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The vortex shedding topology of a heavy pendulum oscillating in a dense fluid
is investigated using time-resolved three-dimensional particle tracking velocimetry
(tr-3-D-PTV). A series of experiments with eight different solid to fluid mass ratios
m∗ in the range [1.14, 14.95] and corresponding Reynolds numbers of up to Re ∼
O(104) was conducted. The period of oscillation depends heavily on m∗. The relation
between amplitude decay and oscillation frequency is non-monotonic, having a damping
optimum at m∗ ≈ 2.50. Moreover, a novel digital object tracking (DOT) method using
vorticity-magnitude iso-surfaces is implemented to analyse vortical structures. A similar
vortex shedding topology is observed for various mass ratios m∗. Our observations show
that first, a vortex ring in the pendulum’s wake is formed. Soon after, the initial ring
breaks down to two clearly distinguishable structures of similar size. One of the two
vortices remains on the circular path of the pendulum, while the other detaches, propagates
downwards, and eventually dissipates. The time when the first vortex is shed, and its initial
propagation velocity, depend on m∗ and the momentum imparted by the spherical bob.
The findings further show good agreement between the experimentally determined vortex
shedding frequency and the theoretical vortex shedding time scale based on the Strouhal
number.
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1. Introduction

The first known study of pendulum motion was carried out by Galileo Galilei in 1605 as
he discovered that the period of the swings remained constant. Since then, pendulums
have been subject to much research and utilised in many technical applications, such
as, among others, the pendulum clock, ballistic pendulums, seismometers, metronomes,
viscosimeters and mass dampers in high-rise buildings (Mongelli & Battista 2020; Worf
et al. 2022). Also, the pendulum is an ‘educational classic’ and a standard device to study
the concept of oscillating motions, starting with the undamped case and simple harmonic
motion (Mongelli & Battista 2020). The physical pendulum also shares a long tradition in
fluid flow and fluid–structure interaction studies, including concepts such as added mass
and fluid friction.

Important contributions to the understanding of vortex-induced vibrations were made by
Williamson & Govardhan (1997) and Govardhan & Williamson (1997, 2005) by measuring
the motion of pendulum-like tethered spheres in a uniform flow. They found three different
modes of amplitude and frequency response, causing significant fluctuations in the lift
and drag forces. The oscillation of the sphere nearly doubled the drag force compared
to drag measurement of a stationary sphere. Further, they point out the importance of
understanding the wake and vortex dynamics for interpreting the response phenomena, and
stress the importance of conducting flow visualisation regarding this problem (Williamson
& Govardhan 1997). Recent advances in flow measurement techniques, especially laser
optical flow visualisation, have motivated researchers to redo experimental studies to
help better understand the underlying physics. For example, van Hout, Krakovich &
Gottlieb (2010), Eshbal, Krakovich & van Hout (2012) and Krakovich, Eshbal & van
Hout (2013) investigated intensively vortex shedding in the wake of tethered spheres
in uniform flow using particle image velocimetry (PIV). Following the development
towards three-dimensional (3-D) flow field visualisations, tomographic PIV (tomo-PIV)
measurements on tethered, stationary and freely moving spheres in uniform flow were
done by van Hout et al. (2018, 2022), Eshbal et al. (2019a,b) and Kovalev, Eshbal & van
Hout (2022). Their findings extend our knowledge of fluid structure interaction in turbulent
boundary layers, and vortex shedding behaviour related to vortex-induced vibrations, and
point out the relevance of 3-D flow field measurements. Crane et al. (2022) studied
the vortex shedding topology of cantilevered cylinders using the tomo-PIV approach.
However, tomo-PIV has disadvantages as it is computationally expensive and relies on
cross-correlation over spatial averages, which can smooth out velocity gradients (Schanz,
Gesemann & Schröder 2016). As a result, approaches based on Lagrangian particle
tracking, commonly referred to as particle tracking velocimetry (PTV), have become more
popular (Raffel et al. 2018). Nowadays, time-resolved 3-D PTV (tr-3-D-PTV) constitutes
one of the most advanced approaches in 3-D flow measurements, and has proven its
utility for identifying and visualising coherent flow structures and vortex dynamics
(Schobesberger et al. 2022).

Recently, Mathai et al. (2019) studied heavy and buoyant underwater pendulums
with cylindrical bobs and different mass ratios between solid and fluid, m∗ = ρs/ρF.
They developed a model equation of motion and conducted two-dimensional (2-D) PIV
(2-D-PIV) experiments to further improve their model equation. They achieved this by
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Lagrangian PTV investigation of vortex shedding topology

incorporating the wake flow caused by the cylinder back swing through the disturbed flow
field. Also, they visualised the vortex shedding behaviour during the downward swing.
Since the cylinder length was relatively short, Mathai et al. (2019) found the added mass
coefficient to be significantly lower (0.53) than the potential flow value (1). Worf et al.
(2022) re-investigated the case with m∗ = 4.98 from Mathai et al. (2019) by conducting
large-eddy simulations. Their simulation results suggested that the added mass deviation
is caused by the predominance of a 3-D flow field featuring tip vortices during the
first downward swing. Their findings show that even with the cylinder, which could be
interpreted as a 2-D flow, only the 3-D analysis can explain adequately the measured vortex
shedding phenomena. Mongelli & Battista (2020) performed numerical fluid–structure
interaction simulations of pendulums with a spherical bob. However, their simulations
were 2-D, which resembled a disk or cylinder slice rather than a sphere. Concerning the
vortex shedding topology of underwater pendulums with 3-D spherical bobs, the only
study known to the authors is reported by Bolster, Hershberger & Donnelly (2010). They
suggested that for large amplitudes, vortex streets are induced by the shedding of vortices
at the turning points, which in turn causes additional drag forces on the spherical bob. With
the exception of Mongelli & Battista (2020) and Worf et al. (2022), all the aforementioned
studies are based on experimental observations.

The present work contributes to a better understanding of the vortex dynamics of heavy
objects oscillating in a dense fluid. Such studies have practical relevance for underwater
mining operations or objects being towed behind ships, as pointed out by Govardhan
& Williamson (2005). This research aims to characterise the vortex shedding topology
during the first downward swing of heavy pendulums with spherical bobs for a wide range
of sphere densities ρs using tr-3-D-PTV. In the experiments, the sphere diameter D, the
pendulum length L, the fluid properties (ρf and ν) and the release angle (θ0 = 37.5◦) are
fixed. We vary the solid to fluid mass ratio m∗ = ρs/ρF (m∗ > 1) to induce a flow field
in the range Re ∼ O(104). By analysing the amplitude decay and oscillation frequency,
a damping optimum is present when m∗ ≈ 2.5. Also, the influence of the nonlinear drag
is discussed. Vortex visualisation from tr-3-D-PTV and a novel digital object tracking
(DOT) method are used to investigate the vortex shedding topology during the first
oscillation. More specifically, the developed DOT method enables the determination of
vortex trajectories and velocities based on the visual representation of vorticity iso-surface
plots as distinct digital objects. For all m∗ cases, we observed a characteristic downward
shedding of a vortex during the first downward swing. The Strouhal number is used to
estimate the instant when the vortex sheds and is compared with the experimental results.

2. Experiments

2.1. Experimental system
The experiments were conducted at the hydraulic laboratory of the University of Natural
Resources and Life Sciences in Vienna. An aluminium rail-profile system was set up and
grounded on damped levelling feet to provide isolation against vibrations (figure 1a). The
test rig is the carrying system for the experimental set-up and measuring equipment.
The key component of the experimental system is a high-speed PTV system from
LaVision. The system includes four high-speed cameras (Imager Pro HS 4M CMOS)
with maximum resolution 2016 × 2016 pixels and internal storage capacity 18 GB. Each
camera is equipped with a Scheimpflug-adapter (SP) and a lens (Zeiss Planar T∗85 mm
f /1.4 ZE) of 85 mm focal length. The four cameras are positioned in a linear setting
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Figure 1. (a) Measurement system, including four high-speed cameras and a double cavity high-speed laser.
(b) Side view of the experimental set-up. (c) Plan view of the experimental set-up.

along the test rig, alternating in two different height sections. An ND:YLF-PIV laser
(neodymium-doped yttrium aluminium garnet, diode-pumped, double cavity high-speed
laser, by Litron LDY series) with output energy 30 mJ, wavelength 527 nm, and nominal
repetition rate 1 kHz is used as the light source. The laser head is placed on aluminium
rails over the floor, emitting laser beams with diameter 5 mm. Further, an optical guiding
arm connects the laser head to the volume optic (VO), which expands the laser beam to the
desired volume. A mechanical aperture (MA) is placed over the VO to avoid unsharp edges
of the illuminated volume. The laser and the cameras are synchronised by a programmable
timing unit (PTU) (PTUX by LaVision) and operated by software Davis 10.1 by LaVision.
Further, a photoelectric barrier system (Sick WL8) is connected to the trigger input of the
PTU. The system consists of a reflector (REF) and a photoelectric sensor (S/E) to transmit
and receive light signals. In its initial position, the sphere interrupts the signal of the light
barrier; therefore, the photoelectric barrier acts as a trigger for the whole PTV system.
Moreover, a 3-D calibration plate (204-15 by LaVision) with dimensions 204 × 204 mm2

is used. The plate has two different planes, with level separation 3 mm and dot-shaped
markers with spacing 15 mm.

The experiments are performed in a 600 mm long, 300 mm wide, 300 mm high glass
tank, which rests on a mounting plate above the VO. Figures 1(b) and 1(c) show a detailed
sketch of the experimental set-up. The glass tank has several aluminium rails with glass
clamps to hold the pendulum and its release device. The release device uses an adaptive
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Material Abbreviation Density (g cm−3)

Polyamide PA 1.14
Delrin POM 1.41
Teflon PTFE 2.15
Soda-lime glass Al2O3 2.50
Silicon nitride Si3N4 3.26
Zirconium oxide ZrO2 6.00
Stainless steel 1.4034 SST 7.75
Tungsten carbide WC 14.95

Table 1. Material properties of the spheres with D = 12.71 mm used in the experiments.

mechanical gripper (NIRYO Robotics) over a guiding arm. The movement of the gripper
is operated by a microcontroller (OpenCM9.04, Type C). Also, the gripper’s movement
was as small as possible to avoid disturbing the flow field. Further, three mirrors (MIR)
ensure that the shadows cast by the sphere are removed by reflecting the laser light. The
pendulum thread is made from a nylon string of diameter 0.05 mm, and is attached to a
ball bearing. Spheres of different materials, representing underwater pendulums, are glued
to the loose end of the string. The spheres are high-precision products, having the same
diameter (D) 12.71 mm, with manufacturer-listed tolerance 0.002 mm. All spheres were
painted black to avoid unwanted illumination peaks and to reduce friction differences
caused by their surface roughness. The materials and their specific properties are listed
in table 1. At its initial position, the sphere is 2.2D below the water level, and at its
lowest position, it is 8.5D above the tank’s base. The distance to the side walls is always
kept greater than 10D. The pendulum length (L) that is measured from the bearing to the
centre of the sphere is 200 mm, with initial angular deflection (θ0) 37.5◦. A self-designed
adjustment tool is used to guarantee identical initial positions in all experiments. After a
3 minute waiting interval to dampen possible fluid disturbances, the buffer recording mode
is started. Finally, once the gripper releases the sphere, the signal of the photoelectric
barrier is no longer interrupted, which triggers the recording.

2.2. Particle tracking velocimetry and data assimilation
To perform the tr-3-D-PTV analysis, we seeded the water with polyamide particles with
mean diameter 50 μm and density 1.016 g cm−3. Each of the four camera frames has
image size h × w = 1500 × 2016 pixels, and length scale 9 pixels mm−1. At the beginning
of the experiments, we carried out a 3-D calibration of the volume of interest (VOI)
with dimensions x = 178 mm, y = 115 mm, z = 51 mm (x/D = 14, y/D = 9, z/D = 4).
To do so, the cameras were readjusted until the calibration error for the planes of each
camera is below 0.25 pixels. For 3-D-PTV recordings and thick illumination volumes,
Wieneke (2008) proposed further correction of the calibration error using the volume
self-calibration approach to minimise the triangulation errors. Therefore, calibration
images were recorded at frequency 500 Hz, with seeding density approximately 0.03
particles per pixel (ppp). Based on 100 calibration images, the volume self-calibration
was carried out. This led to a mean calibration error of approximately 0.03 pixel and
a maximum calibration error of approximately 0.09 pixel, being below the threshold
given by Wieneke (2008). Even higher seeding densities, in the range 0.035–0.07 ppp,
were used during the pendulum experiments. The images were preprocessed by masking
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out all but the VOI and removing unsteady reflections caused by the sphere. As a
result, the background is calculated for each image by applying an anisotropic diffusion
filter with 20 iterations and further subtracting it from the original. This procedure
resulted in images that showed only the illuminated seeding particles. The sparse particle
tracks are reconstructed using a state-of-the-art shake-the-box algorithm for modern PTV
applications with high seeding densities of up to 0.125 ppp reported in Schanz et al.
(2016). The sparse Lagrangian particle tracks are derived based on the positioning of the
seedings at the four image frames of each time step. An illumination threshold of 125
counts is used to detect particles with maximum allowed triangulation error 1.0 voxel.
The allowed velocity range, which is related to the sphere’s maximum velocity, helps to
cancel out non-physical ghost particle tracks. For better visualisation of the flow field
and identification of vortical flow structures, the sparse PTV data were interpolated onto
a regular Cartesian mesh. This was done with the aid of the vortex-in-cell method,
termed VIC+ by Schneiders & Scarano (2016). The VIC+ algorithm uses temporal
information in the form of the velocity material derivative from the particle tracks,
and therefore is described as ‘pouring time into space’ (Schneiders & Scarano 2016).
The grid interpolation was done at grid resolution 16 voxels, i.e. 1.78 mm. In each time
step, 40 iterations were performed with second-order polynomial track denoising and
filter length 3 time steps for both the velocity and acceleration fields. A high-resolution
velocity field is reconstructed with the velocity-vorticity formulation of the incompressible
Navier–Stokes equations and the particle tracks. Based on the regular grid, vortical flow
structures were visualised using the iso-surfaces of vorticity magnitude and Q-criterion
Hunt, Wray & Moin (1988). Thereby, the iso-surfaces of the Q-criterion identify vortical
flow structures as regions where the magnitude of the rate of rotation exceeds the rate of
strain defined as the second invariant of the velocity gradient tensor:

Q = 1/2(‖Ω‖2 − ‖S‖2), (2.1)

where Ω is related to the antisymmetric part, and S is the symmetric part of the
velocity gradient tensor. Regions where the scalar quantity satisfies Q > 0 indicate vortical
structures.

To examine the response time of the tracer particles in the experiment, we calculate the
Stokes number Stk as

Stk = tpUb/Lf , (2.2)

where tp = ρD2
t /(18μ) is the relaxation time of the particle, ρ is the fluid density

(1000 kg m−3), Dt is the tracer particle diameter (50 μm), μ is the dynamic viscosity of
the fluid (10−3 Pa), Ub is the bulk flow velocity (i.e. maximum velocity of the pendulums,
0.7 m s−1), and Lf is a characteristic length of the flow (i.e. the diameter D of the spheres).
Considering a length scale Lf = D = 0.01271 m, the bulk velocity 0.7 m s−1, and the
tracer particles’ diameter and density 50 μm and 1.016 g cm−3, respectively, the expected
Stokes numbers (Stk < 0.008) of the experiments with various sphere characteristics are
significantly less than 0.1. Therefore, the tracer particles tend to follow the fluid flow
streamlines closely, and the tracing accuracy errors are well below 1 % (Brennen 2005;
Oaks et al. 2022).

2.3. Digital object tracking of vortex structures
The analysis of coherent flow structures and vortex shedding topologies derived from
3-D flow field measurements is often restrained to a qualitative description of iso-surface
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Figure 2. (a) Example image of vortex tracking showing two equally sized vortices and their corresponding
bounding boxes, as well as the trajectories from the previous time steps. (b) Iso-surface values for visualisation
of vortical structures based on the period of the first oscillation.

contours at one or more time instants (e.g. Zhu et al. 2017; Eshbal et al. 2019a;
Schobesberger et al. 2020; van Hout et al. 2022). These illustrations are certainly justified,
since they are very important to our basic process understanding or the validation of
numerical results. However, looking at isolated time instants neglects temporal and
spatial information contained in high-resolution data. Quantitative combinations of
both the spatial and temporal information potentially allow deeper insights and more
profound descriptions of the underlying flow phenomena. The herein implemented method
determines vortex trajectories and therefore propagation directions, velocities and stability
assumptions based on the visual representation (e.g. iso-surface plots) of coherent flow
structures as distinct digital objects. It should be mentioned that this procedure requires
structures of relevant size and may potentially need case specific adaptions depending on
the research aim.

In the present paper, significant flow structures were visualised by iso-surfaces of the
vorticity magnitude. The images of iso-surfaces establish the basis for the further DOT
with special emphasis on properly selecting the iso-surface values. This is crucial for
unbiased comparability of different ratios m∗ and vorticity magnitudes ω. Accordingly, the
employed vorticity-based iso-surface values were based on the experimentally determined
period of the first oscillation (T) and the empirical relation |ω| = 16T−1. This is shown
in figure 2(b), where higher values of T−1 represent a shorter period linked to higher
m∗ values. One could certainly use different vortex identification criteria since a proper
selection of the threshold leads to similar representations independent of the chosen
criterion (Chakraborty, Balachandar & Adrian 2005). The obtained iso-surface images
were imported and further processed in Wolfram Mathematica 12. First, each image was
applied a semantic segmentation based on threshold binarisation and a colour negation.
This led to the construction of images of ‘zeros’ (white) and ‘ones’ (black) depending
on the pixel intensity. Furthermore, a bounding box was computed for connected
regions counting more than 2000 pixels. This procedure results in the elimination of
all objects other than large coherent iso-surfaces. The vortex trajectories were derived
from the bounding box coordinates. Thus including the temporal information based on
the recording frequency allowed for further analysis of the vortex propagation velocities.
Figure 2(a) displays an application of the DOT showing two equally sized vortices and
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m∗ 1.14 1.41 2.15 2.50 3.26 6.00 7.75 14.95
T (s) 4.75 2.70 1.60 1.40 1.30 1.10 1.05 0.95
θmax (rad) 0.048 0.067 0.107 0.133 0.156 0.269 0.330 0.440

Table 2. Mass ratio m∗, period of the first oscillation cycle T , maximum angular position at the end of the
first swing θmax.
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Figure 3. The present experiments of heavy spherical pendulums with m∗ ∈ [1.14, 14.95] are plotted as filled
black diamonds, while the experimental data of heavy cylindrical pendulums by Mathai et al. (2019) are plotted
as purple squares. (a) Normalised oscillation frequency f ∗ = f /fn for different m∗. (b) Amplitude envelope θτref

against normalised oscillation frequency f ∗ after a time τref = 3π
√

L/g.

their corresponding bounding boxes, as well as the trajectories from the previous time
steps. The plotted trajectories describe the separation and downward motion of the red
highlighted vortex ring, while the black one stays on the circular path.

3. Results

3.1. Oscillation frequency and amplitude decay
Table 2 summarises the measured periods of the first oscillation cycle T and amplitude
peaks θmax obtained from the recordings. The period decreases nonlinearly with increasing
mass ratios m∗, while the peak angular displacement at the end of the first swing grows
logarithmically with m∗. Normalising the oscillation frequency f = 1/T with the natural
pendulum frequency fn = (1/2π)

√
g/L gives f ∗. In figure 3(a), this normalised frequency

f ∗ is shown for the spheres and the heavy cylinder pendulums from Mathai et al. (2019).
For both spheres and cylinders, the deviation between natural frequency and measured
frequency increases significantly with decreasing m∗. They follow the same trend, having
a steep gradient for m∗ < 2.5. For denser materials, f ∗ of sphere and cylinder are very
similar, while for m∗ < 2, differences are present.

By fitting an envelope to the amplitude peaks over time, we determined the amplitude
envelope θτref at the reference time τref = 3π

√
L/g. Plotting θτref against f ∗ in figure 3(b),

optimal damping is found at f ∗ ≈ 0.7. This corresponds to m∗ ≈ 2.5. In comparison,
Mathai et al. (2019) present a damping optimum at m∗ ≈ 2 for heavy cylinders.
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These novel findings can have important practical consequences to improve the naval
stability of crane vessels.

Interestingly, the damping of the sphere shows a more distinct non-monotonic
dependence on m∗. According to Mathai et al. (2019), the non-monotonic damping is
an effect of the nonlinear drag, implying that this effect is more significant for spherical
pendulums. Additionally, the different added mass values of the cylinder and the sphere
may impact the different mass damping ratios. Considering the different initial deflection
angles (90◦ in Mathai et al. (2019) versus 37.5◦ in the present study), the amplitude of
the spherical pendulum decays much more slowly than the less streamlined cylinder. This
is partially explained by the drag coefficient CD, which is generally lower for spheres
than for cylinders for Re > 10. Further, the influence of Re on CD is different for spheres
and cylinders in the present range of Re (Hoerner 1965). This effects the nonlinear
growth of the drag in proportion to the square of the velocity. Still, there are other
phenomena that are affecting the fluid drag related to vortex shedding (Williamson &
Govardhan 1997; Mathai et al. 2019). To better account for the drag oscillations caused
by vortex-induced vibrations, knowledge regarding the vortex shedding topology is a
requirement (Williamson & Govardhan 1997). The following subsections are dedicated
to better understanding the vortex dynamics of oscillating systems in a dense fluid.

3.2. Vortex dynamics
For all m∗ ratios, the motion of the sphere induced a toroidal vortex structure that formed
at the initial phase of the first downward swing (figure 4a). For all m∗, the observed toruses
had initial diameter (Dvor) approximately 2D when the iso-surface threshold was selected
as described in § 2.3. However, at some point, the vertical structures begin to separate into
two clearly distinguishable equally sized vortex rings, as shown in figures 4(b–d). This
separation process and downward shedding were present in all experimental observations.
Soon after its formation, the vortex ring propagates on a nearly linear path towards
the bottom (figure 6). This downward propagation of the vortex is explained by the
momentum imparted from the motion of the pendulum bob (Worf et al. 2022). While
propagating, the vortex ring remains remarkably stable until reaching its terminal velocity
and eventually dissipating. This behaviour is similar to the aforementioned case of the
cylinder pendulum investigated experimentally by Mathai et al. (2019) and numerically by
Worf et al. (2022). Based on their findings, Worf et al. (2022) described the development
and downward shedding of the vortex ring in the wake of a cylinder during the first swing.
Later on, the vortex stretches out and dissipates near the side walls of the glass tank.
For comparable radii, although only 2-D, the numerical results from Mongelli & Battista
(2020) also show vortex shedding dominated by vertical downward-moving vortices. In
our experimental observations, the overall process stays the same for all ratios m∗, but the
instant at which the first vortex is shed clearly differs. The beginning of the shedding (tvs)
was determined by the above-mentioned DOT procedure, and the image frame where the
trajectory of the downward-moving vortex leaves the circular pendulum path was selected.
More specifically, herein, it was the instant for which the vertical distance dy (y-direction
in figures 2 and 4) between the trajectories dy ≥ D/4 was selected. As expected, the time
for the formation and detachment of the vortex decreases as the mass ratios increase.
However, for m∗ ≥ 6, the vortex separation time decreases slightly. Hence the relation
between tvs and m∗ could be described by a power law, as shown in figure 5(a). In
addition, the obtained values of tvs are compared with the theoretical shedding frequency
based on the Strouhal number Sr (Strouhal 1878). From Sr = fvsD/vp, the vortex shedding
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Figure 4. Shedding topology during the first downward swing for m∗ = 6.0 after (a) t = 0.146 s,
(b) t = 0.178 s, (c) t = 0.210 s, and (d) t = 0.242 s.

frequency ( fvs) can be derived. The time tvs when the first vortex ring is shed can be
estimated based on fvs:

tvs = 1
fvs

= D
Srvp

, (3.1)

where D is the characteristic length represented by the sphere diameter, and vp is the
relative pendulum velocity. The mean velocity vp = θ0L/tp is derived from the time tp
that the sphere takes to swing from θ0 = 37.5◦ to the perigee θp = 0◦. With the Strouhal
number Sr = 0.21 (for Re ∈ [4 × 102, 1 × 104]), the time tvs is estimated. This calculated
shedding time tvs and the experimental results plotted in figure 5(a) suggest a high level of
agreement for all m∗ ratios.

3.3. Vorticity transport
Figure 5(b) shows the non-dimensional velocity evolution U∗

vor = Uvor/
√

gL of the first
detached vortex for various m∗. Starting at tvs, the vortex velocity Uvor is derived from the
distance covered by the DOT bounding box centres between two frames, divided by the
corresponding time increments. As seen, for m∗ > 1.41, U∗

vor undergoes a quick decay.
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Figure 5. (a) Instant of time when the first vortex is shed as a function of m∗. Comparison of the instant of first
vortex shedding tvs obtained from the present experimental observations and theoretical approach based on the
Strouhal number Sr. (b) Non-dimensional propagation velocity U∗

vor of the downward moving vortex ring.

Initially, U∗
vor is in the range between 0.06 and 0.40, with higher velocities related to

higher mass ratios. In contrast, the terminal velocity at which the vortex dissipates seems
to be independent of m∗. In addition, for m∗ > 1.41, another vortex is shed at the turning
point of the pendulum. This was also observed by Bolster et al. (2010) for sufficiently
large amplitudes. A video showing the vortex shedding for m∗ = 3.26 can be found in
supplementary movie 1, available at https://doi.org/10.1017/jfm.2023.170. Figures 6(a–c)
show the time-averaged z vorticity ωz normalised by ωzmax for three different mass ratios
m∗ = 2.50, 3.26, 6.00. Red represents positive values of ωz, whereas blue indicates a
negative z vorticity. The time averaging was conducted for the duration of time until the
first turning point was reached. Since the main topological features are the two equally
sized vortex rings, the time-averaged results produce a bifurcating vortex tube. During
the separation process, the sphere detaches from the upper clockwise rotating part of the
shed vortex, and fluid is lifted up in the wake of the sphere during the closure of the shed
vortex. This can be seen for m∗ = 3.26 in a video animation provided in supplementary
movie 2. The new insights into the interaction of the sphere’s wake and the detaching
vortex can be useful especially to improve both numerical and analytical models. For
example, Mathai et al. (2019) presents a wake correction for a cylindrical pendulum that
starts at the first turning point of the pendulum when the cylinder enters the disturbed flow
field. However, the numerical re-investigation of Worf et al. (2022) suggests an earlier
start of the wake correction some time before the first turning point. This is supported
by the present observations as the sphere certainly interacts with its own wake during the
vortex separation process. At least for the spherical pendulum, a possible start of the wake
correction model during the first downward swing is indicated.

Figures 6(d–f ) mark the corresponding middle z slices of the maximum-normalised
vorticity magnitude |ω|/ωmax. It can be seen clearly that the highest time-averaged values
are present not in the pendulum’s direct wake but in the detached vortex’s downward path.
Also, figures 6(d–f ) suggest that the angle at which the vortex propagates downwards
is independent of m∗. To provide evidence, a linear regression is performed on the
trajectories of the shed vortices from the DOT method. The resulting propagation angle φ

is measured between the x-axis (bottom of the tank) and the path of the detached vortex in
clockwise direction. Table 3 lists φ divided by θ0 and the corresponding coefficients of
determination R2. The direction of vortex propagation is approximately orthogonal to the
pendulum rod at θ0 for the observed m∗ values. More specifically, φ varies between 36◦
and 41◦, showing no significant dependency on m∗. Notably, the mass independence of φ

contrasts with the correlation of tvs and U∗
vor with m∗.
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Figure 6. Time-averaged vorticity data for three different mass ratios m∗ = 2.50, 3.26, 6.00.
(a–c) Iso-surfaces representing the 0.25 value of the maximum-normalised vorticity magnitude coloured by
the normalised z vorticity ωz. (d–f ) Middle slices of the corresponding vorticity magnitude |ω|/ωmax.

m∗ 1.14 1.41 2.15 2.50 3.26 6.00 7.75 14.95
φ/θ0 0.998 0.987 1.022 1.069 0.973 1.086 1.094 1.081
R2 0.992 0.988 0.980 0.959 0.981 0.993 0.996 0.991

Table 3. Angle of vortex propagation φ in relation to the initial deflection θ0 for different m∗. The values
of φ and the corresponding coefficients of determination R2 are derived from linear regression of the vortex
trajectories from DOT.

4. Conclusions

Within this work, a detailed analysis concerning the fluid–structure interaction of heavy
spherical pendulums oscillating in water is presented for a wide range of m∗. Special
emphasis was placed on the characterisation of the vortex shedding topology. Based on
rigorous tr-3-D-PTV measurements and a novel digital object tracking (DOT) method,
the topology of vortical flow structures arising from the 3-D nonlinear interaction
of water and the spherical pendulum was investigated. By combining the spatial and
temporal signatures of the present vortex structures, the novel DOT method allowed for
a more detailed analysis of vorticity iso-surface plots, including vortex trajectories and
propagation velocities. The introduced DOT approach to treat iso-surface representations
as distinct digital objects and track them potentially advances future research on various
highly relevant topics like vortex shedding topology, vortex dynamics and vortex-induced
vibrations.

This study revealed a characteristic vortex shedding topology during the first downward
swing of underwater pendulums for the full range of m∗ and a constant initial deflection
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angle θ0 = 37.5◦. Our observations showed that first, a toroidal vortex is formed in the
wake of the spherical pendulum, which splits up into two separate structures of equal size.
One vortex remains on the pendulum’s circular path, and the other detaches. The shed
vortex ring propagates on a nearly linear path downwards, where the angle of propagation
is independent of m∗ and approximately orthogonal to the initial angle of deflection θ0. For
all m∗, an analogy of the vortex ring dimensions (Dvor ∼ 2D) is found when scaling the
vorticity with the pendulum period (T). The theoretical vortex shedding time scale based
on the Strouhal number proved to agree reasonably with the experimentally determined
time of vortex shedding using our DOT approach, suggesting it to be a reliable predictor
for the onset of vortex shedding. While the time of separation and the initial speed of the
vortical structure depended on the mass ratio m∗, the terminal velocities are independent
of m∗.

Based on the oscillation period and the amplitude envelope, we found evidence of a
non-monotonic relation between amplitude decay and m∗. A damping optimum is present
when m∗ ≈ 2.5. The results on mass-dependent structural damping and complex vortex
dynamics can be beneficial for the enhancement of maritime infrastructure, underwater
mining operations, and naval stability of crane vessels. Further, this highlights the
importance of knowing the underlying mechanisms like added mass, (nonlinear) drag and
vortex dynamics to better understand the interaction between fluid and structures, not only
for the pendulum in a dense fluid. Eventually, the attractiveness of the humble pendulum
to address fundamental questions in fluid dynamic research is pointed out once again.

Supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.170.

Acknowledgements. T.G. thanks N. Kaiblinger for his input on digital object tracking.

Funding. This research was funded by the Austrian Science Fund (FWF, P33493-N), the Christian Doppler
Research Association, and the Austrian Federal Ministry for Digital and Economic Affairs and the National
Foundation of Research, Technology, and Development of Austria (T.G., K.R., D.W.).

Declaration of interests. The authors report no conflict of interest.

Data availability statement. The datasets analysed during the current study can be made available by the
corresponding author on reasonable request.

Author ORCIDs.
Thomas Gold https://orcid.org/0000-0001-6706-0516;
Kevin Reiterer https://orcid.org/0000-0002-6605-3549;
Dominik Worf https://orcid.org/0000-0002-6289-4420;
Ali Khosronejad https://orcid.org/0000-0002-9549-3746.

REFERENCES

BOLSTER, D., HERSHBERGER, R.E. & DONNELLY, R.J. 2010 Oscillating pendulum decay by emission of
vortex rings. Phys. Rev. E Stat. Nonlinear Soft Matt. Phys. 81, 046317.

BRENNEN, C.E. 2005 Fundamentals of Multiphase Flow. Cambridge University Press.
CHAKRABORTY, P., BALACHANDAR, S. & ADRIAN, R.J. 2005 On the relationships between local vortex

identification schemes. J. Fluid Mech. 535, 189–214.
CRANE, R.J., POPINHAK, A.R., MARTINUZZI, R.J. & MORTON, C. 2022 Tomographic PIV investigation

of vortex shedding topology for a cantilevered circular cylinder. J. Fluid Mech. 931, R1.
ESHBAL, L., KOVALEV, D., RINSKY, V., GREENBLATT, D. & VAN HOUT, R. 2019a Tomo-PIV

measurements in the wake of a tethered sphere undergoing VIV. J. Fluids Struct. 89, 132–141.
ESHBAL, L., KRAKOVICH, A. & VAN HOUT, R. 2012 Time resolved measurements of vortex-induced

vibrations of a positively buoyant tethered sphere in uniform water flow. J. Fluids Struct. 35, 185–199.

960 A14-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

17
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.170
https://orcid.org/0000-0001-6706-0516
https://orcid.org/0000-0001-6706-0516
https://orcid.org/0000-0002-6605-3549
https://orcid.org/0000-0002-6605-3549
https://orcid.org/0000-0002-6289-4420
https://orcid.org/0000-0002-6289-4420
https://orcid.org/0000-0002-9549-3746
https://orcid.org/0000-0002-9549-3746
https://doi.org/10.1017/jfm.2023.170


T. Gold and others

ESHBAL, L., RINSKY, V., DAVID, T., GREENBLATT, D. & VAN HOUT, R. 2019b Measurement of vortex
shedding in the wake of a sphere at Re = 465. J. Fluid Mech. 870, 290–315.

GOVARDHAN, R.N. & WILLIAMSON, C.H.K. 1997 Vortex-induced motions of a tethered sphere. J. Wind
Engng Ind. Aerodyn. 69–71, 375–385.

GOVARDHAN, R.N. & WILLIAMSON, C.H.K. 2005 Vortex-induced vibrations of a sphere. J. Fluid Mech.
531, 11–47.

HOERNER, S.F. 1965 Fluid-dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic
Resistance. Hoerner Fluid Dynamics.

VAN HOUT, R., EISMA, J., ELSINGA, G.E. & WESTERWEEL, J. 2018 Experimental study of the flow in the
wake of a stationary sphere immersed in a turbulent boundary layer. Phys. Rev. Fluids 3, 024601.

VAN HOUT, R., HERSHKOVITZ, A., ELSINGA, G.E. & WESTERWEEL, J. 2022 Combined three-dimensional
flow field measurements and motion tracking of freely moving spheres in a turbulent boundary layer.
J. Fluid Mech. 944, A12.

VAN HOUT, R., KRAKOVICH, A. & GOTTLIEB, O. 2010 Time resolved measurements of vortex-induced
vibrations of a tethered sphere in uniform flow. Phys. Fluids 22 (8), 087101.

HUNT, J.C.R., WRAY, A.A. & MOIN, P. 1988 Eddies, Streams, and Convergence Zones in Turbulent Flows.
In Proc., Summer Program Center for Turbulence Research, pp. 193–208. Center for Turbulence Research.

KOVALEV, D., ESHBAL, L. & VAN HOUT, R. 2022 Three-dimensional flow field measurements in the wake
of a tethered sphere crossing the onset of vortex induced vibrations. J. Fluid Mech. 943, A37.

KRAKOVICH, A., ESHBAL, L. & VAN HOUT, R. 2013 Vortex dynamics and associated fluid forcing in the
near wake of a light and heavy tethered sphere in uniform flow. Exp. Fluids 54, 1–17.

MATHAI, V., LOEFFEN, L.A.W.M., CHAN, T.T.K. & WILDEMAN, S. 2019 Dynamics of heavy and buoyant
underwater pendulums. J. Fluid Mech. 862, 348–363.

MONGELLI, M.E.J. & BATTISTA, N.A. 2020 A swing of beauty: pendulums, fluids, forces, and computers.
Fluids 5, 48.

OAKS, W.R., CRAIG, J., DURAN, C., SOTIROPOULOS, F. & KHOSRONEJAD, A. 2022 On the Lagrangian
dynamics of saliva particles during normal mouth breathing. Phys. Fluids 34 (4), 041904.

RAFFEL, M., WILLERT, C., SCARANO, F., KÄHLER, C.J., WERELEY, S.T. & KOMPENHANS, J. 2018
Particle Image Velocimetry – A Practical Guide, 3rd edn. Springer.

SCHANZ, D., GESEMANN, S. & SCHRÖDER, A. 2016 Shake-the-box: Lagrangian particle tracking at high
particle image densities. Exp. Fluids 57, 1–27.

SCHNEIDERS, J.F.G. & SCARANO, F. 2016 Dense velocity reconstruction from tomographic PTV with
material derivatives. Exp. Fluids 57, 1–22.

SCHOBESBERGER, J., LICHTNEGER, P., HAUER, C., HABERSACK, H. & SINDELAR, C. 2020
Three-dimensional coherent flow structures during incipient particle motion. J. Hydraul. Engng ASCE
146 (5), 04020027.

SCHOBESBERGER, J., WORF, D., LICHTNEGER, P., YUECESAN, S., HAUER, C., HABERSACK, H. &
SINDELAR, C. 2022 Role of low-order proper orthogonal decomposition modes and large-scale coherent
structures on sediment particle entrainment. J. Hydraul. Res. 60 (1), 108–124.

STROUHAL, V. 1878 Ueber eine besondere art der tonerregung. Ann. Phys. 241 (10), 216–251.
WIENEKE, B. 2008 Volume self-calibration for 3-D particle image velocimetry. Exp. Fluids 45, 549–556.
WILLIAMSON, C.H.K. & GOVARDHAN, R.N. 1997 Dynamics and forcing of a tethered sphere in a fluid flow.

J. Fluids Struct. 11 (3), 293–305.
WORF, D., KHOSRONEJAD, A., GOLD, T., REITERER, K., HABERSACK, H. & SINDELAR, C. 2022 Fluid

structure interaction of a subaqueous pendulum: analyzing the effect of wake correction via large eddy
simulations. Phys. Fluids 34 (5), 055104.

ZHU, H.-Y., WANG, C.-Y., WANG, H.-P. & WANG, J.-J. 2017 Tomographic PIV investigation on 3-D wake
structures for flow over a wall-mounted short cylinder. J. Fluid Mech. 831, 743–778.

960 A14-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

17
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.170

	1 Introduction
	2 Experiments
	2.1 Experimental system
	2.2 Particle tracking velocimetry and data assimilation
	2.3 Digital object tracking of vortex structures

	3 Results
	3.1 Oscillation frequency and amplitude decay
	3.2 Vortex dynamics
	3.3 Vorticity transport

	4 Conclusions
	References

