THE INTEGERS AS DIFFERENCES OF A SEQUENCE

BY
ANDREW POLLINGTON AND CHARLES VANDEN EYNDEN

Abstract. It is shown that there exists a sequence of integers $a_{1}<a_{2}<\cdots$ such that each positive integer is a difference of elements of the sequence in exactly one way, and such that a_{k} does not exceed a constant times k^{3}. In fact we construct such a sequence with each a_{k} in $\left[C(k-1)^{3}, C k^{3}\right)$, where C is an absolute constant.

Paul Erdös has asked for a sequence of integers $a_{1}<a_{2}<\cdots$ such that each positive integer is the difference of two a 's in exactly one way, and such that a_{k} does not exceed a constant times k^{3}. Prof. Erdos informs us he has constructed such a sequence using the "greedy algorithm"; we construct one with considerable regularity.
Theorem. There exists an absolute constant C and a set of integers A such that
(a) for each $i \geq 0$, exactly one element of A is in the interval $\left[C i^{3}, C(i+1)^{3}\right)$,
(b) each $n>0$ can be written as the difference of elements of A in exactly one way.

Proof. For convenience the constant C, which will be specified later, will be taken to be an integer. Given a set S, we denote by $D(S)$ the set of all $s_{2}-s_{1}>0, s_{1}$ and s_{2} in S. We will consider certain finite sets F having the properties
(c) if $i \geq 0$ at most one element of F is in $\left[C i^{3}, C(i+1)^{3}\right)$,
(d) each $n>0$ can be written as the difference of elements of F in at most one way.

We will describe two constructions C 1 and C 2 . Each construction will define a set F^{\prime} properly containing F and still satisfying (c) and (d). Construction C1 will put n in $D\left(F^{\prime}\right)$, where n is the least positive integer not in $D(F)$. We will only apply C 1 when the intervals $\left[C i^{3}, C(i+1)^{3}\right)$ intersecting F are consecutive, starting with $[0, C)$. Construction C 2 will put into F^{\prime} an integer in the first interval $\left[C i^{3}, C(i+1)^{3}\right)$ not intersecting F. We will start our construction with $F=\{0\}$. The theorem will follow if we show we can always apply C1 or C2 as described above.
Construction C1
Suppose F consists of $0=a_{1}<a_{2}<\cdots<a_{k}$. Let n be the least positive integer not in $D(F)$. Choose an integer r such that $C r^{3} \geq 2 a_{k}+3$ and
$C(r-1)^{3}>a_{k}$. Set $a^{\prime}=C r^{3}-1, a^{\prime \prime}=a^{\prime}+n$, and $F^{\prime}=F \cup\left\{a^{\prime}, a^{\prime \prime}\right\}$. Then it is easily checked that F^{\prime} satisfies (c) and (d), and that $n=a^{\prime \prime}-a^{\prime}$ is in $D\left(F^{\prime}\right)$.
Construction C2
Since C 1 will only be used when F intersects consecutive intervals, we can assume $F=F_{1} \cup F_{2}$, where $F_{1}=\left\{a_{1}, \ldots, a_{k}\right\}, \quad C(i-1)^{3} \leq a_{i}<C i^{3}$ for $i=$ $1,2, \ldots, k, F$ does not intersect $\left[C k^{3}, C(k+1)^{3}\right)$, and F_{2} contains at most two elements. We will show we can pick a_{k+1} in $\left[C k^{3}, C(k+1)^{3}\right)$ to add to F while retaining condition (d). Actually we will pick a_{k+1} from the smaller set [Ck ${ }^{3}$, $C\left(k^{3}+k^{2}\right)$).

To start we will assume F_{2} is empty. Then we must choose a_{k+1} in [Ck ${ }^{3}, C\left(k^{3}+k^{2}\right)$) so that $a_{k+1}-a_{t}=a_{i}-a_{j}$ does not hold for t, i, and $j \leq k, j<i$. That is, a_{k+1} must avoid all the integers $a_{t}+a_{i}-a_{j}$. It will suffice for us to show there are fewer than $C k^{2}$ such numbers to avoid. By symmetry we can assume $i \leq t \leq k$ and $j<t$.

First we fix t and estimate the number N_{t} of integers $a_{t}+a_{i}-a_{j}$ in $\left[C k^{3}, C\left(k^{3}+k^{2}\right)\right.$). For such an integer $C(i-1)^{3} \leq a_{i}<C\left(k^{3}+k^{2}\right)+a_{j}-a_{t}$ and $C k^{3}+a_{j}-a_{t} \leq a_{i}<C i^{3}$, so

$$
\left(k^{3}+C^{-1}\left(a_{j}-a_{t}\right)\right)^{1 / 3}<i<\left(k^{3}+k^{2}+C^{-1}\left(a_{i}-a_{t}\right)\right)^{1 / 3}+1 .
$$

Thus for j fixed the number $n_{i}(t)$ of such integers does not exceed

$$
\left(k^{3}+k^{2}+C^{-1}\left(a_{j}-a_{t}\right)\right)^{1 / 3}-\left(k^{3}+C^{-1}\left(a_{j}-a_{t}\right)\right)^{1 / 3}+2
$$

Now $\left(x+k^{2}\right)^{1 / 3}-x^{1 / 3}$ is a decreasing function of x for $x>0$, so

$$
n_{i}(t)<\left(k^{3}+k^{2}-t^{3}\right)^{1 / 3}-\left(k^{3}-t^{3}\right)^{1 / 3}+2
$$

since $a_{j}-a_{t}>-C t^{3}$. We see

$$
N_{t}=\sum_{1 \leq j<t} n_{i}(t)<(t-1)\left(\left(k^{3}+k^{2}-t^{3}\right)^{1 / 3}-\left(k^{3}-t^{3}\right)^{1 / 3}+2\right)
$$

Thus the total number of integers $a_{t}+a_{i}-a_{j}$ in $\left[C k^{3}, C\left(k^{3}+k^{2}\right)\right)$ is less than

$$
\begin{aligned}
& \sum_{1 \leq t \leq k}(t-1)\left(\left(k^{3}+k^{2}-t^{3}\right)^{1 / 3}-\left(k^{3}-t^{3}\right)^{1 / 3}+2\right) \\
&<k^{2}+(k-1) k^{2 / 3}+\sum_{1 \leq t<k}(t-1)\left(\left(k^{3}+k^{2}-t^{3}\right)^{1 / 3}-\left(k^{3}-t^{3}\right)^{1 / 3}\right) \\
&<2 k^{2}+\sum_{1 \leq t<k}(t-1) k^{2}\left(k^{3}-t^{3}\right)^{-2 / 3} \\
&=k^{2}\left(2+\sum_{1 \leq t<k}(t-1)\left(k^{3}-t^{3}\right)^{-2 / 3}\right)
\end{aligned}
$$

where we have applied the mean value theorem to the function $x^{1 / 3}$ on $\left[k^{3}-t^{3}, k^{3}+k^{2}-t^{3}\right]$. Since there are $C k^{2}$ integers in $\left[C k^{3}, C\left(k^{3}+k^{2}\right)\right)$ it suffices
to show

$$
S(k)=\sum_{1 \leq t<k} t\left(k^{3}-t^{3}\right)^{-2 / 3}
$$

is absolutely bounded.
Let $k=8 q+r, 0 \leq r<8$. Then

$$
\begin{aligned}
S(k)= & \sum_{1 \leq i<q} \sum_{8(i-1)<t \leq 8 i} t\left(k^{3}-t^{3}\right)^{-2 / 3}+\sum_{8(q-1)<t<k} t\left(k^{3}-t^{3}\right)^{-2 / 3} \\
\leq & \sum_{1 \leq i<q} \sum_{8(i-1)<t \leq 8 i} t\left((8 q)^{3}-(8 i)^{3}\right)^{-2 / 3} \\
& +\sum_{8(q-1)<t \leq 8(q+1)} t\left(k^{3}-(k-1)^{3}\right)^{-2 / 3} \\
= & \sum_{1 \leq i<q}\left(q-\frac{7}{16}\right)\left(q^{3}-i^{3}\right)^{-2 / 3}+8(16 q+1)\left(k^{3}-(k-1)^{3}\right)^{-2 / 3} \\
< & S(q)+8 q^{-1 / 3} \text { for } k \geq 8 .
\end{aligned}
$$

Now suppose $k \geq 2^{12}$ and define the integer $p \geq 0$ by $8^{p} \leq k / 2^{12}<8^{p+1}$. Let $k=8 q_{1}+r_{1}, 0 \leq r_{1}<8$. Then $q_{1} \geq 2^{12} 8^{p-1}$ and

$$
S(k)<S\left(q_{1}\right)+8 q_{1}^{-1 / 3} \leq S\left(q_{1}\right)+2^{-p} .
$$

If $p_{1} \geq 1$, then $q_{1} \geq 2^{12}$. Let $q_{1}=8 q_{2}+r_{2}, \quad 0 \leq r_{2}<8$. Then $S(k)<$ $S\left(q_{2}\right)+2^{-p}+2^{-(p+1)}$. Continuing in this way we see $S(k) \leq M+2$, where M is the maximum of $S(j)$ for $j \leq 2^{12}$. We see that if F_{2} is empty then taking C any integer $\geq M+4$ will assure that a_{k+1} can be chosen.

Now even if F_{2} is not empty it can account for at most $2(k+1)^{2}$ more numbers of the form $a+a^{*}-a^{* *}$ to avoid, with a in F_{2} and a^{*} and $a^{* *}$ in F. A simple calculation shows that taking $C \geq M+14$ makes construction C 2 work in any case.

Reference

Problem P. 290, this Bulletin, Vol. 23, No. 3, 1980 and 24 (4), 1981, 504-505 (this issue).
Department of Mathematics
Illinois State University
Normal, Illinois 61761

