplitude limit cycles of such equation in terms of the degree 
of fix). 

1. Introduction. The Liénard's equation 

(1) x=f(x)x + g(x) 

or in the equivalent vector field form 

(2) X:l* = y;*V> 
\ y = g(x) 

where F(x) = J Q / ( 0 ^ > n a s ^ e e n widely studied and arise frequently in applications. See 
Staude's survey [6] for references. 

We are interested in establishing the existence and number of periodic solutions of 
system (2). 

In this context, for g(x) = —JC, Lins, de Melo and Pugh [3] proved: "Given an integer 
m with 0 < m < n, there is a polynomial F(x) of degree N =2n+I or N = 2n + 2 such 
that the system (2) has exactly m closed orbits". They also conjectured that in this case 
the equation has no more than n closed orbits. 

Blows and Lloyd [1] showed for the same system, using a suitable Lyapunov function, 
that there are at most n small amplitude limit cycles. 

Recently, Dumortier and Rousseau [2] presented an extensive qualitative study of the 
phase portrait for the case of a linear damping/(;c) and a cubic restoring force g(x). They 
found limit cycles surrounding one singularity and limit cycles surrounding two or three 
singularities and proved that the equation can have at most one limit cycle of the first 
kind and that such a limit cycle can never be surrounded by a limit cycle of the second 
kind. 

Finally we have to mention the work of R. Moussu [5] concerning symmetry and 
normal form of degenerated centers and foci. 

Partially supported by FONDECYT, under grant # 0243-91 and U.T.F.S.M., under grant # 911204. 
Received by the editors January 29, 1992. 
AMS subject classification: 34C05, 34C25. 
© Canadian Mathematical Society, 1993. 

251 

https://doi.org/10.4153/CMB-1993-036-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1993-036-x


252 A. M. URBINA, G. L. DE LA BARRA, M. L. DE LA BARRA AND M. CANAS 

In this paper we consider the case g(x) = — x2"-1 and F(x) = E^fl/*1', n G N, 
generalizing the results obtained by Lins et al, Blows and Lloyd. 

The results obtained here are important in order to increase the knowledge on limit 
cycles of polynomial vector fields in the context of Hilbert's 16-th problem. 

2. Small amplitude limit cycles. Let us consider the vector field X defined by the 
system: 

(3) x = y + Y,<*i* 
i-m 

LEMMA 1. X has séparatrices if 
i) m < n or 

ii) m-n and laJ > -?= 

PROOF. Let us consider the blowing-up 

<j>\ (JC, y) —* (x, j^y) with m <n 

Then, the vector field <j>*X (up a factor xm~l ) is given by: 

^ ' \ y = -my2 - my E^=m
 ak?~m ~ ^{n~m) 

i) For m <n, </>*(0, y) = (0, —my2 — m amy) has two singularities (0,0) and (0, —am). 
Then X has séparatrices, 

ii) Let m~n. Then </>*(0, y) = (0, — rcy2 — na„y — 1) has at least one singularity if and 
only if \an\ > 2 / y/n. Again, X has séparatrices. • 

For m > n or m = n and \an\ < 2j\/n the vector field X has no séparatrices because 
in these cases, the Poincaré mapping exists in a neighborhood of the origin. 

We will only consider the case m = n and \an\ < 2 / y/n, since m> n implies an - 0. 
To prove the existence of the return mapping, let us consider the functions Cs6 and 

Sn6 given by Lyapunov [4] and defined by the Cauchy problem: 

^-ACsQ) = -SnO CsO = 1 
do 

— (SnO) = Cs2n-\Q) Src0 = 0 
du 

These functions satisfy the identity: 

Cs2n(6) + nSn2(6) = 1 

Furthermore, they are w-periodic with 

w = 4y/n'j\l~x2ny^2dx 
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We consider the coordinate change: 

x = rCsO 

y = -r/lSn9 

and we obtain that the system (3) becomes (up a factor r"-1) 

r = rCs2n-\6) £ a^C^S) 
i-n 

N 

9 = \-nSnOYéair
i-nCsi(0) 

i=n 

and then 

dr = rCsp-^YtLai^CstiS) 
d9 1 - nanCsn(9)Sn9 - nSnQ £^n+1 a^^CsKO) 

lf\an\ <2«- 1 / 2 , (4) is an analytic function for r small enough. 
In fact 

\nanCsn(6)Sn6\ < ^\an\\Cs2n{9) + nSn26\ < 1 

We have two cases: 

i) an = 0. The right side of (4) is represented by the series: 

oo 

i=2 

Let the function r, which satisfies the equation (4), be written in the form of a series: 

r(0, r0) = r0 + u2(9)r2
0 + w3(0)^ + • • • 

with r(0, ro) = ro, and rO, ro) representing the Poincaré mapping and ui(w) correspond
ing, up a numerical factor, to its derivative of order i. 

We obtain, by recurrence that 

Rj = Rj(9) = pn+{j^){9)Cs2n-\9) 

+ nSnO\pnMj-20)R2 + pn«j-3)(0)R3 + • • • + Pn+i(0)Rj-i] 

where 

Pi(9) = aiCsi{9), n<i<N, j>2 

(RQ = Rl=0) and 

(6) ut{6) = I J2 (uh 'uh Ui.)(T)Rj(T)dr 

where u\{9) = 1. 
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ii). If an ^ 0 the right side of the equation (3) is represented by the series expansion: 
R\ r + R2r

2 + • • -, which is uniformly convergent for all 9 and for sufficiently small r. 
The coefficients Rs are rational functions of SnO and Cs9 with denominators equal to 

different powers of the function 1 — npn(9)Sn6. 
In fact: 

pn(O)Cs2n-l0 
Ri 1 - npn(9)Sn(6) 

and 

** = 1 L e m \Pn+s~i(0)Cs2n'\9) + nSnO(pn+i(0)Rs-i 
1 — npn(9)Sn(0)L v 

+ Pn+2(0)Rs-2 + ' ' ' + Pn+s-\(0)Ri)] 

Now, let r - p exp(jj) R\ (r) dr), then 

(7) ^=«P(-^1(r)*).^-ARI = V + r 3 ^ + ... 

where 

T5 = tf5 exp (j-l)jT/?l(T)dT] 

As in the preceeding case the ui(9) are given by (6), replacing RJ(T) by 7}(r). 

LEMMA 2. Lef X be r/ze vector field (3) with a, = Ofor all odd i and \an\ < 2n~xl2. 
Then, the origin is a centre for X 

PROOF. \an\ < 2n~{l2 implies that the vector field has no séparatrices to the origin, 
and by symmetry the singularity is a centre. • 

LEMMA 3. If\an\< 2ri~xl2, the type of stability of the origin for the system (3) is 
determined by the first at / 0 with odd i. 

PROOF. We consider two cases: 

CASE i). n even. Let us suppose an+\ = • • • = an+2j-\ = 0 and an+2j+\ ^ 0. 
Taking into account formula (6) we have that uk(9) = uk{9) for 1 < k < 2/ + 1, and 

u2j+2(9) = û2j+2(9)-^H(9) 

where u^(9) are the corresponding functions for X. Then by Lemma 2, Wjt(w) = 0, 
1 < k < 2/ + 1 and 

(an+2j+lJZCs^y(9)d9, 
{ an+2j+\io exp[(2/ + 1 )J0R{ (r) dr\ (1 fâSn&)2 

an+2j+i£Cs3n+2J(9)d9, ifan = 0 
1 Cs^(9)d0 . f / 0 

h\-nPn(0)Snff)2 1Ifln r U 

therefore sgn(M2/+2(w)) = sgnan+2/+i in both cases. 
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CASE ii). n odd. Let us suppose an - an+2 = • • • = 0n+2(/-i) = 0 a nd an+2j / 0. 
Analogously, by Lemma 2 

uk{w) = 0 for 1 < k < 2/ and 

«2/fi(w) = j™pn+2j(6)Cs2n~\6)d6 

= an+2jfCs3n+2j-ld(0)dO 

therefore s g n ^ + i O ) ) = sgnaw+2/ 
Then the origin is an attracting (repelling) focus if an+2j+\ < 0 (an+2/+i > 0) for even 

n or flw+2/ < 0 (an+2j > 0) for odd n. m 

REMARK. In the case n even we have the additional property u2k = 0 for 1 < k < j . 

THEOREM. Consider the system (3) with \an\ < 2n~x'2 and 

n + 2k+\ or n + 2k + 2 ifn is even 
N= , 

n + 2k orn + 2k+\ifn is odd 

i) There are at most k small amplitude limit cycles, 

ii) If 

0 < \an+\\ < \an+s\ < • • • <C |an+2ik+i| and 

an+2j-\ ' an+2j+\ < 0, j=l,...,k(n even) 

or 

0 < \an\ <C \an+2\ < • • • < 1̂ /1+2*1 ^nd 

ûn+20-D ' fl/i+2/ < 0, y = 1 , . . . , * (n odd ) 

f/î n J/ẑ re are exactly k small amplitude limit cycles. 

PROOF. In order to illustrate, let us assume n even, an+\ = an+i = • • • = an+2k-\ = 0 
and a„+2*+i 4 ° 

If an+2&+i > 0 by Lemma 2, the origin is unstable. Now choose a2«+2*-i < 0> the 
origin becomes stable and if \an+2k-\ \ <C |tf«+2*:+i I w e bave «2/-2(H;) < 0 and U2j(w) > 0, 
then a repelling limit cycle is generated around the origin. 

By choosing successively an+2k-3,. • •, an+i so that each an+2j-\ is of the opposite sign 
to an+2j+\ and small enough, the stability of the origin is reversed k times, and each time 
a small amplitude limit cycle bifurcates out of the origin. 

The same argument works \ïan+2k+\ < 0. • 

COROLLARY. Let N be as in the theorem. Given an integer s with 0 < s < k there is 
a polynomial £^„ a^ of degree N such that the system (3) has exactly s small amplitude 
limit cycles. 
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