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ON POWERFUL AND p-CENTRAL RESTRICTED LIE ALGEBRAS

S. SlCILIANO AND TH. WEIGEL

In this note we analyse the analogy between m-potent and p-central restricted Lie al-
gebras and p-groups. For restricted Lie algebras the notion of m-potency has stronger
implications than for p-groups (Theorem A). Every finite-dimensional restricted Lie
algebra £ is isomorphic to £/£[p] for some finite-dimensional p-central restricted Lie
algebra £ (Proposition B). In particular, for restricted Lie algebras there does not
hold an analogue of J.Buckley's theorem. For p odd one can characterise power-
ful restricted Lie algebras in terms of the cup product map in the same way as for
finite p-groups (Theorem C). Moreover, the p-centrality of the finite-dimensional re-
stricted Lie algebra £ has a strong implication on the structure of the cohomology
ring tf'(£,F) (Theorem D).

1. INTRODUCTION

The structure theory of powerful p-groups had a strong impact on the study of finite
and infinite pro-p groups (see [15, 16]). Moreover, the mod p cohomology of p-central
groups has been studied quite intensively, since for these groups the cohomology ring
H'(G,FP) is easiest to analyse (see [6, 28]). In this note we shall analyse these concepts
for restricted Lie algebras.

One would expect that powerful restricted Lie algebras play a similar role in the
category of finite-dimensional p-nilpotent restricted Lie algebras as powerful p-groups
play in the category of finite p-groups. However, this is not the case. Let F be a field of
characteristic p > 0, and let gp denote the class of finite-dimensional p-nilpotent restricted
F-Lie algebras. For p / 2, the restricted Lie algebra £ e gp is called m-potent, m < p-1,
if

(11) 7m+i(£) ^ -CW,

where 7t(£) denotes the kth-term of the descending central series of £, and £^1' denotes
the F-vector space spanned by the elements i ^ ' , x € £. So 1-potent restricted Lie
algebras are just powerful restricted Lie algebras as introduced by Riley and Semple in
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28 S. Siciliano and Th. Weigel [2]

[19]. For m = p - 2, our definition is in analogy with the definition used by Gonzalez-
Sanchez and Jaikin-Zapirain for p-groups (see [9]). For p = 2, £ is called l-potent - or
powerful - if

(1.2) [£,£U(£[21)[21.

Obviously, there exist powerful p-groups of arbitrary high nilpotency class. However, for
restricted Lie algebras one has the following (see Theorem 2.6, Proposition 2.7).

THEOREM A. (a) Let £ e $p be an m-potent restricted Lie algebra, m < p - 1
for p odd, or m — 1 for p — 2. Then £ is nilpotent of class cl(£) ^ m + 1. Moreover,

£bP is a restricted Lie ideal for all j ^ 0, and one has (fib'lJbP' = £b)i+J. j n particular,

if F is perfect, then for every x € £,&]' there exists y € £ such that x — yW.

(b) Let p ^ 2 , let £ be a finite-dimensional p-nilpotent restricted Lie algebra, and

let d: — d(£) denote the minimal number of generators of £ as restricted Lie algebra.

Then £ is powerful, if and only if Z is a sum of d cyclic restricted Lie algebras.

For m = 1, the first part of Theorem A(a) has been proved already in [19, Section
5]. In section 3 we shall apply Theorem A in order to analyse properties of the restricted
universal enveloping algebras of these algebras.

While m-potency has much stronger implications for restricted Lie algebras than for
p-groups, the implications for p-centrality are sometimes stronger and sometimes weaker.
A restricted Lie algebra £ is called p-central, if

(1.3) £ b l : = { x 6 £ | x W = 0 }

where Z(£) denotes the centre of the restricted Lie algebra £. Hence, for a p-central
restricted Lie algebra £, the subset £[pj is a restricted Lie ideal in £. Finite-dimensional
restricted Lie algebras have the following property (see Proposition 2.10).

PROPOSITION B. Let £ be a restricted Lie algebra of dimension n < oo. Then

there exists a p-central restricted Lie algebra £ of dimension 2n such that £ ~ £/£[pj.

This property of restricted Lie algebras is in contrast to the situation one has for
finite groups. Indeed, for p odd, Buckley's theorem states that for a finite p-central group
G the group G/Q.i{G) is p-central as well (see [7]). This phenomenon is also reflected by
the fact that the characterisation of p-centrality given by Bianchi, Gillo Berta Mauri and
Verardi (see [5]) for p-groups does not hold for restricted Lie algebras (see Proposition
2.11).

In the last section of the paper we consider cohomological properties of powerful
and p-central restricted Lie algebras. For p odd, one can characterise powerful restricted
Lie algebras in the class £p (see Theorem 4.1) in the same way as one can characterise
finitely generated powerful pro-p groups in the class of all finitely generated pro-p groups
(see [27, Theorem 5.1.6]).

THEOREM C. Let p be odd and let £ 6 Jp. Then the following are equivalent:
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(i) £ is powerful.

(ii) Cup product induces an injective map

(1.4) _ U _ : Hl{£.,¥) AH1 {£.,¥) —> H2(£,F),

where F denotes the trivial left u(£)-moduie.

In [6], Broto and Henn showed that for an arbitrary p-central finite group G the
cohomology ring H'(G,WP) is a Cohen-Macaulay Fp-algebra. Let p be odd. A finite
group G satisfies the Q-extension property, if there exists a finite p-central group G such
that G is isomorphic to G/fii(G). In [28, Theorem A] it was shown that a finite p-group
G satisfies the fi-extension property, if and only if

(1.5) H'(G,Wp)~C'®FpS\

where C* is a finite-dimensional graded commutative Fp-algebra, and S* is a polyno-
mial algebra generated in degree 2. Another interpretation of Proposition B is that for
restricted Lie algebras the fi-extension property is always satisfied. For restricted Lie
algebras, we shall prove the following theorem (see Theorem 4.3, Corollary 4.5) which
can be seen as an analogue of [28, Theorem A].

THEOREM D. Let p be odd and let £ be a finite-dimensionaJ restricted p-central
restricted Lie algebra. Then

(1-6) H-(Z,F)~C-®rS'(2y

where S*(£M is the polynomial W-algebra generated by £!\: = HomF(£[p],F) in de-

gree 2, and C' is a finite-dimensional W-algebra satisfying Poincare duality in dimension

n: = dimFp(£[p]). In particular, H'(£,,W) is a Cohen-Macaulay W-algebra.

Up is odd, one can characterise finite p-groups with the f2-extension property by the
structure of their cohomology ring (see [28]). Therefore, one would like to know whether
the following problem has an affirmative answer.

PROBLEM 1. Let p be odd and let £ e 5P. Assume that #*(£, F) ~ C ® 5*, where C

is a finite-dimensional F-algebra, and S* is a polynomial F-algebra generated in degree
2. Is it true that £ is p-central?

The main purpose of this paper is the study of m-potent restricted Lie algebras
and p-central restricted Lie algebras in analogy to m-potent p-groups and p-central finite
groups. However, there might be other contexts where these notions play an important
role. We close the introduction with the following two open problems [The authors thank
the referee for communicating these problems to them.] which might be the subject of
further investigations.

PROBLEM 2. Investigate m-potent and p-central restricted Lie algebras represented as

ring constructions defined in [14, Chapter 3].
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PROBLEM 3. Describe m-potent and p-central restricted colour Lie superalgebras rep-
resented as blocked matrices of directed graphs (see [13]).

2. POTENT AND P-CENTRAL RESTRICTED LIE ALGEBRAS

Let £ be a restricted Lie algebra over the field F of characteristic p > 0. For a subset
S of £, we denote by (S)p the restricted subalgebra generated by 5. If / is an ideal of
£ then Ip: = (I)p is a restricted ideal of £. By S^k, k > 0, we denote the F-vector
subspace of £ spanned by the elements x^' , x 6 5. The restricted Lie algebra £ is
cyclic, if there exists a; € £ such that £ = (x)p.

For a positive integer i we denote by 7,(£) the ith term of the lower central series of
£. For a restricted Lie algebra £ € #p, we denote by cl(£) the nilpotency class of £, and
by e(£) its exponent, that is, the minimum number m e No such that £^m = 0. The
element x 6 £ is called of exponent k, k € No, if and only if (a;)p is of exponent k. For
an ideal / of the Lie algebra £ we put [/,„£]: = • • • [[I, £ ] , £ ] , . . . , £ , where £ appears
in the latter expression n times.

2.1. T H E FRATTINI IDEAL $(£). Let £ e 5P. The restricted Lie ideal

(2.1) $(£) : = £bl + [£,£]

will be called the Frattini ideal of £. For the convenience of the reader we state its
well-known properties in the following proposition (see [21]).

P R O P O S I T I O N 2 . 1 . Let £ e 3 P .

(a) $(£) is the intersection of all restricted Lie ideals I of £ of codimension 1.

(b) IfS is a subset of £ whose image in £/$(£) spans £/$(£), then (S)p = £.

(c) Let d(£) denote the minimal number of generators of £ as restricted Lie

algebra. Then d{£) = dimF(£/*(£)).

(d) Let J be a restricted ideal of £ being contained in $(£). Then $(£/•/)

= *(£)/•/-

(e) Let J be a 1-dimensional restricted Lie ideal of £ such that the short exact

sequence 0 —> J —• £ —> £/J —> 0 is non-split. Then J is contained in

<*>(£).

2.2. POTENTLY EMBEDDED IDEALS. Let p be odd and m < p - 1. A restricted ideal
/ of £ G dp is called m-potently embedded in £, if [/,m£] is contained in I^h If p = 2,
then / is called l-potently embedded in £, if [/, £] is contained in (/I2')I2'. A 1-potently
embedded ideal will also be called a powerfully embedded ideal. Obviously, if / is m-
potently embedded in £, then / ^ is a restricted ideal of L. One has the following:

LEMMA 2 . 2 . Let £ G 5 P and let I be a restricted ideal of £.
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(a) Let p be odd and m < p - 1. Then / is m-potently embedded in £, if and
only i f / / [ / , p_ i£ ] p is m-potently embedded in £ / [7 , p _ i£] p . In this case
one has [7,p_i£]p = 0.

(b) Let p-2. Then I is l-potently embedded in £, if and only if I/[1,3^2 is

l-potently embedded in £/[/, 3£]2- 7n this case one has [1,3£]2 = 0.

PROOF: (a) Assume that 7/[/,p_i£]p is m-potently embedded in £/[/,p_i£]p. It
suffices to show that [/,p_i£] = 0. Suppose [7,p_i£] ^ 0. By hypothesis,

(2.2) [/, m £ ] p = ([/, m £ ] p n /W) + [I, p_j£]p .

Put J: - ( [ / , m £ ] P n /W) + [/,p£]p. Then J is a restricted ideal of £, and by definition,
([/,m£]P n / W ) C J C [7,m£]p. As £ is nilpotent and [7>p_i£] ^ 0, one has [7,£]
C [7!P£] C [[7,m£],£] = [[7,m£]p ,£] . In particular, J ^ [7 ,m£]p . Since £ is finite-
dimensional and p-nilpotent, there exists a restricted ideal K of £ such that J C K
C [7, m £ ] p , and K has codimension 1 in [7, m £ ] p . Put [7,m£]p — K + W.x for a suitable
x € [7,m£]p. Since every 1-dimensional left £-module is trivial, one concludes that
[[7, m £ ] , £] C K. By (2.2) and as m < p - 1 , it follows that [7, m £ ] p C 7C, a contradiction,
and this yields the claim.

(b) The proof for p — 2 can be obtained in a similar way by replacing the role of

/[P]b y(7f2 l)[2 land[7,p_1£]by[7,3£] . D

For the reminder of this section we assume that m is a positive integer satisfying
m < p — 1 for p odd or m — 1 in case p = 2.

PROPOSITION 2 . 3 . Let £ £ 5P and let I and J be two restricted ideals of £.
7f 7 and J are m-potently embedded in £,, so are [I, £ ] p , /W, [7, J]p and I + J.

PROOF: Let p be odd. First we show that [7, £] is m-potently embedded. Without
loss of generality we may assume that [[7,£],p_i£] = 0 (see Lemma 2.2(a)). Hence, for
any x 6 7 and a £ £, one has (ad z)p(a) = 0, and thus /W C Z(£). Since 7 is m-potently
embedded in £, this yields [[7,£]p,m£] C [I^,£] - 0 and the claim follows.

Concerning 7 ^ we have already observed that /W is a restricted ideal of £. By
Lemma 2.2(a), we may assume that [7'p),p_1£] = 0. As 7 is m-potently embedded in £,
it follows that [7,m+p_i£] - 0. Hence [7W,m£] = 0, and /W is m-potently embedded in
£.

Next consider [7, J ] p . As above we may assume that [[7, J ] p , p _ i£] = 0. This forces
[7bl) j ] = [/, «/W] = 0. Since 7 and J are m-potently embedded in £, this implies that
[[/,m£],./] Q [Ib\J] = 0 and [[J,m£],7] C [7, jW] = 0. By Jacobi's identity, one has
0 = [[7, J], m £ ] = [[7, J]p, m £ ] , and thus [7, J]p is m-potently embedded in £.

Finally, for 7 + J one has

(2.3) [7 + J, m £] = [7, m £ ] + [J, m £] C /W + jW C (7 + J)W,
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therefore I + J is m-potently embedded in £.

For p = 2, the proof is analogous to the case p odd using Lemma 2.2(b) and suitable

modifications. D

As a consequence of Proposition 2.3 one obtains the following corollary.

COROLLARY 2 . 4 . Any restricted Lie algebra £ € $p contains a unique maximal

m-potently embedded restricted ideal.

A restricted m-potently embedded ideal / of £ is obviously m-potent. If Sj is a
restricted subalgebra of £ and fi/I is cyclic, then f) is m-potent. Indeed, in this case
there is x € fj such that every element of Sj/I is a linear combination of the elements
i W + / , t € No. Consequently, [•$!>, io] = [I, ft]. As / is m-potently embedded in £, one
has

W W for p odd,
( ) ($)C(/ t 2 l ) [ 2 1 c ($e i )M forp = 2.

The m-potency of a restricted Lie algebras is preserved by extension of the ground field.
Furthermore, quotient Lie algebras and direct sums of m-potent restricted Lie algebras
are m-potent as well. The following example shows that a restricted ideal of a m-potent
restricted Lie algebra need not be m-potent.

E X A M P L E 2.5. Let £ be the Lie algebra over a field F of odd characteristic with F-basis
{x, y, z, v} and with relations [x, y] — z and z,v £ Z(£). The p-map of £ is given by

(2.5) z w = »W = z® = 0, t;W = z.

One has [£,£] = £® = F.z, and thus £ is powerful. For the restricted ideal
/ : - F.x + W.y + ¥.z one has [/,/] = W.z, while /W = 0. Therefore, / is not pow-
erful.

THEOREM 2 . 6 . Let £ e 5 P be an m-potent restricted Lie algebra.

(a) £ is nilpotent of class cl(£) ^ m + 1.

(b) For i ^ 0 the F-vector space £W is a restricted ideal of £. Moreover,

(c) Let {bu...,br} bean F-basis of Z. Then £W = X) ^-^ •

(d) 7f F is perfect, for every element x of £^1' there exists y € £ suci that
ytPl* = i .

PROOF: (a) Let p be odd. By Lemma 2.2(a), cl(£) ^ p-1. For every z, y € £ one

has adx^'(y) = 0 and thus £ ^ C Z(£). Moreover, as £ is m-potent, 7m+i(£/£(p)) = 0

and thus cl(£) s^m + 1.

Let p = 2. By Lemma 2.2(b), cl(£) ^ 3. One concludes that (adx'2))2(y) = 0 for

every x,y € £. Hence (£(2))t2) C Z(£). Since £ is 1-potent, 72(£/(£(2))(21) = 0 and

therefore cl(£) ^ 2.
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(b) By (a), the F-vector subspace £bl" of £ is contained in Z(£) for every i > 0.

This yields (b). Part (c) and (d) follow from the fact that _>' ' : £ -> Z(£) is a p-semilinear

map. U

One has the following characterisation of powerful restricted Lie algebras.

PROPOSITION 2 . 7 . Let £ e 5P be a restricted Lie algebra with d: - d{£).

(a) If £ is powerful, then £ is a sum of d cyclic restricted Lie algebras.

(b) Ifp ^ 2, then £ is powerful, if and only if Z is the sum ofd cyclic restricted

Lie algebras.

P R O O F : (a) Since £ is powerful, one has $ (£ ) = &l Let TT$: £ -> £ / $ ( £ )

denote the canonical projection, and let S = {x\,X2,...tXi) be a subset of £ such
d

that 7r$(5) is a basis of the F-vector space £/£bl. Denote by H: = ^2{xi)p the sum
t=i

of the cyclic restricted Lie algebras {x,)p. By construction, one has n$(H) — 7r$(£).

Hence H + £ ^ = £. As J P I ; £ ->• £W is p-semilinear and £ w ^ Z(£), this implies
£bl = i/bl + £b)2. Thus, by induction, £W = i/bl and this yields the claim.

d d

( b ) L e t £ = J 2 ( x i ) p - T h e F - s u b s p a c e Y l ( x \ \ ) P h a s c o d i m e n s i o n d = d ( £ ) a n d i s
i = l t = l

d

contained in ker(7r$). Hence ker(7r$) - J2ixi)p- T h i s implies [£, £] ^ $(£) ^ £bl and
i=l

£ is powerful. D

The following example shows that Proposition 2.7(b) does not hold in even cha-

racteristic:

EXAMPLE 2.8. Let Sj be the 3-dimensional Heisenberg algebra over a field F of charac-

teristic 2. Then H has a basis {x, y, z} with

(2.6) [x,y] = z, [x,z] = [y,z]=0.

Consider the p-map on Sj given by

(2.7) z!2) = y® = z, *M = 0.

Then d{$)) = 2 and Sj = (x)p + (y)p, but Sj is not powerful.

The following property is useful for the characterisation of powerful restricted Lie

algebras in terms of cohomological properties.

PROPOSITION 2 . 9 . Let p be odd, and let £ G 5P be a non-powerful restricted

Lie algebra. Then there exists a restricted Lie ideal J of £, such that

(i) £bl is contained in J.

(ii) J is contained in $(£) and has codimension 1.
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P R O O F : The restricted Lie algebra £ is powerful, if and only if £/7P(£)p is powerful
(see Lemma 2.2(a)). Since 7P(£)P is contained in <£(£), we may therefore assume that
7p(£)p = 0 (see Proposition 2.1(d)). In particular, £^1 is a restricted Lie ideal contained
in Z(£). Since £ is non-powerful, £^1 is properly contained in $(£)• Let J be a max-
imal ideal being properly contained in $(£) containing £,^. Then J has the desired
properties. D

2.3. p-CENTRAL RESTRICTED L I E ALGEBRAS. For a restricted Lie algebra £ with p-
map _W: £ —> £1*1 we denote by £[p] the set of all zeros of [p]. Thus, £ is p-central, if
and only if Z\p\ C Z(£). If £ is a p-central restricted Lie algebra, £[pj is a restricted ideal.
The property of p-centrality will be inherited on restricted subalgebras and is preserved
by direct sums and extensions of the ground field. However, homomorphic images of
p-central restricted Lie algebras need not be p-central. More precisely, any restricted Lie
algebras is the homomorphic image of a p-central restricted Lie algebra.

PROPOSITION 2 . 1 0 . Let £ be a restricted Lie algebra of dimension n over a
field ¥ of characteristic p > 0. Then there exists a p-central restricted Lie algebra £ such

that dimp(£) = In and £ is isomorphic to £/£[p] as a restricted Lie algebra.

P R O O F : Let {x\,..., xn} be an F-basis for £ and let 03 be an Abelian n-dimensional
Lie algebra over W with basis { y l t . . . , yn). Let £ denote the Lie algebra £©03 with p-map
[p'] given by

Clearly, for z = x + y € £ with x — J2 ^ixi G £ a n ^ V £ © one has

(2.9) *"•' =
t = l : = 1

The linear independence of the elements xu..., xn, yu ..., yn forces £[pj = 23, and this
yields the claim. 0

The following property which has been studied for finite groups in [5] yields a crite-

rion for p-centrality in case that the nilpotency class is less than p.

PROPOSITION 2 . 1 1 . Let £ be a nilpotent restricted Lie algebra over a field
¥ of characteristic p > 0 with cl(£) < p. Then £ is p-central, if and only if one has
[x, y] = 0 for every x, y € £ satisfying x^ = j/W.

P R O O F : Assume that £ is p-central. Since cl(£) < p, the p-map is p-semilinear.

Hence xM — y ^ forces ( i - y ) w = 0. This yields x-y e Z(£), and thus [x,y] = 0.

Conversely, suppose that for x,y £ £, x® — yW implies [x,y] = 0. Since cl(£) < p,

for every x € £ and z 6 £[p], one has ( i + z)W = x^ + z^ = x^K So, by hypothesis,

z € Z(£) and this yields the claim. D
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The following examples show that in contrast to the situation for finite groups (see
[5]), one cannot drop the hypothesis on the nilpotency class.

E X A M P L E 2.12. Let F be a field of characteristic p > 0. Let £ be the restricted F-
Lie algebra with basis x,y,z,a\,..., ap_i, b\,..., bp-i subject to the following relations:
bitz € Z(£), 1 ^ i ^ p - 1 and [x,y] = au [i,Oj] = [a;,Oj] = 0 for every i,j < p ,
[di,y] = Oj+i for i < p — 1 and [ap-i,y] = 0. In particular, cl(£) = p . The p-map is
given by x® = 0, y® = z, z® = 0, af] = bt, bf] = 0, 1 ^ i ^ p - 1. A straightforward
verification shows that any two elements of £ having the same image under the p-map
commute. However, i ^ ' = 0 while x £ Z(£). Therefore, £ is not p-central.

E X A M P L E 2.13. Let QJl be the restricted Lie algebra which coincides with £ of Example
2.12 as F-Lie algebra, but which p-map is given by x^ = j/W = z, z^ = 0, af' = 6j and
bf> = 0 for 1 ^ i ^ p — 1. It is an easy exercise to verify that £ is p-central. However,

3. THE RESTRICTED ENVELOPING ALGEBRA OF POWERFUL RESTRICTED LIE

ALGEBRAS

Let £ be a restricted Lie algebra over a field of characteristic p > 0. By u(£) we
shall denote the restricted universal enveloping algebra of £, and by CJ(£) we shall denote
the augmentation ideal of u(£), that is, w(£) is the kernel of the counit e: u(£) —> F of
the F-Hopf algebra u(£). In particular, w(£) is the associative ideal generated by £ in
u(£).

3.1. THE NILPOTENCY INDEX OF THE AUGMENTATION IDEAL. It is well known (see
[20]) that w(£) is nilpotent, if and only if £ e 5P- The nilpotency index t(u(£)) of w(£)
is defined to be the smallest positive integer k such that oj(S,)k = 0. Relations beetwen
the nilpotency index t(u(£)) of w(£) and the exponent e(£) of £ were studied in [21]:
for example, it was shown that pe'£' ^ <(u(£)) for all £ € 3p- For powerful restricted Lie
algebras one has also the following.

PROPOSITION 3 . 1 . Let £ be a powerful restricted Lie algebra over a Reid F of
characteristic p > 0. Then one has

(3.1) i ( u ( £ ) ) ^ l + d(£Hpe<£>-l) .

Moreover, equality holds in (3.1), if and only if every element x € £ \ £^1 is of exponent
e(£).

P R O O F : Put

(3.2) a>x(£): = £, S) m (£) : = (a)fm/Pi(£)W) + [£ ,S) m - i (£) ] for m > 1.
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By [21], one has

(3.3) t\

where dn: = d\mf(i)n(£,)/1)n+i(£,)). By Theorem 2.6 and induction, one concludes
easily that

(3.4) 2 n ( £ ) =

where k(n): — [logpn]. This yields

dimF(£W7£Wi+1) if n = f with 0 ^ i < e(£),
(35) . „

otherwise.

Formula (3.3) implies that

(3.6) i(u(£)) = l + (p -
:=0

Moreover, by Theorem 2.6, dimF(£lpl7£lpl '+1) < d(£) which yields (3.1). One has equality
in (3.1), if and only if dimF(£W7£W'+1) = d(£) for all i = 0 , . . . ,e(£) - 1. By Theorem
2.6, this is equivalent to the property that every element x € £ \ £^1 is of exponent
e(£). D

3.2. T H E L I E DERIVED LENGTH. Let 21 be any associative F-algebra with unit. The
associative F-algebra 21 can be regarded as an F-Lie algebra via the Lie commutator
[x, y] — xy — yx, x, y € 21. The Lie derived series <5'"'(2l) and the strong Lie derived series
5'™'(21) of 21 are given by

(3.7)

The associative F-algebra 21 is called Lie solvable (respectively strongly Lie solvable), if

<jN(a) - 0 (respectively <5(n)(2l) = 0) for some n > 0. The smallest such number n is

called the Lie derived length (respectively strong Lie derived length) and will be denoted

by dlue(2l) (respectively dlLie(2l)). Obviously, if 21 is strongly Lie solvable, then 21 is Lie

solvable and dlLi,(a) ^ dlLie(2l).

Let £ be a finite-dimensional restricted Lie algebra over a field F of characteristic

p > 0. Under the assumption that F is of odd characteristic, Riley and Shalev proved in

[20] that u(£) is Lie solvable, if and only if £'p := [£, £]p is p-nilpotent. In [23] it was

shown that - without any restriction on the ground field - u(£) is strongly Lie solvable,
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if and only if £!p is p-nilpotent. However, for such a restricted Lie algebra it can happen
that dlLie(u(£)) ^ dlLie(u(£)). Apart from the results in [22, 23, 25], very little is
known about the Lie derived lengths of the F-algebra u(£). For powerful restricted Lie
algebras one has the following property.

PROPOSITION 3 . 2 . Let £ be a restricted Lie algebra over a Geld ¥ of charac-

teristic p > 0. If £ is powerful, then

min([log2(peW + 1)1,p - 1) ^ dlLie(u(£))

( 3 ' 8 ) < dlLie(u(£)) < f log2(2 + d(Z'p) • (p«W - 1))].

P R O O F : By [23, Lem.2] and Proposition 3.1, one has

(3.9) dlLie(u(£)) ^ [log2(2 + d{2!p) • (p'W - i ) ) ] .

It remains to show, that if dlLie(u(£)) < P, then dlLie(u(£)) ^ [Iog2(p
e(£'p) + 1)]. If

£ is Abelian, the claim is trivial. Assume that £ is non-Abelian, that is, cl(£) = 2.
By Theorem A, Z'p is Abelian. Consequently, there exist two non-commuting elements
a,b € £, such that z: = [a,b] is of exponent e(£p). We claim that ahz2m-1,bkz2'"-1

€ <5lm'(u(£)) for every non-negative integer m and for every 0 < / i , k ^ p - m — 1. We
proceed by induction on m. For m = 0, the claim is trivial. Assume that by induction,
one has a^z2"1'1'1 € 5fm-1)(u(£)) and bz2""1-1 € 6^'^(u(£)). As z centralises a and
b, the Leibnitz rule implies that

h+1 h+1
(3.10) {ah+\b] = ^ a i - 1 [ a , 6 ] o / l - i + 1 = ^ahz = {h+ \)ahz.

i=l i=l

In particular,

(3.11) [ah+1z2""1-\bz2m~1-1} = [ah+\b]z2m-2 = (h + \)ahz2m-\

As 0 < h+1 < p, one concludes that ahz2m~l € 6^ (u(£)), and a similar argument shows
that bkz2m~l e <5H(u(£)). This yields the claim. The Poincare-Birkhoff-Witt theorem
for restricted universal enveloping algebras (see [26, Chapter 2, Theorem 5.1]) implies
that for 2m — 1 < pe'£>>', the element z2™"1 is non-trivial. The claim has shown that for
0 ^ m ^ p — 1 the element z2™"1 is contained in Jlm'(u(£)), completing the proof of the
proposition. D

3.3. T H E LIE NILPOTENCY CLASS AND THE NILPOTENCY CLASS OF THE GROUP O F

UNITS. Let F be a field, and let 21 be an associative F-algebra with unit. One calls 21
Lie nilpotent, if 21 is nilpotent as F-Lie algebra. In this case we denote by clLie(2l) the
Lie nilpotency class of 21. Put 2t<1>: = 21 and 2l<n+1> = [2l(n),2l<n>]2l, n ^ 2. One says
that 21 is strongly Lie nilpotent, if 2l("' = 0 for some n. In this case one calls the minimal
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non-negative integer clLie(2l): = m satisfying 2l(m+1> = 0 the strong Lie nilpotency class

of a .

In [20], Riley and Shalev proved that if £ is a restricted Lie algebra over a field F of
characteristic p > 0, then u(£) is Lie nilpotent, if and only it is strongly Lie nilpotent.
Moreover, this happens precisely when £ is nilpotent and £!p £ 5P- They also showed
that clLje(u(£)) = clLie(u(£)) provided p > 3, while it is unknown whether this equality
holds in the exceptional cases p = 2,3 as well. In [24] it was shown, that if £ e 5P and
£!p is cyclic, then clLie(u(£)) = clLie(u(£)) = p

dimr£'p. Here we prove the following result:

PROPOSITION 3 . 3 . Let £ e 5P. If£'p is powerfully embedded in £, then

(3.12) p'W ^ clLie(u(£)) ^ clLie(u(£)) ^ 1 + d(Z'p) • (p'W - 1).

P R O O F : From [24, Theorem 1] and Theorem 2.6 it follows that clLie(u(£)) ^ pe(£p'.
Consider the chain of restricted ideals of £ defined recursively by

© ! ( £ ) : = £ , 2> 2 (£) :=£ ; ,
(3 13)

2 > ( £ ) ( » ( £ ) | p l > + [ 2 ) ( £ ) £ ] , m > 2.

According to [21], one has

(3.14) clLie(u(£)) = 1 + (p - 1) • Y, m

where d( m): — dimF(S)(m)(£)/2)(m+1)(£)). As £'p is powerfully embedded in £, Proposi-
tion 2.3 and Theorem 2.6 imply that for n > 1 one has

(3.15) £ ( n ) (£ ) = (

where h(n): = [logp(n - 1)]. From this identity one concludes that for n ^ 2

(6.1b) (n) \ .
I 0 otherwise.

From formula (3.14) one deduces that

(3.17) clLie(u(£)) = 1 + (p - 1) • Y pn- dimF((£;)Wn/(£;)Wn+1).
n=0

As in Proposition 3.1, this yields clLie(u(£)) ^ 1 -f d(£'p) • (p6^ - 1). D

For an associative F-algebra 21 with unit, we denote by 21* the group of units of
21. Let cl(G) denote the nilpotency class of the nilpotent group G. If £ G 3p, then
w(£) is nilpotent and u(£)* = F* x (l +u(Z)). Hence, u(£)* is nilpotent and cl(u(£)')
= cl(l + w(£)). According to a result of Du (see [8]), if an associative F-algebra T is
radical, that is, T coincides with its Jacobson radical, and Lie nilpotent, then clueC^)
coincides with the nilpotency class of the adjoint group T° = 1 + T. As a consequence
one obtains the following:
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COROLLARY 3 . 4 . Let £ 6 dp- H£'p is powerfully embedded in £, then

(3.18) p e ( £ ^ ^ cl(u(£)*) ^ 1 + d(2'p) • (pe<£>> - 1).

4. COHOMOLOGY FOR RESTRICTED LlE ALGEBRAS

Let £ be a restricted Lie algebra and let u(£) denote its restricted universal en-
veloping F-algebra. The kth-cohomology group with coefficients in the left £-module M
is given by

(4.1) Hk(2,M): = Ext*(£)(F,M).

where F denotes the trivial left £-module. Cup-product

(4.2) _U _: # ' ( £ , F) x H'(£,F) —> #*(£,¥),

which coincides with the Yoneda composition of Ext-groups, gives H' (£, F) naturally the
structure of a graded commutative F-algebra. Moreover, every homomorphism <p: £, -¥ 9Jt

induces a homomorphism of graded commutative F-algebras <£*: H'(Wt,F) -* H'(£,¥).

The reduced cohomology W-algebra of the restricted Lie algebra £ is given by

(4.3) tf'(£,F)red: = # ' ( £ , F)/nil(tf*(£,F)),

where nil (#*(£, F)) denotes the graded ideal of nilpotent elements of the graded F-
algebra #*(£, F). Certainly, one of the most striking result on the cohomology of finite-
dimensional restricted Lie algebras is the theorem of Jantzen (see [11]). It states that
if F is an algebraically closed field of characteristic p, p odd, then H'(£, F)red can be
identified with the rational functions on the algebraic set £(pj = { x 6 £ | iW = 0 }
generated as F-algebra in degree 2. One can think of this theorem as the analogue of
Quillen's theorem which describes H'(G,¥P) of a finite group G up to F-isomorphism
(see [18]).

4.1. POWERFUL RESTRICTED LIE ALGEBRAS. If p is odd, one can characterise powerful
restricted Lie algebras in the class £p in the same way as powerful pro-p groups (see [27,
Theorem 5.1.6]).

THEOREM 4 . 1 . Let p be odd and let £ € 3p. Tien the following are equivalent:

(i) £ is powerful.

(ii) The mappingPc- H1 {£,,¥)AH1 {£,¥) -» H2{£,F) induced by cup-product

is injective.

The proof of Theorem 4.1 makes use of the following simple fact.
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FACT 4.2. Let p be odd, and let 21 be a finite-dimensional Abelian restricted Lie algebra

with trivial p-map. Let r\ G i/2(2t, F) and let

(4.4) s,,: 0 —>¥ —• a , -^» a —> 0

denote the corresponding short exact sequence of restricted Lie algebras (see [10]). Then
one has 2ljf' == 0, if and only if 77 G im(/?a).

PROOF: Asp is odd, the p-map on 21̂  induces a p-semilinear map (̂77) G Homp (21, F)
of degree p. This yields a short exact sequence

(4.5) 0—»H1(a,F) Afl"1(a,F) -^ / / 2 (2 l ,F) -^Hom£(a,F) —+ 0,

which implies the claim. D

PROOF: [Proof of Theorem 4.1] Let -n: £ -¥ 21, 21: = £/$(£), denote the canonical
projection. One has a commutative diagram

(4.6) ^

ITT'ATT1

Hl(£, F) A Hx(£, F) -^* H2{£, F).

Moreover, -n1 Air1 is an isomorphism, and /3a is injective. For 77 G H2($L, F), let £,, denote
the pull back of the mappings £ —• a «- a,, that is, one has a commutative diagram

(4 71 s' : (1 *- F >• £ „ »- P *• f)

Sri • C\ ^ j p ^ *Zl_ ' y rtf ^ A

If s'n is split, there exists a mapping a making the diagram (4.7) commute. On the other
hand, Zv is the pull back of the mappings n and rn. Hence the existence of the mapping a
in (4.7) implies that sj, is split. If 77 ^ 0, s,, is a Frattini extension (see Proposition 2.1(e)),
and therefore, a mapping a making (4.7) commute must be surjective (see Proposition

Let £ be powerful. Let f G Hl(£,F)AHl{£,F), f ^ 0, and assume that 0Z(?) = 0.
Let f G Hl(21, F) A if1 (21, F) such that (rr1 A TT1)^) = £'. Hence $»(£) # 0 and s^a(0 is a
Frattini extension. The commutativity of the diagram (4.6) and the previously mentioned
remark imply that there exists a surjective map a: £, -¥ 2l^a(?) making the diagram (4.7)
commute for 77: = /?a(O- However, by Fact 4.2, one has 2l^({) = 0. Hence 21^^) is not
powerful. On the other hand, as a homomorphic image of £ the restricted Lie algebra
2lfla(£) must be powerful, a contradiction. This yields the implication (i)=*-(ii).

Let Pz be injective, and assume that £ is not powerful. Hence there exists a restricted
ideal J of £ such that £^1 C J C $(£) and J has codimension 1 in $(£) (see Proposition
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2.9). Let fj: = Z/J and let

(4.8) s: 0 — > F — > £ - ^ 2 t — > O

denote the canonical short exact sequence. By construction, s is non-split and S}W = 0.
Hence by Fact 4.2, there exists an element £ € Hl(VL,F) A i / ' fa .F), f ^ 0, such that
s = Sfla({). From the commutative diagram

(4.9) s'Mi): o - F -£/»««) - £ - 0

I I
:

0 » F "ft ^— -̂21

one concludes that /^((TT1 A TT1)(^)) = 0. Hence /?£ is not injective, a contradiction, and
this completes the proof of the theorem. D

4.2. COHOMOLOGY FOR p-CENTRAL RESTRICTED LlE ALGEBRAS. Let £ be a finite-

dimensional p-central restricted Lie algebra. For such a restricted Lie algebra one has a
surjective homomorphism

(4.10) p:Zsj,^Z—> £, p(z,x): =z + x.

Applying Kiinneth' theorem one obtains a mapping

(4.11) A£: =(red®id)o^: i f (£ ,F)—>i/*(£ [ p , ,F) r e d®F-(£,F) ,

which gives #*(£,F) the structure of a left #*(£[p],F)red-comodule algebra. The Hopf
algebra structure on i/*(£[p],F)red is induced by the mapping AC(j>] (see [17]). Using this
additional structure one deduces the following.

THEOREM 4 . 3 . Let p be odd and let £ be a Gnite-dimensional restricted Lie
algebra. Then one has an isomorphism of graded commutative W-algebras

(4.12) / / ' (£, F) = C"® 5"(££,])

where 5*(£^,.) is generated in degree 2 and C is a Gnite-dimensional graded commutative

F-algebra. In particular, H'(£,F) is a graded commutative Cohen-Macaulay F-algebra.

PROOF: Let L: £(pj —> £ denote the canonical map. The theorem of Jantzen implies
that the reduced restriction map

(4.13) / : = redot*: / / ' (£ , F) —> H'(£w > F)red

is surjective. Thus [28, Theorem 3.1] implies that one has an isomorphism of F-algebras

(4.14) # ' ( £ , F) ~ C ® #*(£b ] , F)red,
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where C': = FD#«(£bl,F)red//*(£, F) and D denotes the cotensor product (see [17]).
Moreover, since #*(£, F) is a finitely generated graded commutative F-algebra (see [12,
Section 1.11, Proposition]), C* is also finitely generated. By Jantzen's theorem,

(4.15) L'red: iT(£,F)red —> tf-(£b),F)red

is an isomorphism. This implies that the augmentation ideal u(C) of C* consists entirely
of nilpotent elements. In particular, C* is finite-dimensional, and H'(£, F) is a graded
commutative Cohen-Macaulay F-algebra. D

Let B' be a graded commutative F-algebra. Then B' is said to satisfy Poincare
duality in dimension n, if dimF(Bn) = 1, Bn+J = 0 for all j > 0, and if for all
k 6 {0, . . . , n) multiplication induces a non-degenerate pairing Bk ® Bn~k -y Bn. In [3],
Benson and Carlson developed a method for studying the cohomology ring H'(G, Fp) for
a finite group G provided one knows that H'(G,¥P) is a Cohen-Macaulay F-algebra and
p is odd. Their main result can be summarised as follows:

THEOREM 4 . 4 . ([3, Theorem 6.3]) Let F be a field of characteristic p ± 2, and
let A be a finite-dimensional cocommutative F'-Hopf algebra such that

(i) A is a Frobenius algebra.

(ii) H'(A, F) is a finitely generated Cohen-Macaulay F-algebra.

Let £ i , . . . , fn be a homogeneous system of parameters of degree Si,. . . , sn, s* ^ 2. Then
n

C : = H'(A, F)/(£i,... ,£„) satisfies Poincare duality in dimension s: = J2(si ~ !)•
i=l

PROOF: The cocommutativity of the Hopf algebra A ensures that for left A-modules
M and N, the tensor product M ®F N is a projective left A-module whenever one of
the factors is projective. The property of being a Frobenius algebra implies that the
left regular A-module A is also injective (see [1, Proposition 1.6.2]). Therefore one can
transfer the proof of [3, Theorem 6.3] ad verbatim. D

It is well-known that for a finite-dimensional restricted Lie algebra £, the restricted
universal enveloping algebra u(£) is a Frobenius algebra (see [4]). Moreover, if p is odd
and £ is a p-central restricted Lie algebra, Theorem 4.3 has shown that the cohomology
ring H'(£, F) is a Cohen-Macaulay algebra with a homogeneous system of parameters
f i , . . . ,£n all of degree 2, where n: = dimF(£[p]). Hence from Theorem 4.4 one obtains:

COROLLARY 4 . 5 . The finite-dimensional F-algebra C of Theorem 4.3 satisfies
Poincare duality in dimension n: — dimir(£[p]).

REMARK 4.6. Let £ be a finite-dimensional p-central restricted Lie algebra, and let

(4.16) M O : = ^ dimF(#*(£,F)) -tk

fc€N0

denote the Hilbert series of its cohomology algebra H*(£,,¥). One has a multiplicative
decomposition hc{t) = c(t) • (1 - i2)"", where c(t) denotes the Hilbert series of C and
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n: = dimF(£[p]). The Poincare duality of C implies that c(t) = tn • c(l/t). Hence hc(t)

satisfies the functional equation

(4.17) M l / * ) = ( - t ) d h n r ( c w ) • ha(t).

The analogous functional equation also holds for p-central groups. Let G be a finite

p-central group, that is, Qi{G): - {g € G \ g" = 1} ^ Z(G), and let

(4.18) ha(t) •• = J2 d i m F » iHk(G'F")) ' ***

denote the Hilbert series of the mod p cohomology ring of G. By [6], H'(G,FP) is a

Cohen-Macaulay Fp-algebra, and thus by [2, Theorem 5.18.1]),

(4.19) hG(l/t) = (-t)dim'p(n'<G» • hG(t).
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