AN ALTERNATIVE PROOF OF A THEOREM ON THE LEBESGUE INTEGRAL

by B. D. JOSEPHSON

The theorem concerned is the following:

if f is continuous in [a, b], and f' exists and is finite except at an enumerable set of points and Lebesque integrable in [a, b], then

$$\int_{a}^{b} f' = f(b) - f(a). \qquad (1)$$

Proof. We assume the following theorems:

- (1) the above formula is true if f is absolutely continuous (a.c.) in [a, b];
- (2) an indefinite integral is a.c.

We first prove the following lemma:

if f' is integrable, and f continuous but not a.c. in [a, b], then given K>0, l>0, there exist two disjoint subintervals [a', b'] of [a, b] such that

$$b'-a' < l, |f(b')-f(a')| > K(b'-a'), \dots (2)$$

and f is not a.c. in [a', b'].

Proof. Since f is not a.c. in [a, b], $\exists \varepsilon > 0$ such that given $\delta > 0$, there is a finite set of non-overlapping intervals $[a_r, b_r]$ such that

$$\Sigma(b_r-a_r)<\delta, \quad \Sigma \mid f(b_r)-f(a_r)\mid >\varepsilon....(3)$$

By (2), $F(x) \equiv \int_a^x |f'|$ is a.c. Hence $\exists \delta_1 > 0$ such that if $\{[a_r, b_r]\}$ is a finite set of non-overlapping intervals and $\Sigma(b_r - a_r) < \delta_1$, then

$$\Sigma \mid F(b_r) - F(a_r) \mid < \frac{1}{8}\varepsilon.$$
(4)

By uniform continuity, $\exists \delta_2 > 0$ such that if $|b_r - a_r| < \delta_2$, then

$$|f(b_r)-f(a_r)| < \frac{1}{4}\varepsilon$$
....(5)

Now take $\delta = \min(\delta_1, \delta_2, l, \varepsilon/8K)$, and choose intervals $[a_r, b_r]$ to satisfy (3). The sum $\Sigma | f(b_r) - f(a_r) |$ may be divided into three parts, by putting $| f(b_r) - f(a_r) |$ into

 Σ_1 if f is a.c. in $[a_r, b_r]$,

 Σ_2 if f is not a.c. in $[a_r, b_r]$ and $|f(b_r)-f(a_r)| \leq K(b_r-a_r)$,

 Σ_3 if f is not a.c. in $[a_r, b_r]$ and $|f(b_r)-f(a_r)| > K(b_r-a_r)$.

Now if f is a.c. in $[a_r, b_r]$, then by (1),

$$\left| f(b_r) - f(a_r) \right| = \left| \int_{a_r}^{b_r} f' \right| \le \int_{a_r}^{b_r} \left| f' \right| = \left| F(b_r) - F(a_r) \right|.$$
E.M.S.—H

 $\sum_{1} |f(b_r) - f(a_r)| \leq \sum_{1} |F(b_r) - F(a_r)| < \frac{1}{8}\varepsilon$ by (4). Hence $\sum_{s} |f(b_s) - f(a_s)| \le \sum_{s} \{K(b_s - a_s)\} < K\delta \le \frac{1}{8}\varepsilon.$ Also

Hence by (3), $\Sigma_3 |f(b_r) - f(a_r)| > \frac{3}{4}\varepsilon$, and so from (5) it follows that Σ_3 has at least three terms. Two of the corresponding intervals $[a_r, b_r]$ must be disjoint, and from the definition of Σ_3 satisfy the conditions of the lemma.

Now let f be a function satisfying the hypothesis of the main theorem, and let x_1, x_2, x_3, \dots be the set of points at which f' does not exist. If the theorem does not hold, then by (1), f is not a.c. in [a, b]. We now construct inductively a set of intervals $I_r = [a_r, b_r]$ with the following properties $(r \ge 1)$:

$$b_r - a_r < 1/r$$
, $|f(b_r) - f(a_r)| > r(b_r - a_r)$, $I_r \subset I_{r-1}$, $x_r \notin I_r$,

and f is not a.c. in I_r .

Let I_0 be [a, b]. If I_{r-1} has been constructed, the lemma may be applied to obtain two disjoint subintervals such that b'-a'<1/r, |f(b')-f(a')|>r(b'-a')and f is not a.c. in [a', b']. At least one of these does not contain x_t . Take this to be I_r .

Then $a_0 \le a_1 \le a_2 \le ...$, $b_0 \ge b_1 \ge b_2 \ge ...$, $0 < b_r - a_r < 1/r$, and so $\{a_r\}$, $\{b_r\}$, tend to a common limit x, contained in each I_r , and hence different from each x_r , so that f'(x) exists and is finite.

Now $\frac{f(b_r)-f(a_r)}{b_r-a_r}$ lies between $\frac{f(b_r)-f(x)}{b_r-x}$ and $\frac{f(a_r)-f(x)}{a_r-x}$, each of which tends to f'(x) as $r\to\infty$. But $\left|\frac{f(b_r)-f(a_r)}{b_r-a_r}\right| \ge r$, all r, and this contradiction proves the theorem.

TRINITY COLLEGE CAMBRIDGE