AN ALTERNATIVE PROOF OF A THEOREM ON
THE LEBESGUE INTEGRAL

by B. D. JOSEPHSON

The theorem concerned is the following:

if f is continuous in [a, b), and f' exists and is finite except at an enumerable
set of points and Lebesgue integrable in [a, bl, then

f D 2 D) =f (@) eoererrrreereeeeeeeeree (1)

Proof. We assume the following theorems:
(1) the above formula is true if f is absolutely continuous (a.c.) in [a, b];
(2) an indefinite integral is a.c.

We first prove the following lemma:

if f' is integrable, and f continuous but not a.c. in [a, b), then given K>0,
1>0, there exist two disjoint subintervals [a', b’} of [a, b] such that

b—a <l |f(B)Y—fa)|>Kb —a'), cccoovevnvvrniinnnnnn, 2)
and f is not a.c. in [a’, b'].

Proof. Since f is not a.c. in [a, b}, 3e>0 such that given 6>0, there is a
finite set of non-overlapping intervals [a,, b,] such that

2, —a) <8, Z|fb)=fay) ]| > o, 3

By (2), F(X)Ef [f’] is a.c. Hence 36,>0 such that if {[a,, b,]} is a

finite set of non-overlapping intervals and £(b,—a,) <4, then

S| FB)=F@) | <& weooeereeeeieeeeeenen, @)
By uniform continuity, 35,>>0 such that if | b,—a, | <§,, then
LABD =f@) | <Eerrororeoeeeoeeieeeeeeren. (5)

Now take J = min(d,, J,, /, ¢/8K), and choose intervals [a,, b,] to satisfy
(3). The sum X |f(b,)—fla,)| may be divided into three parts, by putting
| f(b,)—Aa,) | into

Z,if fis a.c. in [a,, b,],
%, if fis not a.c. in [a,, b,] and | f(b,)—f(a,) | < K(b,—a,),
X, if fis not a.c. in [a,, b,] and | f(b,)—fa,) |>K(b,—a,).

Now if fis a.c. in [a,, b,], then by (1),

b, b,
|/ (b)~7(ap)| = j f" gj I£7| = | Fb)— Fl@)|-

E.M.S.—H J

https://doi.org/10.1017/50950184300003232 Published online by Cambridge University Press


https://doi.org/10.1017/S0950184300003232

6 B. D. JOSEPHSON

Hence L |fb)—fla) | £Z, | Fb)—Fa,) | <de by (4).
Also L | fib)—Ra)) | S {K(b,—a)}<Kéie.

Hence by (3), £, | f(b,)—f(a,)| >%¢, and so from (5) it follows that X, has at
least three terms. Two of the corresponding intervals [a,, b,] must be disjoint,
and from the definition of X, satisfy the conditions of the lemma.

Now let f be a function satisfying the hypothesis of the main theorem,
and let x,, x,, x3, ... be the set of points at which f’ does not exist. If the
theorem does not hold, then by (1), f is not a.c. in [a, b]. We now construct
inductively a set of intervals I, = [a,, b,] with the following properties (r=1):

b,-a,<1/r, |f(br)_f(ar) |>r(b,—a,), Irc:lr—]a Xp ¢1ra

and fis not a.c. in /,.

Let I, be [a, b]. If I._, has been constructed, the lemma may be applied
to obtain two disjoint subintervals such that b’ —a' <1/r, | f(b") —f(a") |>r(b’' —a’)
and fis not a.c. in [a@’, b’). At least one of these does not contain x,. Take
this to be /,.

Then qp<a,<a,=..., bg=2b,2b,2..., 0<b,—a,<1/r, and so {a,}, {b,},
tend to a common hmlt x, contained in each I,, and hence different from each
x,, so that f '(x) exists and is finite.

W f(br) "-f(ar)
b,~a,

) =fx) 4 [@)—/(x)

—X a,—Xx

f(b) f( ,)\

, each of which

lies between

2r, all r, and this contradiction

tends to f'(x) as r—>o. But

proves the theorem.
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