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Throughout this paper we shall work in the class of associative rings. In (4) it was
shown that a class of rings is a semisimple class if and only if it is closed under
extensions and ideals and is coinductive. This establishes a duality between radical
classes and semisimple classes. This result has been proved also for classes of alterna-
tive rings in (2). In the original work by Kuros (1) on this subject two conditions were
used for semisimple classes, one of which was weaker than the assumption that the class
is closed under ideals. This condition is that every non-zero ideal of a ring in the class
should have a non-zero homomorphic image in the class. It is natural to ask whether in
the above set of conditions the condition of being closed under ideals can be replaced
by this weaker condition. This question is raised in (3) and in (5) but it is suggested
there that, in order to compensate, the coinductive condition be replaced by the
stronger condition that the class is closed under subdirect sums. In fact we shall show
that the weaker condition may be used without needing to replace the coinductive
condition. We also give examples to show independence relations among these condi-
tions.

For future reference we list the following properties of non-empty classes of rings.
(A.) A class "£ of rings is closed under extensions if whenever a ring A contains an

ideal B such that B e <€, A/B e <£ then A e <€.
(B) A class "S of rings is coinductive if whenever a ring A contains a descending

chain of ideals Bf such that fl B; = 0 and AIB{ e <€, for each i, then A € <€.
(C) A class <€ of rings is closed under subdirect sums if whenever a ring A contains a

family of ideals B, such that fl Bt = 0 and A/Bt e c€, for each i, then A e <£.
(D) A class <# of rings is closed under ideals if whenever B is an ideal of a ring A

and Ae<g then B e « .
(E) A class % of rings is regular if 0 € % and whenever B is a non-zero ideal of a ring

A in <€ then B has a non-zero image in c€.
It is clear that (D) implies (E). The class <S consisting of 0, 1 and the fields Upl,

where p takes all prime values, satisfies (E) but not (D).
It is clear that (C) implies (B). The class % consisting of 0 and a single field IIpT

satisfies (B) but not (C). It also satisfies (D), (E).
In (3), (5), the question is raised as to whether conditions (A.), (C) and (E) imply that

a class is semisimple. In (4), Theorem 1, it was shown that (A), (B) and (D) imply that a
class is semisimple. We shall show that (A), (B) and (E) imply that a class is semisimple,
which gives also a positive answer to this question of (3), (5).
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Theorem. Let a class <S of rings satisfy (A), (B) and (E). Then <€ is a semisimple
class.

Proof. In view of (4), Theorem 1, it suffices to show that ^ satisfies (D). Let R be in
<# and let A be a non-zero ideal of R. Let Bt be the family of all ideals of A such that
A/Bj e <€. By (E) A contains at least one proper ideal with this property. From (B) and
Zorn's Lemma it follows that this family contains minimal members. Let B be such a
minimal member. Then A/Be'ti and if K is an ideal of A such that K is strictly
contained in B it follows that A/K<£ c€. If B = 0 then A e <€, as required. So we may
assume that B £ 0. If B is an ideal of R then, by (E), B has a non-zero image in c€. If B
is not an ideal of R then there exists reR such that either rB<£B or Br<fiB. We may
suppose that rBfiB. Consider the mapping A^B—»A/B defined by \r{b) = rb + B for
all beB. It is routine to check that k, is a ring homomorphism and that ^ ( 5 ) =
(rB + B)/B is an ideal of A/B. Since (rB+B)/B is non-zero and A/Be^ it follows
from (E) that A,.(B), and hence B, has a non-zero image in <<?. Thus in all cases, with

, B has a non-zero image in "#.
As above there is an ideal C minimal in the family of ideals Q of B such that

e<g. If C is an ideal of A then A/Be% B/Ce<€ implies, by (A), that A/Ce^.
This contradicts the minimality of B. Thus there must exist aeA such that either
aC<fi C or Ca<£ C. We may assume aC<£ C. Again this gives rise to a ring homomorph-
ism \a:C—>B/C, defined by Aa(c) = ac + C, whose image (aC + C)/C is a non-zero
ideal of B/C. Since B/C e <€ it follows by (E) that (aC + C)/C has a non-zero image in
<#. Let D/C be minimal in the family of ideals DJC of (aC + C)/C such that
((aC + O/C)/ (A/C)e«. Then (aC + O/De 'g . From B(aC + C ) c C it follows that
BDcD. If DBfiD then there exists beB with Db<£D. As above there is a ring
homomorphism fo-.D/C^iaC + O/D defined by pb(d + C) = db + D whose image
(Db + D)/D is a non-zero ideal of (aC + C)/D. From (E) it follows that Pi,(D/C), and
hence D/C, has a non-zero image in c€. Let this image be DIE where C c £ g D and E
is an ideal of D. From {aC + C)2^B(aC + C)<^C it follows that E is an ideal of
aC + C. From (A) it folows that (aC + O/Ee'S, which contradicts the minimality of
D/C. Therefore DB c D and D is an ideal of B. Let IT be the natural projection from
(aC + C)/C to (aC + C)/D. Let K be the kernel of IT ° \a, i.e. K = {x e C | ax e D}. Then
C/JC ss {aC + C)/D and so C/K e <€. Let y e B; then, for each x € K, axy e Dy <= DB <= D
and ayx e Bx <= BC <= D. It follows that K is an ideal of B. From (A) and B/CeW,
C/Ke<g it follows that B/Ke^. This contradicts the minimality of C.

Therefore A belongs to c€. Thus 'S satisfies (D) and so is a semisimple class.

Corollary. If a class *€ of rings satisfies (A), (C) and (E) then <€ is a semisimple class.

Since every semisimple class satisfies the conditions (A.), (B), (C), (D) and (E) we
have shown, indirectly, that (A), (B) and (E) imply (C). It is, perhaps, worth pointing
out that no two of these three conditions are sufficient to imply (C). We have already
given an example of a class satisfying (B), (D) and (E) but not (C). There are many
classes, such as the class of finite rings, which satisfy (A), (D) and (E) but not (C). To
exhibit a class ^ of rings satisfying (A), (B) but not (C) we use the construction from
(4). Let ^ i be any class of rings and construct the following classes inductively:
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^ + i ={R | R contains an ideal A with A and R/A in <Sll}, for each ordinal pt;
C€K = {R 11? contains a descending chain of ideals A; such that H A = 0 and

RlAt e ^ for ordinals m < A}, for each limit ordinal K.

Finally let <€u = U <
l̂i. As in the proof of Theorem 2 of (4) it may be shown that ^u

satisfies (A), (B). Now let CS1 be the class of all rings of order p2, where p is a fixed
prime. It is clear that new finite rings are constructed at stage <8(I, only when p is a finite
ordinal. Thus each finite ring in c€u has order p2m, for some integer m, and so no ring of
order p3 belongs to •#„. However Z/p2Z © Z/pZ is clearly a subdirect sum of rings of
order p2. Thus <€u is not closed under subdirect sums.

The construction given in (4) can also be used to obtain the least semi-simple class
containing a regular class Mx. It is easy to check that the class M^ remains regular at
each stage of the construction. Thus the class Mu is regular and so is a class satisfying
(A), (B) and (E) and thus, by the Theorem, is semi-simple. However if the class Mx is
not regular an analogous construction cannot be used since there need not be a least
regular class containing Mx. For example if ^ is the class consisting of 0,Z and the
fields Z/pZ where p = l(4) and 2> is the class consisting of 0, Z and the fields Z/pZ
where p = 3(4) then, as above, 'S and 3) are regular classes, but "S n2) ={0, Z} is not
regular. So Mx = {0, Z} is not contained in a least regular class.
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