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^-SERIES IDENTITIES AND REDUCIBILITY OF BASIC 
DOUBLE HYPERGEOMETRIC FUNCTIONS 

H. M. SRIVASTAVA AND V. K. JAIN 

1. Introduction, notations and preliminaries. For real or complex q, 
\q\ < 1, let 

J 
L=o Vl -XqP+'J 

for arbitrary X and /A, so that 

1, if n = 0, 

(1.2) (A; q)n = (1 - A)(l - A4-) . •(1 -A<r'), 
Vn G {1, 2, 3 , . • • } , 

and 

(1.3) (A; q)^ = 
OO 

n (i - V). 
y=0 

Define, as usual, a generalized g-hypergeometric function by (cf. [26, 
Chapter 3]; see also [18] ) 

(1.4) p + l^/? + r 0>* 

where, for convergence, |#| < 1 and \z\ < co when r is a positive integer, or 
\z\ < 1 when r = 0, provided that no zeros appear in the denominator. 

Various g-extensions of the Appell functions (and of their confluent 
cases) in two variables (cf. [6] ) were first considered by Jackson ( [20], 
[21] ) in his systematic presentation of the expansion theory of these basic 
double hypergeometric functions along the lines of Burchnall and 
Chaundy ( [10], [11] ). All of Jackson's extensions are contained in the 
basic double hypergeometric series defined by (cf. [17], [22], [29], and [31]; 
see also [30] for the multivariable case) 
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/ 

I I (AT; q)r+s 

m 

n (MT; q\ ri(,T; 
T = l 

q\ 

xr / 

(q; q)r(q; q)s' 

n ^ a,p--i>:»\a\>•••' V ^ i ' • • • >fa>Yi>• • • > ? „ ; 9 ; * , J 1 
^ / :w, :"L X, X,:/*i /*«: "1 "„; iJ,k\ 

= y* x/2ir{r-\) + V2js(s-\) + krs 

p h u 

n («T; q)r+s I I (0T; q\ I I (yT; 4), 
T = 1 T = 1 T = 1 

X 

X 

for special values of i,j, k and of the nonnegative integers p9 h, w, /, m, n. 
When / = j = k = 0, the first member of (1.5) is written simply as (see 
[17] and [29] ) 

(1.6) ^ u W - ' ^ p ^ - ^ ^ Yi>v->y„; 1. 

A great deal of literature is available on ordinary hypergeometric 
functions of two and more variables (cf., e.g., [6], [26, Chapter 8], and 
[16] ). However, the literature on basic multiple hypergeometric functions 
seems to be a lot less extensive. Apart from the aforementioned work on 
basic Appell series by Jackson ( [20], [21] ), Agarwal ( [1], [2] ), Slater 
( [25]; see also [26, Chapter 9] ), Andrews ( [3], [4] ), and others ( [17], [22], 
[29], [30], [31], [32], [33] ) have developed various interesting properties of 
basic Appell series (and of their generalizations in two and more 
variables). In the present paper we prove a number of general ^-series 
identities and transformations which are shown to be applicable in the 
derivation of reduction and transformation formulas for various classes of 
basic double hypergeometric functions. We also consider several other 
interesting consequences of some of the results presented here. 

2. ^-series identities. For every bounded sequence {An} of complex 
numbers, we first prove the following ^-series identities: 

(2 1) 2 ( ~ 1 ) ^ (a; q)m{a\ q)n(-b/a; q)m(-b/a; q)„ 
m,n=o m+n (b; q)m(b\ q\ 

X 
(qm> q)m(<r> <i)n 
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HYPERGEOMETRIC FUNCTIONS 217 

and 

(a2; i)n(b
2/a\ f)H(-b; g)ln x2n 

»=o (b2; i)„{b; q)ln (q2; <?)„' 
— Zi A2n 

^ (a2; JUb2; A xm+" 
mT=0 ' L' m+" (a2; q)m(b2; q)n (q; q)m(q; q)n 

(2.2) 2 (-ITA, 

= S\ A (a b ; cf)ln x 
„_o 2" (a2q; i)n(b2q; ^ ) „ ( a V ; «f\ (ç2; ^)„' 

„ , . Ç , (a2; A,(62; A(^g; ^U^g; g2)» 
w,«=o 0 ; r ) w ( * ? ; ? )« 

xm (qx)n 

(£\ f)m tf\ i)n 
0 0 / 2L2 \ 

„t*o " " (û2*2; q)n(-a
2\ q)n(-b

2q\ q)n (q\ q)„ 

n A , V A (^; ^)w(fl; q1)n{b/aq\ q1)m{b/aq\ q \ 

(<r; ^ ) m to2; A 
= y ^ (A; q)n(b/q; q1)n(b/aq\ q)n xn 

„=o n (b; q1)n(b/q', q)n (q\ q)n' 

(25) 2 ^ (fl; ^Ufe; g)"(c/flft; g)* (g*/flfc>,w *" 
m,«=0 m + " (c; #)m (4; q)m (q\ q)n 

y A (C/A; q\{clb\ q)n xn 

n=0 n (c; q)n (q; q)„ 

(2 6) 2 q/2m{m~l)A ( g ; timV>c/a<l> <l)m+2n (~bxl a)m xn 

m,n=o m+n (b\ q)m(c\ q)n (q; q)m (q; q)n 

S A (b/a\q)n(bc/aq\q)n{bc(f-x\q) 
n X 

«=0 " (6; q)n(c\ q)n (q\ q)n 

provided that the series involved are absolutely convergent. 
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218 H. M. SRIVASTAVA AND V. K. JAIN 

Proof of Formula (2.1). For convenience, let Ql] denote the left-hand side 
of the ^-series identity (2.1). Then, using the definitions (1.1), (1.2) and 
(1.4), it is easily seen that 

(2.7) ^ 

q,q 

oo 

n=0 
1 (a' ?)„(" -b/a; <l)n ( - -xf oo 

n=0 
1n (b; 4)n (q\ <l)n 

4$3 
q~\ J'" lb, a 

'"/a 

5 

at 
-b/a; 

-"/b; 
The well-poised 4 0 3 series can be summed by a known g-analogue of 
Dixon's theorem (cf. [35, p. 1023, Eq. (2.3) ] ), and we are led to the 
g-series identity (2.1). 

Formula (2.1) provides a ^-extension of a series identity due to 
Buschman and Srivastava [12, p. 437, Eq. (2.7) ]. For b —> 0, (2.1) yields a 
^-extension of a result of Srivastava [27, p. 297, Eq. (17) ]. On the other 
hand, if in (2.1) we replace x by x/a and then let a —> oo, we shall obtain a 
g-extension of another series identity due to Srivastava [27, p. 295, Eq. 
(5)]. Finally, our ^-series identity (2.1) with b replaced by —ab would 
yield a ^-extension of a result of Buschman and Srivastava [12, p. 438, Eq. 
(2.8) ]. 

Proof of Formula (2.2). If we denote the left-hand side of (2.2) by £22* 
then 

(2.8) fi2 
„=o n (a2; q)n (q; q)„ 

X 4$3 
q~n,ql~n/a2,b, -b\ 

ql'n/a9 -q]~"/a, b\ 
q> q 

and, upon summing the 4 0 3 series by a ^-analogue of Watson's theorem 
(due to Andrews [5, p. 333, Theorem 1] ), we obtain the ^-series identity 
(2.2). 

Formula (2.2) provides a ^-extension of another series identity due to 
Buschman and Srivastava [12, p. 440, Eq. (3.10) ]. 

Proof of Formula (2.3). Denoting the left-hand side of (2.3) by £23, we 
have 

(2.9) Œ3 

X 4 * 3 

(a ; q)n\a q; q )„ x 

X 4 * 3 

" (a\ i)n (q2; i)n 

' q-2\ f-lnla\ b\ b2q; ' 

Now apply a known result [36, p. 265, Eq. (5.3) ] to sum the 4 $ 3 series, and 
the g-series identity (2.3) follows readily. 
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Proof of Formula (2.4). Let Q4 denote the left-hand side of (2.4), so 
that 

(2.10) Q4 = 2 An 
(a; q2)n(b/aq; q2)» xn 

X 4$3 

(ft; A (q2; o \ 
a, b/aq; 

b,^~lnla,a^-lnlb; 

q~ln, ^~lnlb, 
i, 

If we sum the well-poised 4^>3 series by applying Carlitz's formula [13]: 

(2.11) 4O3 
b,qh~nlab; 

q]-n/a,q]-"/b, abq , 
W 

(ab; q)n(a; q\(b; q\(-qA; q \ 
0, 1, 2 , . 

(ab; q \(a; q)n(b; q)n 

we shall obtain the ^-series identity (2.4). 

Proof of Formulas (2.5) and (2.6). Denoting the left-hand sides of (2.5) 
and (2.6) by S25 and Q6, respectively, we find that 

(2.12) 25= ^ An(c/ab;q)n- r3Hc
alj-qn/c: q,q\ 

n=Q (q; q)n
 Lc> ab(l / c > J 

and 

(2.13) ti6 = 2a An ~ 3 ^ 2 u nJ-1n/hr. 1,11 
«=0 (c; q)n {q\ q)n L o, a<T 'be, J 

Each of the 3 $ 2 series, occurring in (2.12) and (2.13), is summable by the 
^-extension of Saalschutz's theorem [26, p. 97, Eq. (3.3.2.2) ], and we 
readily arrive at the ^-series identities (2.5) and (2.6). 

Formula (2.5) with c replaced by abc and b —> 0 yields a ^-extension of 
Srivastava's identity [27, p. 297, Eq. (16) ]. On the other hand, our o-series 
identity (2.6) reduces, when a —> oo, to a o-extension of another result due 
to Srivastava [27, p. 295, Eq. (4) ]. 

3. Reduction formulas for basic double hypergeometric functions. 
Making use of the notations (1.5) and (1.6), we can readily specialize the 
coefficients An in our ^-series identities (2.1) to (2.5) in order to derive 
the following cases of reducibility of the basic double hypergeometric 
function (1.6) withjy = — x, y = qx, et cetera. 

2:2 (3.1) *£ft 
, a : a, —bla\ a, —bla\ 

q; x9 — x 

2 
n=0 

£„. . . , ft: b; b; 
(«i; <j)in • • • (<V g)2«(fl2; ^X^la1; JXJ-b; q)ln 

(/?,; q)2„ . .. (ft; q)2n(b
2; ^)n(b; q)2n 
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J-n 
X 

(q2; i \ 
2;2 (3.2) Fft: 

= 2 

X 

« ! , . . . , a : Û, - a ; ft, -ft; 
o . ÛT; x , — x 

(g,; <?)2„ • ••(«?; g)2n(«
2ft2; g2):  

„fo 08,; <z)2„ . . . (fi,; ?)2„(a2
?; <^)n(b

2q- i)n(a
2b\ q1),, 

2n 

2« 

(q2; «V 

(3.3) *£* 2;2 
2 „2„ . 1.2 , 2 , a , , . . . , ap: a , a q; b , b q; 

(a,; tf\ . . . (ap; ^ ) „ ( a V ; <?) 2/i 

„=o 08,; ^)„ . . . 08/; A ^ q)n(~a2; ?)n(-*2?; ?)„ 

X 
(̂ ; q)„ 

(3.4) ^ f [^ ; ; ; ; ;^ a ' 6 / û ?: f l ' 6 / f l J : f2;*,**] 

V («1; fX • • • K ; q\(a\ q)„(b/q; q2)„(b/aq; q)„ x" 

»=o 03,; ? \ • • • (fif, fonib; q2)„(b/q; q)„ {q; q)„' 

(3.5) Wl: 

= 2 

«1, . . . , an: #, ft; c/aft; , , 
n K q\ cx/ab, x 

P j , . . . , P/! c\ ; 

n X 

«~o (ft; ? ) „ . . . (ft; ?)w(c; #)„ (# #)„ 

Upon similarly specializing the coefficients An, our ^-series identity 
(2.6) yields 

(3 6) 2 q/2m(m~]) ^ ^m + n ' ' ' (ap' ^m + n^ ÏÏm(bc/a(l> <ÏÏm + 2n 
^1=0 (ft; q)m+n • • • (ft; 4W«te; ^)wte; q)n 

X 
(-bx/a)m ** 

X 

te; ?)m te; ?)„ 

V («1; g)„ • • • (<*/>; q)n(b/a; q)„(bc/aq; q)n(bc/q\ g)2n 

«=0 (ft; «)„. . . (ft; ?)„(*; tf)„te; q)n(bc/q; q)n 

xn 

te; ?)„" 
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From the definition (1.2) it is easily verified that 

(3.7) (X; q)2n = (X; q2)^; f)n, (X; <?)n = (VX; q)n(-yfa\ q)n, 

n = 0, 1, 2, . . . . 

Thus the right-hand side of each of the reduction formulas (3.1) to (3.6) 
can easily be rewritten in terms of a basic hypergeometric function of the 
type (1.4). 

4. Applications of the reduction formulas (3.1) to (3.6). Formula (3.1) 
provides a ^-extension of the known result [12, p. 439, Eq. (3.4) ]. For 
p = I = 1, it yields the reduction formula 

[X: a, —b/a\ a, — b/a; 
LJU: b; b; 

(4.1) $ 1:2;2 
1:1 ; 1 q; x, 

*0< 
X, Xq, a2, b2/a2, 

ju, \xq, b2, 
-b, 
b, 

-bq; 
bq\ i,*\ 

which is due essentially to Verma and Jain [35, p. 1030, Eq. (2.33) ]. 
If in the reduction formula (3.1) we let b —> 0, we shall obtain a 

g-extension of the known result [12, p. 439, Eq. (3.3) ]. On the other hand, 
if in (3.1) we replace x by x/a and then let a —> oo, we shall arrive at a 
g-extension of another known result [12, p. 439, Eq. (3.7) ]. Formula (3.1), 
with b replaced by — ab, would readily yield a ^-extension of yet another 
known result [12, p. 439, Eq. (3.6) ]. 

Next we consider the special cases of (3.1) when/? — 1 = / = 0 and 
p = I — 1 = 0. In the former case we are led to 

(4.2) O 1:2;2 
0:1;1 

[ X:a, — b/a; a, —b/a; 
b\ b; 

2, J. 

q\ x, 

$ [X, Xq, a2, bllal, 
6^5 

b, -bq; 
b1, b, bq, 0, 0; <?, 4 

which is a g-extension of a result due to Bailey [8, p. 239, Eq. (4.5) ] on 
the reducibility of Appell's function F2. In the latter case of (3.1) (with 
p = I — 1 = 0), if we replace b by — ab, we obtain 

(4.3) $ 0:2:2 
1:1 ; 1 

— : a, b; a, b; 
fi: —ab; —ab; 

x, —x 

ô [ a2, b2, ab, abq, 0, 0; y 2 
5 ^ 5 U w , a2b2, -ab, -abq; q ' 

which provides a g-extension of another result of Bailey [8, p. 239, Eq. 
(4.3) ] on the reducibility of Appell's function F3. 

Lastly, in our reduction formula (3.1) we set/? — 2 = / = 0, replace x 
by x/a, and then let a —> oo; we thus find that 
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(4.4) *§:0;0 

6^6 

A, ju: - ; -;q 
- : b; b;\ 

; x, — x l 
, 1,0 J 

A, Xq, /x, \xq, -b, -bq\ ? 
b1, b, bq, 0, 0, 0; q ' 

À: a, —a: b, —b: 
- : a2; b2; q ' X ^ \ 

A, \q, ab, —ab, abq, —abq\ 

a2q, b2q, a2b2, 0, 0; 

2 2 
q , x 

which is a ^-extension of a known result [27, p. 296, Eq. (9) ] on the 
reducibility of Appelles function F4. 

Forp — 1 = / = 0, the reduction formula (3.2) immediately yields (cf. 
[22, p. 359, Eq. (4.18)]) 

(4.5) *i;?jî 

= 6*5 

which pro vides a ^-extension of yet another result of Bailey [8, p. 239, Eq. 
(4.4) ] involving the Appell function F2. 

Letting b —-> 0 in (4.5), we obtain the quadratic transformation 

which is a ^-extension of the familiar result [24, p. 65, Theorem 24]. (See 
also Jain [23, p. 957, Eq. (3.1) ] for an alternative proof of (4.6).) 

Now, in our reduction formula (3.2) we set p = I — 1, ax = A, /^ = Ax, 
and let b —> 00; we thus find that 

(4.7) 3$2 
A, a, —a; 1 

^ n 4> x\ a , 0; J 
0 0 ^ A, A#, 7 2 2 I 

Ax, A#x, a q\ J 

which is another ^-extension of the aforementioned result [24, p. 65, 
Theorem 24]. Use is made here of the following limiting case of the 
^-extension of Gauss's summation theorem [26, p. 97, Eq. (3.3.2.5) ]: 

(4.8) ,*,[«; * c / « ] = ^ q)0 

(c\ q)0 

Lastly, for p = I = 0, (3.2) reduces to the following ^-extension of 
Bailey's result [7, p. 246, Eq. (2.11) ]: 

(4.9) 2*,[a'-J; **] 2*'[ 6 ,~$ *•"*] 

a q, b q, a b ; J 4 $ 3 
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which, for b —> 0, yields a g-extension of Kummer's second formula [24, 
p. 125, Theorem 42] in the form: 

(4.10) 2 $ , a, —a: 
a2. q,x = (-•*; i)oo 2 $ i 

0,0 ; 2 2 
2 ? , * 

For p = I = 0, (3.3) reduces immediately to the interesting identity 

(4.11) 2 $ 2^1 

2 2 
a , a q; 

b\ b2q; 
q2, 

4 $ 3 

06, —ab,ab\/q, —ab\/q; a x\ 
n2h2 _n2 _an.

 q> Y 

qx 

ctb\ -a\ -bLq\ 
while (3.4) similarly yields a ^-extension of Clausen's identity (cf., e.g., [15, 
p. 185, Eq. 4.3(1) ] ) in the form: 

(4-12) ,.,[*£ *.*]*[£ t.*] 

A:b. b, \[ab, —\/ab; 
abq, —yabq\ q, x ] 

Several further consequences of the identity (4.11) are worthy of note. 
First let Z? —> 0 in (4.11), and we have 

(4.13) 2 $ , ^ : ^ *] = («*; Ac 2*.[°-j!: *,*], 
while (4.11) for b —» oo yields 

(4.14) 2 * ^ : ^ * ] = ( ^ o * . [ _ 2 * - < 4 
On the other hand, if in (4.11) we let a —> 0 or a —> oo, we obtain the 
identities 

(4.15) 2 $ , 

and 

(4.16) 2$i 

b 'b4^'; ^,qX\ = (x; ^ ) o ° 2$11 - ^ * X 

t2$;^]=<^k°*' -i2«; « • - * « * ] • 
respectively. Each of the ^-identities (4.13) to (4.16) is analogous to an 
interesting reduction formula for the Gaussian hypergeometric function 
2Fl (cf., e.g., [24, p. 70, Exercise 10] ). 

Formula (3.5) with c replaced by abc and b —» 0 yields 

<4,7) *r4x:::X -1-1 ***] 
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= 2 
H=0 

(o^; g)„... (ap\ q)n(ac\ q)n xn 

(fix; q)n... (fifi q)n (q; q)n' 

which is a ^-extension of the known result [12, p . 439, Eq. (3.1)] . For 
p = I = 1, (4.17) evidently becomes 

(4.18) $ ! ; ' : • 
\: a; c; 

q; ex, x 2*1 
À, ac; 

q-, x 

which, in view of Andrews' formula [3, p . 618, Theorem 1], leads us at once 
to the familiar result 

(4.19) 2 $ , K p; 
q, x 

(k 4)OO(P-*; q) o 

oc 
• 9 ^ 1 

ju/A, x; 

px; 
q, A 

For p = I = 0 and JC replaced by abx/c, (3.5) yields another familiar 
result 

(4.20) 2 $ , q, x 
(abx/c; q)0 

(x; q)oo 
2*1 

c/a, c/b; 

c\ 
[ q, abx/c 

while (3.5) with/? — 1 = / = 0 and b —> oo gives us the transformation 

(4.21) 2 * [À. P; 

i c; * 
2^2 

À, c /p; 
L c, Xx; <?, P-x 

which is due to Jackson [19, p . 145, Eq. (4) ]. 
Formula (3.6) with a —> oo yields 

(4 22) J* rfn(m-l) (a\> (Ùm + n • • • (a/?> a)m + n  

m,«=o ( f t ; <?)m + « . . . (ft; q)m + n(b\ q)m(c; q)n 

(bx)m xn 

X 
(?; 4)m («; 9)» 

h ; g)„ • • • (<y; q)n(bc/q> q)in 

n=0 (fix', q)n... (ft; q)n(b\ q)n(c; q)n(bclq; q)n (q; q)n 

which is a ^-extension of the known result [12, p . 439, Eq. (3.2) ]. For 
p - 2 = / = 0, (4.22) evidently reduces to (cf. (1.5) ) 

(4.23) *§;?;' 2:0;0 
1 

À, fi: — ; — ; q; bx, x 
- : b\ c; 2, 0, 0 

6*5 

A, /I, / — , - / —, y/bc, 
q \] q 

be; 

be q, x 
b, c, —, 0, 0; 

q 
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which provides a g-extension of Burchnall's formula [9, p. 101, Eq. (37) ] 
on the reducibility of the Appell function F4. 

Finally, we set X = /x = 0 in (4.23), and we obtain the formula 

(4.24) 0<D 0^1 

Vc 

0,0; 

c\ 
. & x 

= 4$3 

/—, y/bc, —yfbc\ 
q 

u q, x u bc 
b, c, —; 

q 

which is a g-extension of a well-known result (cf., e.g., [15, p. 185, Eq. 
4.3(2) ] ). 

5. General ^-series transformations. Let {An } be a bounded sequence of 
complex numbers. The general g-series transformations to be proved in 
this section are 

(5.1) 2 q^"X"> + "-*Am+n(a; q)m(b; ?)» 7 ^ 7 " ^ 
IM=0 

2 {-\Tqhn(n~X)Am+n 
m,n=0 

X (a; q)m{ab(f; q)n(ax/y; q)„ 
(y/ay m + n 

(<?; q)m(q\ q)n 

which is a ^-extension of Srivastava's formula [28, p. 139, Eq. (3) ]; 

scy\ V lhm{m-X) + Vin(n-X) Am + n * ^ 

m,«=0 (a; q)m(b\ q)n (q; q)m (q\ q)n 

_ ^ V2m(m-\) + V2n(n-\) j 
— ^Li q ^m + n 

m,n=0 

X 

X 

iflbq ; q)m+in(ayfx\ q) 
m + n 

(a; q)m+n{abq~x\ q)m+n(b\ q\(aylx\ q\ 

y 

which is a ^-extension of a mild generalization of a series identity due to 
Buschman and Srivastava [12, p. 436, Eq. (1.9) ]; 
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(5.3) 2 im , im+\ y 

2,«=0 (a2; ^ ) m (^ 2 ; « r \ ( ^ ^ ) m (q1; f)n 

m,n = 0 m + " ( û ^ ^)m + n(a2/^ <ï)n (<?> fàm (<!> <l)n 

which is a ^-extension of Srivastava's result [28, p. 142, Eq. (15) ]; 

00 

(5.4) 2 q/iim+n)2Am + n(a2; i)m{a2; <?)„ 

lm In 

x y 

ii\ A, to2; i\ 

— ZJ q Am+n , 2 2x 
m,«=o (a <?; <7 ) m 

x (-xyr (.xv)" . 

(^; <?)m{q\ q)n' 
^^J / \ / \ A/2 AZ 

(5 5) S '/imCm-i)^ W Q)mya^ Q)n x y 
m,n=o m + " (*; q)m(b\ q)n (q; q)m (q\ q)n 

V Mn-X)A (Aï iïm + ni-'fx'y' <ÙmQ>la'> <Ùn 

w,i=o (0 ; q)m+2n(b> q)n 

y ym (-axyT9 

which provides a g-extension of a result due to Buschman and Srivastava 
[12, p. 437, Eq. (2.4) ]; 

00 

(5.6) 2 ^ ^ " - ' ^ « ( a ; <?),>; <?)„ 

xm v" 
X (6; q)m(b; q)„ * 

(?; ?)m (4; ?)„ 

CO 

m,n=0 

x Jab; q)m+2n(a; q)m+n(b; q)m+n(-q"y/x; q)„ 

(ab; q)m+n 
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X 
" {-xyf 

to; <i)m to; q)H ' 
which is a ^-extension of a series identity due to Buschman and Srivastava 
[12, p. 437, Eq. (2.5) ]; 

OO * 

(ZH\ "S1 jn(m— \) + Vin(n — 3) ^m + n  

™,"=0 (a; q)m(a\ q)n(b\ q)m(b\ q)n 

X y 

(#; q)m (q\ q)n 

x 

^ mn-\-l/2m(m — 3) + 1/2«(3« — 5) A 
^-» H ^m + ln 

m,n=0 

(ab<r + 2n-ll qU-qn^x/y- q)m y (xy)n 

which provides a ^-extension of yet another result of Buschman and 
Srivastava [12, p. 437, Eq. (2.6) ]. It is assumed in every case that each of 
the double series involved converges absolutely. 

Proofs. Denoting, for convenience, the first member of the g-series 
transformation (5.1) by A, and making use of the definition (1.2), we 
readily observe that 

(5.8) A = 2 qhN^-X)AN(a; q)N 
N = 0 (q\ qh 

x >*\}-N'/a; «>W/ax\> 

where we have made the rearrangement m + n = N. Now we transform 
the 2$i occurring in (5.8) by appealing to Jackson's formula (4.21), and we 
find that 

oo s t \N 
x? (~y/a) 

(5.9) A = Z AN(a; q)N(ax/y; q)N- — 
N=O (q\ q)N 

X2<D2 

q-N,ql-N/ab; 
J-N la, q yi' ax\ 

q, bqy/ax 

Since this 2®2 series is terminating, we can make a second rearrangement, 
and (upon simplifying the resulting double series) we arrive at the ^-series 
transformation (5.1). 

The proof of the ^-series transformation (5.2) depends similarly upon 
Jackson's formula (4.21). 
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Formulas (5.3) and (5.4) can be proven in precisely the same manner as 
(5.1) and (5.2); in place of Jackson's formula (4.21), however, we shall 
require the quadratic transformation [34, p. 426, Eq. (2.3) ] 

(5.10) 2 0 2^1 

„ 2 A2-

a , b ; : i, 
(abz/y/q; q) 

( 
OO ^ a, —a, a\fqlb, — a\fqlb\ 

a2q/b2, abz/y/q, aq\fq/bz\ ^' q 
(bz/a\fq; q) 

a = q-\n = 0, 1, 2 , . . . ), 

which is a ^-extension of the terminating version of a familiar result [24, 
p. 65, Theorem 23]. 

In order to prove the ^-series transformation (5.5), we let A denote its 
left-hand side and make the rearrangement as in the proofs of (5.1) to 
(5.4). We thus find that 

(5.11) A = Ï A N
{ ^ - 1 

N=0 (b; q)N (q; q) N 

X 3 0 2 
q-N,q]~N/b, a; .« , 

Transforming this well-poised terminating 3$2 series by means of the 
known formula [13, p. 195, Eq. (2.4) ] 

(5.12) 3<D2 
c\ a, b, 

aq/b, aq/c; 
q, aqz/bc 

(az\ q\ OO fa 

0 ; q)o 

a = q-\n = 0, 1, 2, . . . ), 

we obtain 

y/a, — Vfl, \faq, ~Vaq, aq/bc; 
aq/b, aq/c, az, q/z; q, q 

(5.13) A = 2 AN<?;q)»(-x/yl9)» " 
N 

N = 0 

X 5*4 

-ViN 

(b; q)N (q; q)N 

W-N\b/a; -ViN M\-N) 

b,q^Nla, -xly\-q'-Nylx; q'q 

Now we make a second rearrangement, this time with N = m + 2n, and 
(on simplifying the resulting double series) the proof of (5.5) is thus 
completed. 

Similar are the derivations of the ^-series transformations (5.6) and 
(5.7). We skip the details involved. 
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6. Special cases of (5.1) to (5.7). For^ = ax, our g-series transforma
tion (5.1) reduces immediately to the interesting result 

x' 
(6.1) 2 Am+n(a\ q)m(b\ q)n — 

(axf 

m,n=0 (q; q)m (q; q)n 

2 An(ab; q)n 
n=o (qi q)n 

which is a g-extension of Srivastava's formula [27, p. 297, Eq. (16) ]. 
Indeed, as we pointed out in Section 2, (6.1) would follow also if we 
replace c in (2.5) by abc and let b —> 0. 

Formula (5.1) with 

(6.2) An = (±^, « = 0 , 1 , 2 , . . . , 
O; q)n 

provides a ^-extension of Carlson's identity [14, p. 222, Eq. (4) ]. On the 
other hand, if in (5.1) we set 

(6.3) An = ^ ^ , n = 0, 1, 2 , . . . , 
(ab; q)n(~cyla\ q\ 

and make use of (4.8), we obtain the reduction formula 

(6-4) * ^ ; i 
c: a; b;q;x,y 

ab, —cy/a: — ; — ; 1, 1, 1 

(~yla\ q\ 

(~cy/a; q)0 

^ \c, a, ax/y; 1 

The first member of each of the g-series transformations (5.2), (5.3) and 
(5.5) reduces, when 

(6.5) An = \,n = 0, 1, 2 , . . . , 

to a product of two simple O-series defined by (1.4). These obvious 
consequences of (5.2), (5.3) and (5.5) under the constraint (6.5) provide 
interesting instances when the double series on the right-hand sides of 
(5.2), (5.3) and (5.5) simplify considerably. 

Next we set y = x\fq in (5.4), and we obtain 

(6.6) 2 <fAm+„(a2; q2)m(a2; <?)„ 
v2m + In 

m,n=0 (ri T)m(T', (f)n 

oo x2n 

= 2 An(a
2; q)n- - , 

«=o (qm, q)n 
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where we have replaced An by q~Vm An on both sides. Formula (6.6) would 
follow also when we set y = x/\/q in (5.4). 

A number of other ^-series identities can be derived similarly from our 
^-series transformations (5.1) to (5.7). 
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