K. Matsumoto Nagoya Math. J. Vol. 98 (1985), 37-42

A REMARK ON SMITH'S RESULT ON A DIVISOR PROBLEM IN ARITHMETIC PROGRESSIONS

KOHJI MATSUMOTO

§1. Introduction

Let $d_k(n)$ be the number of the factorizations of n into k positive numbers. It is known that the following asymptotic formula holds:

$$\sum_{\substack{n \leq x \\ n \equiv r \pmod{q}}} d_k(n) = \varphi(q)^{-1} x P_k(\log{(x)}) + \Delta_k(q;r) ,$$

where r and q are co-prime integers with 0 < r < q, P_k is a polynomial of degree k - 1, $\varphi(q)$ is the Euler function, and $\Delta_k(q; r)$ is the error term. (See Lavrik [3]).

In 1982, R. A. Smith [5] proved that if (r, q) = 1, then for $x \ge q^{\frac{1}{2}(k+1)}$,

$$(1.1) \qquad \qquad \Delta_k(q;r) = F_k(0) + O(x^{(k-1)/(k+1)}(\log{(2x)})^{k-1}d_k(q)),$$

where the function $F_{k}(s)$ is the meromorphic continuation of the Dirichlet series

$$\sum_{n\equiv r \pmod{q}} d_k(n) n^{-s} .$$

The proof of Smith depends essentially on Deligne's famous work concerning Weil's conjecture [1].

A remaining problem is the estimation of the term $F_k(0)$. In the "Note added in proof" of [5], Smith announced the estimate $F_k(0) \ll q^{\frac{1}{2}k}(\log (q))^k$, so the explicit upper bound of $\mathcal{A}_k(q; r)$ obtained by Smith is as follows:

$$(1.2) \qquad \qquad \Delta_k(q;r) = O(q^{\frac{1}{2}k}(\log{(q)})^k + x^{(k-1)/(k+1)}(\log{(2x)})^{k-1}d_k(q)) \,.$$

Furthermore, Smith conjectured that the upper bound of $F_{k}(0)$ can be improved to $q^{\frac{1}{2}(k-1)+\epsilon}$ for any $\epsilon > 0$. He said, "I will return to this problem at another time." But, unfortunately, he suddenly passed away in March 1983, at forty-six years old.

Received November 22, 1983.

KOHJI MATSUMOTO

In this note we shall prove this conjecture of Smith:

THEOREM. If (q, r) = 1, then for any $\varepsilon > 0$,

 $F_k(0) = O(q^{\frac{1}{2}(k-1)+\varepsilon}),$

where the O-constant depends only on k and ε .

This result was already proved in 1982, and appeared in [4] in March 1983, without knowing the existence of Smith's paper [5].

Our method also depends on Deligne's work. We shall use Weinstein's version [7] of Deligne's result, which gives the following sharp estimate of the "hyper-Kloosterman sum".

LEMMA (Deligne-Weinstein). If we put

$$S(m_1, \cdots, m_k; q) = \sum_{\substack{1 \leq \alpha_i \leq q(1 \leq i \leq k) \\ \alpha_1, \cdots, \alpha_k \equiv 1 \pmod{q}}} \exp\left(2\pi i q^{-1} (m_1 \alpha_1 + \cdots + m_k \alpha_k)\right),$$

then,

$$S(m_1, \cdots, m_k; q) \ll k^{v(q)} q^{\frac{1}{2}(k-1)} (m_1, m_k, q)^{\frac{1}{2}} \cdots (m_{k-1}, m_k, q)^{\frac{1}{2}},$$

where v(q) is the number of distinct prime factors of q, and (a, b, c) is the greatest common divisor of a, b and c.

In the next section, we shall prove the Theorem. In Section 3, we mention briefly further comments concerning the estimation of \mathcal{A}_k (q; r).

The author would like to thank Dr. Masao Toyoizumi for some simplifying of the original manuscript. He would also like to thank the referee for valuable advices.

§2. Proof of the Theorem

The function $F(s) = F_k(s)$ is defined as the Dirichlet series

$$F(s) = \sum_{n \equiv r \pmod{q}} d_k(n) n^{-s}$$

for $s = \sigma + it$, $\sigma = \text{Re}(s) > 1$. Then,

$$egin{aligned} F(s) &= \sum \limits_{\substack{1 \leq lpha_1, \cdots, lpha_k \leq q \ lpha_1 \equiv lpha_1}} \left(\sum \limits_{u_1 \equiv lpha_1} u_1^{-s}
ight) \cdots \left(\sum \limits_{u_k \equiv lpha_k} u_k^{-s}
ight) \ &= q^{-ks} \sum \limits_{\substack{1 \leq lpha_1, \cdots, lpha_k \leq q \ lpha_1 = lpha_1}} \zeta(s, q^{-1}lpha_1) \cdots \zeta(s, q^{-1}lpha_k) \;, \end{aligned}$$

where,

DIVISOR PROBLEM

$$\zeta(s, w) = \sum_{n=0}^{\infty} (n + w)^{-s}$$
 $(0 < w \le 1)$

is the Hurwitz zeta-function. The Hurwitz zeta-function can be analytically continued over whole plane, and holomorphic except at the pole of order one at s = 1. And, if Re (s) < 0, then

$$\zeta(s,w) = -i\Gamma(1-s)(2\pi)^{s-1}\sum_{m=1}^{\infty}m^{s-1}\Big\{e(mw)e\Big(rac{1}{4}s\Big) - e(-mw)e\Big(-rac{1}{4}s\Big)\Big\},$$

where $\Gamma(s)$ is the Γ -function, and $e(x) = \exp(2\pi i x)$. (See Titchmarsh [6], Chap. II) Hence, the function F(s) is also meromorphic over whole plane, holomorphic except at s = 1, and if Re (s) < 0,

$$egin{aligned} F(s) &= q^{-ks} \sum\limits_{lpha_1,\cdots,lpha_k} (-i\Gamma(1-s)(2\pi)^{s-1})^k \ & imes \prod\limits_{j=1}^k \sum\limits_{m_j=1}^\infty m_j^{s-1} \left\{ e(m_jlpha_j/q) eigg(rac{1}{4}sigg) - e(-m_jlpha_j/q) eigg(-rac{1}{4}sigg)
ight\} \,. \end{aligned}$$

Let $\varepsilon_j = \pm 1$ $(1 \leq j \leq k)$, and $E(\varepsilon_1, \dots, \varepsilon_k)$ be the number of j such that $\varepsilon_j = -1$. Then,

$$egin{aligned} F(s) &= q^{-ks}(-i\Gamma(1-s)(2\pi)^{s-1})^k\sum\limits_{\epsilon_1,\cdots,\epsilon_k=\pm 1}{(-1)^{E(\epsilon_1,\cdots,\epsilon_k)}}\ & imes e\Bigl(rac{1}{4}(\epsilon_1+\cdots+\epsilon_k)s\Bigr)\sum\limits_{u=1}^\infty u^{s-1}\sum\limits_{m_1\cdots m_k=u}\sum\limits_{\substack{1\leq lpha_1,\cdots,lpha_k\leq q\ lpha_1\cdotslpha_k\equiv r}}\ & imes e(q^{-1}(\epsilon_1m_1lpha_1+\cdots+\epsilon_km_klpha_k))\ . \end{aligned}$$

Now we assume (q, r) = 1, and estimate the right-hand side by Deligne-Weinstein's lemma. Let α_j^* be the unique solution of the congruence $\alpha_j \alpha_j^* \equiv 1 \pmod{q}$, $1 \leq \alpha_j^* \leq q$. Then, $\alpha_k \equiv \alpha_1^* \cdots \alpha_{k-1}^* r$, so the last sum of the right-hand side is $S(\varepsilon_1 m_1, \cdots, \varepsilon_{k-1} m_{k-1}, \varepsilon_k m_k r; q)$. Using Weinstein's estimate and Stirling's formula, we have

(2.1)
$$F(s) \ll ((1+|t|)^{\frac{1}{2}-\sigma_0} e^{-\frac{1}{2\pi |t|} |q^{-\sigma_0}|^k} e^{\frac{1}{2\pi |t|} |k|} \times \sum_{u=1}^{\infty} u^{\sigma_0-1} \sum_{m_1\cdots m_k=u} k^{v(q)} q^{\frac{1}{2}(k-1)} (m_1, m_k r, q)^{\frac{1}{2}} \cdots (m_{k-1}, m_k r, q)^{\frac{1}{2}},$$

$$Z(u) = \sum_{m_1 \cdots m_k = u} (m_1, m_k r, q)^{\frac{1}{2}} \cdots (m_{k-1}, m_k r, q)^{\frac{1}{2}}$$

Then,

$$|Z(u)| \leq \sum_{m_1\cdots m_k=u} (m_1\cdots m_{k-1}, q^{k-1})^{\frac{1}{2}} \ll u^{\epsilon}(u, q^{k-1})^{\frac{1}{2}}.$$

39

So,

$$\sum_{u=1}^U |Z(u)| \ll U^{arepsilon} \sum_{u=1}^U (u, q^{k-1})^{rac{1}{2}} \ll U^{arepsilon} \sum_{d \mid q^{k-1}} d^{rac{1}{2}} [U/d] \ll U^{1+arepsilon} q^{arepsilon} \; .$$

Hence, by partial summation,

$$\sum_{u=1}^{\infty} u^{\sigma_0-1} Z(u) \ll q^{\varepsilon}$$
.

Also, since $v(q) \ll \log (q)/\log \log(q)$, we have $k^{v(q)} \ll q^{\varepsilon}$. Substituting these estimates in (2.1), we have (for $\sigma_0 = \text{Re}(s) < 0$)

(2.2)
$$F(s) \ll (1+|t|)^{(\frac{1}{2}-\sigma_0)k} q^{\frac{1}{2}(k-1)-\sigma_0k+\epsilon}$$

Now, let

$$f(s) = F(s) - d_k(a)a^{-s},$$

where $a \equiv r \pmod{q}$ and 0 < a < q. Then, for $s = \sigma_0 + it$,

(2.3)
$$f(s) \ll (1+|t|)^{(\frac{1}{2}-\sigma_0)k} a^{-\sigma_0} q^{\frac{1}{2}(k-1)-\sigma_0k} (aq)^{\varepsilon}$$

Next, it is easily shown that for Re (s) = $\sigma_1 > 1$,

$$(2.4) f(s) \ll q^{\iota-\sigma_1}.$$

Now we introduce the function

$$\tilde{f}(s) = f(s) - M(s) ,$$

where M(s) is the meromorphic part of F(s) at s = 1. Smith [5] showed that M(s) has the same meromorphic part as the function $\Phi_k(s;q)\zeta^k(s)$, where the definition of $\Phi_k(s;q)$ is as follows:

$$arPsi_k(s;q) = arphi(q)^{-1}\sum_{d\mid q} d^{-s}\mu(d)$$
 ,

here $\mu(d)$ is the Möbius function.

Smith ([5], p. 263) proved that $\Phi_k(s; q)$ has the Taylor expansion

$$arPsi_k(s;q) = \sum_{n=0}^{\infty} C_1(n;q)(s-1)^n$$

at s = 1, where the coefficients $C_1(n; q)$ satisfy the following estimates:

$$n! \cdot C_1(n;q) \ll q^{-1}(\log\log(3q))^n$$

So we can easily show that M(s) satisfies the estimate

40

DIVISOR PROBLEM

(2.5)
$$M(s) \ll q^{-1} (\log \log (3q))^{k-1}$$

in the range $\{|s-1| \ge \varepsilon/2\}$. Hence, $\tilde{f}(s)$ satisfies the same estimates as (2.3) and (2.4), if $\sigma_1 - 1$ is sufficiently small.

Applying the Phragmén-Lindelöf principle to the holomorphic function $\tilde{f}(s)$, we can deduce from (2.3) and (2.4) the following estimate of $\tilde{f}(s)$, for $\sigma_0 \leq \sigma = \text{Re}(s) \leq \sigma_1$:

(2.6)
$$\tilde{f}(s) \leq (1+|t|)^{(\frac{1}{2}-\sigma_0)k(\sigma_1-\sigma)/(\sigma_1-\sigma_0)} a^{-\sigma_0(\sigma_1-\sigma)/(\sigma_1-\sigma_0)} \times q^{((\frac{1}{2}(k-1)-\sigma_0)k)(\sigma_1-\sigma)-\sigma_1(\sigma-\sigma_0))/(\sigma_1-\sigma_0)} (aq)^{\varepsilon}.$$

If we substitute the values $\sigma_1 = 1 + \frac{1}{2}\varepsilon$, $\sigma_0 = -\frac{1}{2}\varepsilon$ and s = 0 in (2.6), we get

$$\tilde{f}(0) \ll q^{rac{1}{2}(k-1)+arepsilon}$$

This result with (2.5) completes the proof of the theorem.

§3. Remarks on some estimations of \mathcal{A}_k

Heath-Brown [2] handled the Dirichlet series $F_2(s)$, and got an estimate of $\Delta_2(q; r)$. A generalization of Heath-Brown's argument leads to the following estimate ([4]): If (q, r) = 1 and $x \ge q^{\frac{1}{2}(k+1)}$, then for any $\varepsilon > 0$,

This result improves Smith's estimate (1.2) in the range $q^{\frac{1}{2}(k+1)} \leq x \leq q^{(k^2+2k+2)/2k}$.

Now, using the estimate of our theorem, the result (1.1) leads to the estimate

instead of (1.2), and this is sharper than (3.1) for any $x \ge q^{\frac{1}{2}(k+1)}$. (We note here that better estimates are known for some special values of k such as k = 4. For general k, however, results as sharp as the estimate (3.2) seem to be not known before.)

Our theorem is a direct consequence of Deligne-Weinstein's lemma, so it seems difficult to improve the result (3.2) by the method of this paper. On the other hand, there is a possibility to improve the estimate (3.1), if we can refine the generalization of Heath-Brown's argument [2]. Such a result will improve the estimate of $\Delta_k(q; r)$ for some range of x.

KOHJI MATSUMOTO

References

- [1] Deligne, P., Séminaire géométrie algébrique 4¹/₂, Lecture notes in Math., 569, Springer, 1977.
- [2] Heath-Brown, D. R., The fourth power moment of the Riemann zeta function, Proc. London Math. Soc., (3) 38 (1979), 385-422.
- [3] Lavrik, A. F., A functional equation for Dirichlet L-series and the problem of divisors in arithmetic progressions, Izv. Akad. Nauk SSSR Ser. Mat., 30 (1966), 433-448. = Amer. Math. Soc. Transl., (2) 82 (1969), 47-65.
- [4] Matsumoto, K., Master Thesis, Rikkyo Univ., 1983.
- [5] Smith, R. A., The generalized divisor problem over arithmetic progressions, Math. Ann., 260 (1982), 255-268.
- [6] Titchmarsh, E. C., The theory of the Riemann zeta-function, Oxford, 1951.
- [7] Weinstein, L., The hyper-Kloosterman sum, Enseignement Math., (2) 27 (1981), 29-40.

Department of Mathematics Rikkyo University Nishi-Ikebukuro, Toshima-ku Tokyo 171, Japan