ON POWERFUL AND p-CENTRAL RESTRICTED LIE ALGEBRAS

S. SICILIANO AND TH. WEIGEL

In this note we analyse the analogy between *m*-potent and *p*-central restricted Lie algebras and *p*-groups. For restricted Lie algebras the notion of *m*-potency has stronger implications than for *p*-groups (Theorem A). Every finite-dimensional restricted Lie algebra \mathfrak{L} is isomorphic to $\widetilde{\mathfrak{L}}/\widetilde{\mathfrak{L}}_{[p]}$ for some finite-dimensional *p*-central restricted Lie algebra $\widetilde{\mathfrak{L}}$ (Proposition B). In particular, for restricted Lie algebras there does not hold an analogue of J.Buckley's theorem. For *p* odd one can characterise powerful restricted Lie algebras in terms of the cup product map in the same way as for finite *p*-groups (Theorem C). Moreover, the *p*-centrality of the finite-dimensional restricted Lie algebra \mathfrak{L} has a strong implication on the structure of the cohomology ring $H^{\bullet}(\mathfrak{L}, \mathbb{F})$ (Theorem D).

1. INTRODUCTION

The structure theory of powerful *p*-groups had a strong impact on the study of finite and infinite pro-*p* groups (see [15, 16]). Moreover, the mod *p* cohomology of *p*-central groups has been studied quite intensively, since for these groups the cohomology ring $H^{\bullet}(G, \mathbb{F}_p)$ is easiest to analyse (see [6, 28]). In this note we shall analyse these concepts for restricted Lie algebras.

One would expect that powerful restricted Lie algebras play a similar role in the category of finite-dimensional *p*-nilpotent restricted Lie algebras as powerful *p*-groups play in the category of finite *p*-groups. However, this is not the case. Let \mathbb{F} be a field of characteristic p > 0, and let \mathfrak{F}_p denote the class of finite-dimensional *p*-nilpotent restricted \mathbb{F} -Lie algebras. For $p \neq 2$, the restricted Lie algebra $\mathfrak{L} \in \mathfrak{F}_p$ is called *m*-potent, m < p-1, if

(1.1)
$$\gamma_{m+1}(\mathfrak{L}) \leq \mathfrak{L}^{[p]},$$

where $\gamma_k(\mathfrak{L})$ denotes the k^{th} -term of the descending central series of \mathfrak{L} , and $\mathfrak{L}^{[p]^i}$ denotes the \mathbb{F} -vector space spanned by the elements $x^{[p]^i}$, $x \in \mathfrak{L}$. So 1-potent restricted Lie algebras are just powerful restricted Lie algebras as introduced by Riley and Semple in

Received 4th July, 2006

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/07 \$A2.00+0.00.

[19]. For m = p - 2, our definition is in analogy with the definition used by González-Sánchez and Jaikin-Zapirain for p-groups (see [9]). For p = 2, \mathfrak{L} is called 1-potent - or powerful - if

$$[\mathfrak{L},\mathfrak{L}] \leqslant (\mathfrak{L}^{[2]})^{[2]}$$

Obviously, there exist powerful *p*-groups of arbitrary high nilpotency class. However, for restricted Lie algebras one has the following (see Theorem 2.6, Proposition 2.7).

THEOREM A. (a) Let $\mathfrak{L} \in \mathfrak{F}_p$ be an *m*-potent restricted Lie algebra, m < p-1for p odd, or m = 1 for p = 2. Then \mathfrak{L} is nilpotent of class $\operatorname{cl}(\mathfrak{L}) \leq m+1$. Moreover, $\mathfrak{L}^{[p]^j}$ is a restricted Lie ideal for all $j \geq 0$, and one has $(\mathfrak{L}^{[p^i]})^{[p]^j} = \mathfrak{L}^{[p]^{i+j}}$. In particular, if \mathbb{F} is perfect, then for every $x \in \mathfrak{L}^{[p]^j}$ there exists $y \in \mathfrak{L}$ such that $x = y^{[p]^j}$.

(b) Let $p \neq 2$, let \mathfrak{L} be a finite-dimensional p-nilpotent restricted Lie algebra, and let $d: = d(\mathfrak{L})$ denote the minimal number of generators of \mathfrak{L} as restricted Lie algebra. Then \mathfrak{L} is powerful, if and only if \mathfrak{L} is a sum of d cyclic restricted Lie algebras.

For m = 1, the first part of Theorem A(a) has been proved already in [19, Section 5]. In section 3 we shall apply Theorem A in order to analyse properties of the restricted universal enveloping algebras of these algebras.

While *m*-potency has much stronger implications for restricted Lie algebras than for *p*-groups, the implications for *p*-centrality are sometimes stronger and sometimes weaker. A restricted Lie algebra \mathfrak{L} is called *p*-central, if

(1.3)
$$\mathfrak{L}_{[p]} := \{ x \in \mathfrak{L} \mid x^{[p]} = 0 \} \leqslant \mathbb{Z}(\mathfrak{L}),$$

where $Z(\mathfrak{L})$ denotes the centre of the restricted Lie algebra \mathfrak{L} . Hence, for a *p*-central restricted Lie algebra \mathfrak{L} , the subset $\mathfrak{L}_{[p]}$ is a restricted Lie ideal in \mathfrak{L} . Finite-dimensional restricted Lie algebras have the following property (see Proposition 2.10).

PROPOSITION B. Let \mathfrak{L} be a restricted Lie algebra of dimension $n < \infty$. Then there exists a p-central restricted Lie algebra $\widetilde{\mathfrak{L}}$ of dimension 2n such that $\mathfrak{L} \simeq \widetilde{\mathfrak{L}}/\widetilde{\mathfrak{L}}_{[p]}$.

This property of restricted Lie algebras is in contrast to the situation one has for finite groups. Indeed, for p odd, Buckley's theorem states that for a finite p-central group G the group $G/\Omega_1(G)$ is p-central as well (see [7]). This phenomenon is also reflected by the fact that the characterisation of p-centrality given by Bianchi, Gillo Berta Mauri and Verardi (see [5]) for p-groups does not hold for restricted Lie algebras (see Proposition 2.11).

In the last section of the paper we consider cohomological properties of powerful and *p*-central restricted Lie algebras. For *p* odd, one can characterise powerful restricted Lie algebras in the class \mathfrak{F}_p (see Theorem 4.1) in the same way as one can characterise finitely generated powerful pro-*p* groups in the class of all finitely generated pro-*p* groups (see [27, Theorem 5.1.6]).

THEOREM C. Let p be odd and let $\mathfrak{L} \in \mathfrak{F}_p$. Then the following are equivalent:

- (i) \mathfrak{L} is powerful.
- (ii) Cup product induces an injective map

(1.4)
$$_ \cup _: H^1(\mathfrak{L}, \mathbb{F}) \land H^1(\mathfrak{L}, \mathbb{F}) \longrightarrow H^2(\mathfrak{L}, \mathbb{F}),$$

where \mathbb{F} denotes the trivial left $\mathfrak{u}(\mathfrak{L})$ -module.

In [6], Broto and Henn showed that for an arbitrary *p*-central finite group G the cohomology ring $H^{\bullet}(G, \mathbb{F}_p)$ is a Cohen-Macaulay \mathbb{F}_p -algebra. Let p be odd. A finite group G satisfies the Ω -extension property, if there exists a finite *p*-central group \widetilde{G} such that G is isomorphic to $\widetilde{G}/\Omega_1(\widetilde{G})$. In [28, Theorem A] it was shown that a finite *p*-group G satisfies the Ω -extension property, if and only if

(1.5)
$$H^{\bullet}(G, \mathbb{F}_p) \simeq C^{\bullet} \otimes_{\mathbb{F}_p} S^{\bullet},$$

where C^{\bullet} is a finite-dimensional graded commutative \mathbb{F}_{p} -algebra, and S^{\bullet} is a polynomial algebra generated in degree 2. Another interpretation of Proposition B is that for restricted Lie algebras the Ω -extension property is always satisfied. For restricted Lie algebras, we shall prove the following theorem (see Theorem 4.3, Corollary 4.5) which can be seen as an analogue of [28, Theorem A].

THEOREM D. Let p be odd and let \mathfrak{L} be a finite-dimensional restricted p-central restricted Lie algebra. Then

(1.6)
$$H^{\bullet}(\mathfrak{L}, \mathbb{F}) \simeq C^{\bullet} \otimes_{\mathbb{F}} S^{\bullet}(\mathfrak{L}^{*}_{[p]})$$

where $S^{\bullet}(\mathfrak{L}^{*}_{[p]})$ is the polynomial \mathbb{F} -algebra generated by $\mathfrak{L}^{*}_{[p]}$: = Hom_F($\mathfrak{L}_{[p]}, \mathbb{F}$) in degree 2, and C^{\bullet} is a finite-dimensional \mathbb{F} -algebra satisfying Poincaré duality in dimension n: = dim_{F_p}($\mathfrak{L}_{[p]}$). In particular, $H^{\bullet}(\mathfrak{L}, \mathbb{F})$ is a Cohen-Macaulay \mathbb{F} -algebra.

If p is odd, one can characterise finite p-groups with the Ω -extension property by the structure of their cohomology ring (see [28]). Therefore, one would like to know whether the following problem has an affirmative answer.

PROBLEM 1. Let p be odd and let $\mathfrak{L} \in \mathfrak{F}_p$. Assume that $H^{\bullet}(\mathfrak{L}, \mathbb{F}) \simeq C^{\bullet} \otimes S^{\bullet}$, where C^{\bullet} is a finite-dimensional \mathbb{F} -algebra, and S^{\bullet} is a polynomial \mathbb{F} -algebra generated in degree 2. Is it true that \mathfrak{L} is p-central?

The main purpose of this paper is the study of m-potent restricted Lie algebras and p-central restricted Lie algebras in analogy to m-potent p-groups and p-central finite groups. However, there might be other contexts where these notions play an important role. We close the introduction with the following two open problems [The authors thank the referee for communicating these problems to them.] which might be the subject of further investigations.

PROBLEM 2. Investigate m-potent and p-central restricted Lie algebras represented as ring constructions defined in [14, Chapter 3].

PROBLEM 3. Describe m-potent and p-central restricted colour Lie superalgebras represented as blocked matrices of directed graphs (see [13]).

2. POTENT AND p-CENTRAL RESTRICTED LIE ALGEBRAS

Let \mathfrak{L} be a restricted Lie algebra over the field \mathbb{F} of characteristic p > 0. For a subset S of \mathfrak{L} , we denote by $\langle S \rangle_p$ the restricted subalgebra generated by S. If I is an ideal of \mathfrak{L} then $I_p := \langle I \rangle_p$ is a restricted ideal of \mathfrak{L} . By $S^{[p]k}$, k > 0, we denote the \mathbb{F} -vector subspace of \mathfrak{L} spanned by the elements $x^{[p]k}$, $x \in S$. The restricted Lie algebra \mathfrak{L} is cyclic, if there exists $x \in \mathfrak{L}$ such that $\mathfrak{L} = \langle x \rangle_p$.

For a positive integer *i* we denote by $\gamma_i(\mathfrak{L})$ the *i*th term of the lower central series of \mathfrak{L} . For a restricted Lie algebra $\mathfrak{L} \in \mathfrak{F}_p$, we denote by $cl(\mathfrak{L})$ the nilpotency class of \mathfrak{L} , and by $e(\mathfrak{L})$ its exponent, that is, the minimum number $m \in \mathbb{N}_0$ such that $\mathfrak{L}^{[p]^m} = 0$. The element $x \in \mathfrak{L}$ is called *of exponent* $k, k \in \mathbb{N}_0$, if and only if $\langle x \rangle_p$ is of exponent k. For an ideal I of the Lie algebra \mathfrak{L} we put $[I, \mathfrak{L}] := [\ldots [[I, \mathfrak{L}], \mathfrak{L}], \ldots, \mathfrak{L}]$, where \mathfrak{L} appears in the latter expression n times.

2.1. THE FRATTINI IDEAL $\Phi(\mathfrak{L})$. Let $\mathfrak{L} \in \mathfrak{F}_p$. The restricted Lie ideal

(2.1)
$$\Phi(\mathfrak{L}) := \mathfrak{L}^{[p]} + [\mathfrak{L}, \mathfrak{L}]$$

will be called the *Frattini ideal of* \mathfrak{L} . For the convenience of the reader we state its well-known properties in the following proposition (see [21]).

PROPOSITION 2.1. Let $\mathfrak{L} \in \mathfrak{F}_p$.

- (a) $\Phi(\mathfrak{L})$ is the intersection of all restricted Lie ideals I of \mathfrak{L} of codimension 1.
- (b) If S is a subset of \mathfrak{L} whose image in $\mathfrak{L}/\Phi(\mathfrak{L})$ spans $\mathfrak{L}/\Phi(\mathfrak{L})$, then $\langle S \rangle_p = \mathfrak{L}$.
- (c) Let $d(\mathfrak{L})$ denote the minimal number of generators of \mathfrak{L} as restricted Lie algebra. Then $d(\mathfrak{L}) = \dim_{\mathbb{F}}(\mathfrak{L}/\Phi(\mathfrak{L}))$.
- (d) Let J be a restricted ideal of \mathfrak{L} being contained in $\Phi(\mathfrak{L})$. Then $\Phi(\mathfrak{L}/J) = \Phi(\mathfrak{L})/J$.
- (e) Let J be a 1-dimensional restricted Lie ideal of \mathfrak{L} such that the short exact sequence $0 \to J \to \mathfrak{L} \to \mathfrak{L}/J \to 0$ is non-split. Then J is contained in $\Phi(\mathfrak{L})$.

2.2. POTENTLY EMBEDDED IDEALS. Let p be odd and m . A restricted ideal <math>I of $\mathfrak{L} \in \mathfrak{F}_p$ is called *m*-potently embedded in \mathfrak{L} , if $[I, \mathfrak{mL}]$ is contained in $I^{[p]}$. If p = 2, then I is called 1-potently embedded in \mathfrak{L} , if $[I, \mathfrak{L}]$ is contained in $(I^{[2]})^{[2]}$. A 1-potently embedded ideal will also be called a powerfully embedded ideal. Obviously, if I is *m*-potently embedded in \mathfrak{L} , then $I^{[p]}$ is a restricted ideal of L. One has the following:

LEMMA 2.2. Let $\mathfrak{L} \in \mathfrak{F}_p$ and let I be a restricted ideal of \mathfrak{L} .

On restricted Lie algebras

- (a) Let p be odd and m < p-1. Then I is m-potently embedded in \mathfrak{L} , if and only if $I/[I, p-1\mathfrak{L}]_p$ is m-potently embedded in $\mathfrak{L}/[I, p-1\mathfrak{L}]_p$. In this case one has $[I, p-1\mathfrak{L}]_p = 0$.
- (b) Let p = 2. Then I is 1-potently embedded in \mathfrak{L} , if and only if $I/[I, _3\mathfrak{L}]_2$ is 1-potently embedded in $\mathfrak{L}/[I, _3\mathfrak{L}]_2$. In this case one has $[I, _3\mathfrak{L}]_2 = 0$.

PROOF: (a) Assume that $I/[I, p-1\mathfrak{L}]_p$ is *m*-potently embedded in $\mathfrak{L}/[I, p-1\mathfrak{L}]_p$. It suffices to show that $[I, p-1\mathfrak{L}] = 0$. Suppose $[I, p-1\mathfrak{L}] \neq 0$. By hypothesis,

(2.2)
$$[I, {}_{m}\mathfrak{L}]_{p} = \left([I, {}_{m}\mathfrak{L}]_{p} \cap I^{[p]}\right) + [I, {}_{p-1}\mathfrak{L}]_{p}.$$

Put $J: = ([I, {}_m\mathfrak{L}]_p \cap I^{[p]}) + [I, {}_p\mathfrak{L}]_p$. Then J is a restricted ideal of \mathfrak{L} , and by definition, $([I, {}_m\mathfrak{L}]_p \cap I^{[p]}) \subseteq J \subseteq [I, {}_m\mathfrak{L}]_p$. As \mathfrak{L} is nilpotent and $[I, {}_{p-1}\mathfrak{L}] \neq 0$, one has $[J, \mathfrak{L}] \subseteq [I, {}_p\mathfrak{L}] \subseteq [[I, {}_m\mathfrak{L}], \mathfrak{L}] = [[I, {}_m\mathfrak{L}]_p, \mathfrak{L}]$. In particular, $J \neq [I, {}_m\mathfrak{L}]_p$. Since \mathfrak{L} is finitedimensional and p-nilpotent, there exists a restricted ideal K of \mathfrak{L} such that $J \subseteq K$ $\subseteq [I, {}_m\mathfrak{L}]_p$, and K has codimension 1 in $[I, {}_m\mathfrak{L}]_p$. Put $[I, {}_m\mathfrak{L}]_p = K + \mathbb{F}.x$ for a suitable $x \in [I, {}_m\mathfrak{L}]_p$. Since every 1-dimensional left \mathfrak{L} -module is trivial, one concludes that $[[I, {}_m\mathfrak{L}], \mathfrak{L}]_p \subseteq K$. By (2.2) and as m < p-1, it follows that $[I, {}_m\mathfrak{L}]_p \subseteq K$, a contradiction, and this yields the claim.

(b) The proof for p = 2 can be obtained in a similar way by replacing the role of $I^{[p]}$ by $(I^{[2]})^{[2]}$ and $[I, {}_{p-1}\mathfrak{L}]$ by $[I, {}_{3}\mathfrak{L}]$.

For the reminder of this section we assume that m is a positive integer satisfying m < p-1 for p odd or m = 1 in case p = 2.

PROPOSITION 2.3. Let $\mathfrak{L} \in \mathfrak{F}_p$ and let I and J be two restricted ideals of \mathfrak{L} . If I and J are m-potently embedded in \mathfrak{L} , so are $[I, \mathfrak{L}]_p$, $I^{[p]}$, $[I, J]_p$ and I + J.

PROOF: Let p be odd. First we show that $[I, \mathfrak{L}]$ is *m*-potently embedded. Without loss of generality we may assume that $[[I, \mathfrak{L}], p-1\mathfrak{L}] = 0$ (see Lemma 2.2(a)). Hence, for any $x \in I$ and $a \in \mathfrak{L}$, one has $(\operatorname{ad} x)^p(a) = 0$, and thus $I^{[p]} \subseteq Z(\mathfrak{L})$. Since I is *m*-potently embedded in \mathfrak{L} , this yields $[[I, \mathfrak{L}]_{p,m}\mathfrak{L}] \subseteq [I^{[p]}, \mathfrak{L}] = 0$ and the claim follows.

Concerning $I^{[p]}$ we have already observed that $I^{[p]}$ is a restricted ideal of \mathfrak{L} . By Lemma 2.2(a), we may assume that $[I^{[p]}, p_{-1}\mathfrak{L}] = 0$. As I is *m*-potently embedded in \mathfrak{L} , it follows that $[I, m+p-1\mathfrak{L}] = 0$. Hence $[I^{[p]}, m\mathfrak{L}] = 0$, and $I^{[p]}$ is *m*-potently embedded in \mathfrak{L} .

Next consider $[I, J]_p$. As above we may assume that $[[I, J]_p, p-1\mathfrak{L}] = 0$. This forces $[I^{[p]}, J] = [I, J^{[p]}] = 0$. Since I and J are m-potently embedded in \mathfrak{L} , this implies that $[[I, \mathfrak{mL}], J] \subseteq [I^{[p]}, J] = 0$ and $[[J, \mathfrak{mL}], I] \subseteq [I, J^{[p]}] = 0$. By Jacobi's identity, one has $0 = [[I, J], \mathfrak{mL}] = [[I, J]_p, \mathfrak{mL}]$, and thus $[I, J]_p$ is m-potently embedded in \mathfrak{L} .

Finally, for I + J one has

(2.3)
$$[I + J, {}_{m}\mathfrak{L}] = [I, {}_{m}\mathfrak{L}] + [J, {}_{m}\mathfrak{L}] \subseteq I^{[p]} + J^{[p]} \subseteq (I + J)^{[p]},$$

therefore I + J is *m*-potently embedded in \mathfrak{L} .

For p = 2, the proof is analogous to the case p odd using Lemma 2.2(b) and suitable modifications.

As a consequence of Proposition 2.3 one obtains the following corollary.

COROLLARY 2.4. Any restricted Lie algebra $\mathfrak{L} \in \mathfrak{F}_p$ contains a unique maximal *m*-potently embedded restricted ideal.

A restricted *m*-potently embedded ideal I of \mathfrak{L} is obviously *m*-potent. If \mathfrak{H} is a restricted subalgebra of \mathfrak{L} and \mathfrak{H}/I is cyclic, then \mathfrak{H} is *m*-potent. Indeed, in this case there is $x \in \mathfrak{H}$ such that every element of \mathfrak{H}/I is a linear combination of the elements $x^{[p]^i} + I$, $i \in \mathbb{N}_0$. Consequently, $[\mathfrak{H}, \mathfrak{H}] = [I, \mathfrak{H}]$. As I is *m*-potently embedded in \mathfrak{L} , one has

(2.4)
$$\begin{aligned} \gamma_{m+1}(\mathfrak{H}) \subseteq I^{[p]} &\subseteq \mathfrak{H}^{[p]} & \text{for } p \text{ odd,} \\ \gamma_{m+1}(\mathfrak{H}) \subseteq (I^{[2]})^{[2]} &\subseteq (\mathfrak{H}^{[2]})^{[2]} & \text{for } p = 2. \end{aligned}$$

The *m*-potency of a restricted Lie algebras is preserved by extension of the ground field. Furthermore, quotient Lie algebras and direct sums of *m*-potent restricted Lie algebras are *m*-potent as well. The following example shows that a restricted ideal of a *m*-potent restricted Lie algebra need not be *m*-potent.

EXAMPLE 2.5. Let \mathfrak{L} be the Lie algebra over a field \mathbb{F} of odd characteristic with \mathbb{F} -basis $\{x, y, z, v\}$ and with relations [x, y] = z and $z, v \in \mathbb{Z}(\mathfrak{L})$. The *p*-map of \mathfrak{L} is given by

(2.5)
$$x^{[p]} = y^{[p]} = z^{[p]} = 0, \quad v^{[p]} = z.$$

One has $[\mathfrak{L}, \mathfrak{L}] = \mathfrak{L}^{[p]} = \mathbb{F}.z$, and thus \mathfrak{L} is powerful. For the restricted ideal $I: = \mathbb{F}.x + \mathbb{F}.y + \mathbb{F}.z$ one has $[I, I] = \mathbb{F}.z$, while $I^{[p]} = 0$. Therefore, I is not powerful.

THEOREM 2.6. Let $\mathfrak{L} \in \mathfrak{F}_p$ be an *m*-potent restricted Lie algebra.

- (a) \mathfrak{L} is nilpotent of class $cl(\mathfrak{L}) \leq m+1$.
- (b) For $i \ge 0$ the \mathbb{F} -vector space $\mathfrak{L}^{[p]^i}$ is a restricted ideal of \mathfrak{L} . Moreover, $(\mathfrak{L}^{[p]^j})^{[p]^i} = \mathfrak{L}^{[p]^{i+j}}$.
- (c) Let $\{b_1, \ldots, b_r\}$ be an \mathbb{F} -basis of \mathfrak{L} . Then $\mathfrak{L}^{[p]^i} = \sum_{1 \le k \le r} \mathbb{F} \cdot b_k^{[p]^i}$.
- (d) If \mathbb{F} is perfect, for every element x of $\mathfrak{L}^{[p]^i}$ there exists $y \in \mathfrak{L}$ such that $y^{[p]^i} = x$.

PROOF: (a) Let p be odd. By Lemma 2.2(a), $cl(\mathfrak{L}) \leq p-1$. For every $x, y \in \mathfrak{L}$ one has ad $x^{[p]}(y) = 0$ and thus $\mathfrak{L}^{[p]} \subseteq \mathbb{Z}(\mathfrak{L})$. Moreover, as \mathfrak{L} is *m*-potent, $\gamma_{m+1}(\mathfrak{L}/\mathfrak{L}^{[p]}) = 0$ and thus $cl(\mathfrak{L}) \leq m+1$.

Let p = 2. By Lemma 2.2(b), $cl(\mathfrak{L}) \leq 3$. One concludes that $(ad x^{[2]})^2(y) = 0$ for every $x, y \in \mathfrak{L}$. Hence $(\mathfrak{L}^{[2]})^{[2]} \subseteq Z(\mathfrak{L})$. Since \mathfrak{L} is 1-potent, $\gamma_2(\mathfrak{L}/(\mathfrak{L}^{[2]})^{[2]}) = 0$ and therefore $cl(\mathfrak{L}) \leq 2$. (b) By (a), the \mathbb{F} -vector subspace $\mathfrak{L}^{[p]^i}$ of \mathfrak{L} is contained in $Z(\mathfrak{L})$ for every i > 0. This yields (b). Part (c) and (d) follow from the fact that $_^{[p]^i}: \mathfrak{L} \to Z(\mathfrak{L})$ is a *p*-semilinear map.

One has the following characterisation of powerful restricted Lie algebras.

PROPOSITION 2.7. Let $\mathfrak{L} \in \mathfrak{F}_p$ be a restricted Lie algebra with $d := d(\mathfrak{L})$.

- (a) If \mathfrak{L} is powerful, then \mathfrak{L} is a sum of d cyclic restricted Lie algebras.
- (b) If p ≠ 2, then L is powerful, if and only if L is the sum of d cyclic restricted Lie algebras.

PROOF: (a) Since \mathfrak{L} is powerful, one has $\Phi(\mathfrak{L}) = \mathfrak{L}^{[p]}$. Let $\pi_{\Phi} \colon \mathfrak{L} \to \mathfrak{L}/\Phi(\mathfrak{L})$ denote the canonical projection, and let $S = \{x_1, x_2, \ldots, x_d\}$ be a subset of \mathfrak{L} such that $\pi_{\Phi}(S)$ is a basis of the \mathbb{F} -vector space $\mathfrak{L}/\mathfrak{L}^{[p]}$. Denote by $H \colon = \sum_{i=1}^{d} \langle x_i \rangle_p$ the sum of the cyclic restricted Lie algebras $\langle x_i \rangle_p$. By construction, one has $\pi_{\Phi}(H) = \pi_{\Phi}(\mathfrak{L})$. Hence $H + \mathfrak{L}^{[p]} = \mathfrak{L}$. As $\mathbb{L}^{[p]} \colon \mathfrak{L} \to \mathfrak{L}^{[p]}$ is p-semilinear and $\mathfrak{L}^{[p]} \leq \mathbb{Z}(\mathfrak{L})$, this implies $\mathfrak{L}^{[p]} = H^{[p]} + \mathfrak{L}^{[p]^2}$. Thus, by induction, $\mathfrak{L}^{[p]} = H^{[p]}$ and this yields the claim.

(b) Let
$$\mathfrak{L} = \sum_{i=1}^{a} \langle x_i \rangle_p$$
. The F-subspace $\sum_{i=1}^{a} \langle x_i^{[p]} \rangle_p$ has codimension $d = d(\mathfrak{L})$ and is contained in $\ker(\pi_{\Phi})$. Hence $\ker(\pi_{\Phi}) = \sum_{i=1}^{d} \langle x_i^{[p]} \rangle_p$. This implies $[\mathfrak{L}, \mathfrak{L}] \leq \Phi(\mathfrak{L}) \leq \mathfrak{L}^{[p]}$ and \mathfrak{L} is powerful.

The following example shows that Proposition 2.7(b) does not hold in even characteristic:

EXAMPLE 2.8. Let \mathfrak{H} be the 3-dimensional Heisenberg algebra over a field \mathbb{F} of characteristic 2. Then H has a basis $\{x, y, z\}$ with

(2.6)
$$[x, y] = z, \quad [x, z] = [y, z] = 0.$$

Consider the p-map on \mathfrak{H} given by

(2.7)
$$x^{[2]} = y^{[2]} = z, \qquad z^{[2]} = 0.$$

Then $d(\mathfrak{H}) = 2$ and $\mathfrak{H} = \langle x \rangle_p + \langle y \rangle_p$, but \mathfrak{H} is not powerful.

The following property is useful for the characterisation of powerful restricted Lie algebras in terms of cohomological properties.

PROPOSITION 2.9. Let p be odd, and let $\mathfrak{L} \in \mathfrak{F}_p$ be a non-powerful restricted Lie algebra. Then there exists a restricted Lie ideal J of \mathfrak{L} , such that

- (i) $\mathfrak{L}^{[p]}$ is contained in J.
- (ii) J is contained in $\Phi(\mathfrak{L})$ and has codimension 1.

PROOF: The restricted Lie algebra \mathfrak{L} is powerful, if and only if $\mathfrak{L}/\gamma_p(\mathfrak{L})_p$ is powerful (see Lemma 2.2(a)). Since $\gamma_p(\mathfrak{L})_p$ is contained in $\Phi(\mathfrak{L})$, we may therefore assume that $\gamma_p(\mathfrak{L})_p = 0$ (see Proposition 2.1(d)). In particular, $\mathfrak{L}^{[p]}$ is a restricted Lie ideal contained in $Z(\mathfrak{L})$. Since \mathfrak{L} is non-powerful, $\mathfrak{L}^{[p]}$ is properly contained in $\Phi(\mathfrak{L})$. Let J be a maximal ideal being properly contained in $\Phi(\mathfrak{L})$ containing $\mathfrak{L}^{[p]}$. Then J has the desired properties.

2.3. p-CENTRAL RESTRICTED LIE ALGEBRAS. For a restricted Lie algebra \mathfrak{L} with pmap $_^{[p]}: \mathfrak{L} \to \mathfrak{L}^{[p]}$ we denote by $\mathfrak{L}_{[p]}$ the set of all zeros of [p]. Thus, \mathfrak{L} is p-central, if and only if $\mathfrak{L}_{[p]} \subseteq \mathbb{Z}(\mathfrak{L})$. If \mathfrak{L} is a p-central restricted Lie algebra, $\mathfrak{L}_{[p]}$ is a restricted ideal. The property of p-centrality will be inherited on restricted subalgebras and is preserved by direct sums and extensions of the ground field. However, homomorphic images of p-central restricted Lie algebras need not be p-central. More precisely, any restricted Lie algebras is the homomorphic image of a p-central restricted Lie algebra.

PROPOSITION 2.10. Let \mathfrak{L} be a restricted Lie algebra of dimension *n* over a field \mathbb{F} of characteristic p > 0. Then there exists a *p*-central restricted Lie algebra $\widetilde{\mathfrak{L}}$ such that $\dim_{\mathbb{F}}(\widetilde{\mathfrak{L}}) = 2n$ and \mathfrak{L} is isomorphic to $\widetilde{\mathfrak{L}}/\widetilde{\mathfrak{L}}_{[p]}$ as a restricted Lie algebra.

PROOF: Let $\{x_1, \ldots, x_n\}$ be an F-basis for \mathfrak{L} and let \mathfrak{B} be an Abelian *n*-dimensional Lie algebra over \mathbb{F} with basis $\{y_1, \ldots, y_n\}$. Let $\widetilde{\mathfrak{L}}$ denote the Lie algebra $\mathfrak{L} \oplus \mathfrak{B}$ with *p*-map [p'] given by

(2.8)
$$x_1^{[p']} = x_1^{[p]} + y_1; \quad \dots \quad x_n^{[p']} = x_n^{[p]} + y_n; \quad y_1^{[p']} = \dots = y_n^{[p']} = 0.$$

Clearly, for $z = x + y \in \widetilde{\mathfrak{L}}$ with $x = \sum_{i=1}^{n} \lambda_i x_i \in \mathfrak{L}$ and $y \in \mathfrak{B}$ one has

(2.9)
$$z^{[p']} = \sum_{i=1}^{n} \lambda_i^p \cdot x_i^{[p]} + \sum_{i=1}^{n} \lambda_i^p \cdot y_i$$

The linear independence of the elements $x_1, \ldots, x_n, y_1, \ldots, y_n$ forces $\tilde{\mathfrak{L}}_{[p]} = \mathfrak{B}$, and this yields the claim.

The following property which has been studied for finite groups in [5] yields a criterion for p-centrality in case that the nilpotency class is less than p.

PROPOSITION 2.11. Let \mathfrak{L} be a nilpotent restricted Lie algebra over a field \mathbb{F} of characteristic p > 0 with $cl(\mathfrak{L}) < p$. Then \mathfrak{L} is p-central, if and only if one has [x, y] = 0 for every $x, y \in \mathfrak{L}$ satisfying $x^{[p]} = y^{[p]}$.

PROOF: Assume that \mathfrak{L} is *p*-central. Since $cl(\mathfrak{L}) < p$, the *p*-map is *p*-semilinear. Hence $x^{[p]} = y^{[p]}$ forces $(x - y)^{[p]} = 0$. This yields $x - y \in Z(\mathfrak{L})$, and thus [x, y] = 0.

Conversely, suppose that for $x, y \in \mathfrak{L}$, $x^{[p]} = y^{[p]}$ implies [x, y] = 0. Since $cl(\mathfrak{L}) < p$, for every $x \in \mathfrak{L}$ and $z \in \mathfrak{L}_{[p]}$, one has $(x + z)^{[p]} = x^{[p]} + z^{[p]} = x^{[p]}$. So, by hypothesis, $z \in Z(\mathfrak{L})$ and this yields the claim.

On restricted Lie algebras

The following examples show that in contrast to the situation for finite groups (see [5]), one cannot drop the hypothesis on the nilpotency class.

EXAMPLE 2.12. Let \mathbb{F} be a field of characteristic p > 0. Let \mathfrak{L} be the restricted \mathbb{F} -Lie algebra with basis $x, y, z, a_1, \ldots, a_{p-1}, b_1, \ldots, b_{p-1}$ subject to the following relations: $b_i, z \in \mathbb{Z}(\mathfrak{L}), 1 \leq i \leq p-1$ and $[x, y] = a_1, [x, a_i] = [a_i, a_j] = 0$ for every i, j < p, $[a_i, y] = a_{i+1}$ for i < p-1 and $[a_{p-1}, y] = 0$. In particular, $\operatorname{cl}(\mathfrak{L}) = p$. The *p*-map is given by $x^{[p]} = 0, y^{[p]} = z, z^{[p]} = 0, a_i^{[p]} = b_i, b_i^{[p]} = 0, 1 \leq i \leq p-1$. A straightforward verification shows that any two elements of \mathfrak{L} having the same image under the *p*-map commute. However, $x^{[p]} = 0$ while $x \notin \mathbb{Z}(\mathfrak{L})$. Therefore, \mathfrak{L} is not *p*-central.

EXAMPLE 2.13. Let \mathfrak{M} be the restricted Lie algebra which coincides with \mathfrak{L} of Example 2.12 as \mathbb{F} -Lie algebra, but which *p*-map is given by $x^{[p]} = y^{[p]} = z$, $z^{[p]} = 0$, $a_i^{[p]} = b_i$ and $b_i^{[p]} = 0$ for $1 \leq i \leq p-1$. It is an easy exercise to verify that \mathfrak{L} is *p*-central. However, $x^{[p]} = y^{[p]}$, but $[x, y] \neq 0$.

3. The restricted enveloping algebra of powerful restricted Lie algebras

Let \mathfrak{L} be a restricted Lie algebra over a field of characteristic p > 0. By $\mathfrak{u}(\mathfrak{L})$ we shall denote the *restricted universal enveloping algebra* of \mathfrak{L} , and by $\omega(\mathfrak{L})$ we shall denote the *augmentation ideal* of $\mathfrak{u}(\mathfrak{L})$, that is, $\omega(\mathfrak{L})$ is the kernel of the counit $\varepsilon : \mathfrak{u}(\mathfrak{L}) \to \mathbb{F}$ of the \mathbb{F} -Hopf algebra $\mathfrak{u}(\mathfrak{L})$. In particular, $\omega(\mathfrak{L})$ is the associative ideal generated by \mathfrak{L} in $\mathfrak{u}(\mathfrak{L})$.

3.1. THE NILPOTENCY INDEX OF THE AUGMENTATION IDEAL. It is well known (see [20]) that $\omega(\mathfrak{L})$ is nilpotent, if and only if $\mathfrak{L} \in \mathfrak{F}_p$. The nilpotency index $t(\mathfrak{u}(\mathfrak{L}))$ of $\omega(\mathfrak{L})$ is defined to be the smallest positive integer k such that $\omega(\mathfrak{L})^k = 0$. Relations between the nilpotency index $t(\mathfrak{u}(\mathfrak{L}))$ of $\omega(\mathfrak{L})$ and the exponent $e(\mathfrak{L})$ of \mathfrak{L} were studied in [21]: for example, it was shown that $p^{e(\mathfrak{L})} \leq t(\mathfrak{u}(\mathfrak{L}))$ for all $\mathfrak{L} \in \mathfrak{F}_p$. For powerful restricted Lie algebras one has also the following.

PROPOSITION 3.1. Let \mathfrak{L} be a powerful restricted Lie algebra over a field \mathbb{F} of characteristic p > 0. Then one has

(3.1)
$$t(\mathfrak{u}(\mathfrak{L})) \leq 1 + d(\mathfrak{L}) \cdot (p^{e(\mathfrak{L})} - 1).$$

Moreover, equality holds in (3.1), if and only if every element $x \in \mathfrak{L} \setminus \mathfrak{L}^{[p]}$ is of exponent $e(\mathfrak{L})$.

PROOF: Put

https://doi.org/10.1017/S000497270003896X Published online by Cambridge University Press

(3.2)
$$\mathfrak{D}_1(\mathfrak{L}):=\mathfrak{L}, \qquad \mathfrak{D}_m(\mathfrak{L}):=\left\langle \mathfrak{D}_{\lceil m/p \rceil}(\mathfrak{L})^{\lceil p \rceil} \right\rangle_p + [\mathfrak{L}, \mathfrak{D}_{m-1}(\mathfrak{L})] \text{ for } m>1.$$

By [21], one has

(3.3)
$$t(\mathfrak{u}(\mathfrak{L})) = 1 + (p-1) \cdot \sum_{n \ge 1} n \cdot d_n$$

where d_n : = dim_F($\mathfrak{D}_n(\mathfrak{L})/\mathfrak{D}_{n+1}(\mathfrak{L})$). By Theorem 2.6 and induction, one concludes easily that

$$\mathfrak{D}_n(\mathfrak{L}) = \mathfrak{L}^{[p]^{k(n)}}$$

where $k(n) := \lceil \log_p n \rceil$. This yields

(3.5)
$$d_n = \begin{cases} \dim_{\mathbb{F}}(\mathfrak{L}^{[p]^i}/\mathfrak{L}^{[p]^{i+1}}) & \text{if } n = p^i \text{ with } 0 \leq i < e(\mathfrak{L}), \\ 0 & \text{otherwise.} \end{cases}$$

Formula (3.3) implies that

(3.6)
$$t(\mathfrak{u}(\mathfrak{L})) = 1 + (p-1) \cdot \sum_{i=0}^{e(\mathfrak{L})-1} p^i \cdot \dim_{\mathbb{F}}(\mathfrak{L}^{[p]^i}/\mathfrak{L}^{[p]^{i+1}}).$$

Moreover, by Theorem 2.6, $\dim_{\mathbb{F}}(\mathfrak{L}^{[p]^i}/\mathfrak{L}^{[p]^{i+1}}) \leq d(\mathfrak{L})$ which yields (3.1). One has equality in (3.1), if and only if $\dim_{\mathbb{F}}(\mathfrak{L}^{[p]^i}/\mathfrak{L}^{[p]^{i+1}}) = d(\mathfrak{L})$ for all $i = 0, \ldots, e(\mathfrak{L}) - 1$. By Theorem 2.6, this is equivalent to the property that every element $x \in \mathfrak{L} \setminus \mathfrak{L}^{[p]}$ is of exponent $e(\mathfrak{L})$.

3.2. THE LIE DERIVED LENGTH. Let \mathfrak{A} be any associative F-algebra with unit. The associative F-algebra \mathfrak{A} can be regarded as an F-Lie algebra via the Lie commutator $[x, y] = xy - yx, x, y \in \mathfrak{A}$. The Lie derived series $\delta^{(n)}(\mathfrak{A})$ and the strong Lie derived series $\delta^{(n)}(\mathfrak{A})$ of \mathfrak{A} are given by

(3.7)

$$\delta^{[0]}(\mathfrak{A}) := \delta^{(0)}(\mathfrak{A}) = \mathfrak{A},$$

$$\delta^{[n]}(\mathfrak{A}) := \left[\delta^{[n-1]}(\mathfrak{A}), \delta^{[n-1]}(\mathfrak{A})\right],$$

$$\delta^{(n)}(\mathfrak{A}) := \left[\delta^{(n-1)}(\mathfrak{A}), \delta^{(n-1)}(\mathfrak{A})\right]\mathfrak{A}.$$

The associative F-algebra \mathfrak{A} is called *Lie solvable* (respectively strongly Lie solvable), if $\delta^{[n]}(\mathfrak{A}) = 0$ (respectively $\delta^{(n)}(\mathfrak{A}) = 0$) for some n > 0. The smallest such number n is called the *Lie derived length* (respectively strong Lie derived length) and will be denoted by $dl_{\text{Lie}}(\mathfrak{A})$ (respectively $dl^{\text{Lie}}(\mathfrak{A})$). Obviously, if \mathfrak{A} is strongly Lie solvable, then \mathfrak{A} is Lie solvable and $dl_{\text{Lie}}(\mathfrak{A}) \leq dl^{\text{Lie}}(\mathfrak{A})$.

Let \mathfrak{L} be a finite-dimensional restricted Lie algebra over a field \mathbb{F} of characteristic p > 0. Under the assumption that \mathbb{F} is of odd characteristic, Riley and Shalev proved in [20] that $\mathfrak{u}(\mathfrak{L})$ is Lie solvable, if and only if $\mathfrak{L}'_p := [\mathfrak{L}, \mathfrak{L}]_p$ is *p*-nilpotent. In [23] it was shown that - without any restriction on the ground field - $\mathfrak{u}(\mathfrak{L})$ is strongly Lie solvable,

[10]

if and only if \mathfrak{L}'_p is *p*-nilpotent. However, for such a restricted Lie algebra it can happen that $dl_{Lie}(\mathfrak{u}(\mathfrak{L})) \neq dl^{Lie}(\mathfrak{u}(\mathfrak{L}))$. Apart from the results in [22, 23, 25], very little is known about the Lie derived lengths of the F-algebra $\mathfrak{u}(\mathfrak{L})$. For powerful restricted Lie algebras one has the following property.

PROPOSITION 3.2. Let \mathfrak{L} be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 0. If \mathfrak{L} is powerful, then

(3.8)
$$\min\left(\left\lceil \log_2(p^{e(\mathcal{L}'_p)}+1)\right\rceil, p-1\right) \leq \mathrm{dl}_{\mathrm{Lie}}\left(\mathfrak{u}(\mathfrak{L})\right) \\ \leq \mathrm{dl}^{\mathrm{Lie}}\left(\mathfrak{u}(\mathfrak{L})\right) \leq \left\lceil \log_2(2+d(\mathcal{L}'_p)\cdot\left(p^{e(\mathcal{L}'_p)}-1\right)\right)\right\rceil.$$

PROOF: By [23, Lem.2] and Proposition 3.1, one has

(3.9)
$$\mathrm{dl}^{\mathrm{Lie}}(\mathfrak{u}(\mathfrak{L})) \leq \lceil \log_2(2 + d(\mathfrak{L}'_p) \cdot (p^{e(\mathfrak{L}'_p)} - 1)) \rceil.$$

It remains to show, that if $dl_{Lie}(u(\mathfrak{L})) < p$, then $dl_{Lie}(u(\mathfrak{L})) \ge \lceil \log_2(p^{e(\mathfrak{L}'_p)} + 1) \rceil$. If \mathfrak{L} is Abelian, the claim is trivial. Assume that \mathfrak{L} is non-Abelian, that is, $cl(\mathfrak{L}) = 2$. By Theorem A, \mathfrak{L}'_p is Abelian. Consequently, there exist two non-commuting elements $a, b \in \mathfrak{L}$, such that z: = [a, b] is of exponent $e(\mathfrak{L}'_p)$. We claim that $a^h z^{2^m - 1}, b^k z^{2^m - 1} \in \delta^{[m]}(\mathfrak{u}(\mathfrak{L}))$ for every non-negative integer m and for every $0 \le h, k \le p - m - 1$. We proceed by induction on m. For m = 0, the claim is trivial. Assume that by induction, one has $a^{h+1}z^{2^{m-1}-1} \in \delta^{[m-1]}(\mathfrak{u}(\mathfrak{L}))$ and $bz^{2^{m-1}-1} \in \delta^{[m-1]}(\mathfrak{u}(\mathfrak{L}))$. As z centralises a and b, the Leibnitz rule implies that

(3.10)
$$[a^{h+1}, b] = \sum_{i=1}^{h+1} a^{i-1} [a, b] a^{h-i+1} = \sum_{i=1}^{h+1} a^h z = (h+1) a^h z.$$

In particular,

[11]

$$(3.11) [a^{h+1}z^{2^{m-1}-1}, bz^{2^{m-1}-1}] = [a^{h+1}, b]z^{2^m-2} = (h+1)a^h z^{2^m-1}.$$

As 0 < h+1 < p, one concludes that $a^h z^{2^m-1} \in \delta^{[m]}(\mathfrak{u}(\mathfrak{L}))$, and a similar argument shows that $b^k z^{2^m-1} \in \delta^{[m]}(\mathfrak{u}(\mathfrak{L}))$. This yields the claim. The Poincaré-Birkhoff-Witt theorem for restricted universal enveloping algebras (see [26, Chapter 2, Theorem 5.1]) implies that for $2^m - 1 < p^{e(\mathfrak{L}'_p)}$, the element z^{2^m-1} is non-trivial. The claim has shown that for $0 \leq m \leq p-1$ the element z^{2^m-1} is contained in $\delta^{[m]}(\mathfrak{u}(\mathfrak{L}))$, completing the proof of the proposition.

3.3. THE LIE NILPOTENCY CLASS AND THE NILPOTENCY CLASS OF THE GROUP OF UNITS. Let \mathbb{F} be a field, and let \mathfrak{A} be an associative \mathbb{F} -algebra with unit. One calls \mathfrak{A} Lie nilpotent, if \mathfrak{A} is nilpotent as \mathbb{F} -Lie algebra. In this case we denote by $cl_{Lie}(\mathfrak{A})$ the Lie nilpotency class of \mathfrak{A} . Put $\mathfrak{A}^{(1)}$: = \mathfrak{A} and $\mathfrak{A}^{(n+1)} = [\mathfrak{A}^{(n)}, \mathfrak{A}^{(n)}]\mathfrak{A}$, $n \ge 2$. One says that \mathfrak{A} is strongly Lie nilpotent, if $\mathfrak{A}^{(n)} = 0$ for some n. In this case one calls the minimal

[12]

D

non-negative integer $cl^{Lie}(\mathfrak{A})$: = m satisfying $\mathfrak{A}^{(m+1)} = 0$ the strong Lie nilpotency class of \mathfrak{A} .

In [20], Riley and Shalev proved that if \mathfrak{L} is a restricted Lie algebra over a field \mathbb{F} of characteristic p > 0, then $\mathfrak{u}(\mathfrak{L})$ is Lie nilpotent, if and only it is strongly Lie nilpotent. Moreover, this happens precisely when \mathfrak{L} is nilpotent and $\mathfrak{L}'_p \in \mathfrak{F}_p$. They also showed that $\operatorname{cl}_{\operatorname{Lie}}(\mathfrak{u}(\mathfrak{L})) = \operatorname{cl}^{\operatorname{Lie}}(\mathfrak{u}(\mathfrak{L}))$ provided p > 3, while it is unknown whether this equality holds in the exceptional cases p = 2, 3 as well. In [24] it was shown, that if $\mathfrak{L} \in \mathfrak{F}_p$ and \mathfrak{L}'_p is cyclic, then $\operatorname{cl}_{\operatorname{Lie}}(\mathfrak{u}(\mathfrak{L})) = \operatorname{cl}^{\operatorname{Lie}}(\mathfrak{u}(\mathfrak{L})) = p^{\dim_{\mathbf{F}}\mathfrak{L}'_p}$. Here we prove the following result:

PROPOSITION 3.3. Let $\mathfrak{L} \in \mathfrak{F}_p$. If \mathfrak{L}'_p is powerfully embedded in \mathfrak{L} , then

(3.12)
$$p^{e(\mathcal{L}'_p)} \leq \operatorname{cl}_{\operatorname{Lie}}(\mathfrak{u}(\mathfrak{L})) \leq \operatorname{cl}^{\operatorname{Lie}}(\mathfrak{u}(\mathfrak{L})) \leq 1 + d(\mathcal{L}'_p) \cdot (p^{e(\mathcal{L}'_p)} - 1)$$

PROOF: From [24, Theorem 1] and Theorem 2.6 it follows that $cl_{Lie}(u(\mathfrak{L})) \ge p^{e(\mathfrak{L}'_p)}$. Consider the chain of restricted ideals of \mathfrak{L} defined recursively by

(3.13)
$$\begin{aligned} \mathfrak{D}_1(\mathfrak{L}) &:= \mathfrak{L}, \qquad \mathfrak{D}_2(\mathfrak{L}) &:= \mathfrak{L}'_p, \\ \mathfrak{D}_{m+1}(\mathfrak{L}) &:= \left\langle \mathfrak{D}_{(\lceil (m+p)/p \rceil)}(\mathfrak{L})^{[p]} \right\rangle_p + \left[\mathfrak{D}_{(m)}(\mathfrak{L}), \mathfrak{L} \right], \qquad m \ge 2. \end{aligned}$$

According to [21], one has

(3.14)
$$\operatorname{cl}^{\operatorname{Lie}}(\mathfrak{u}(\mathfrak{L})) = 1 + (p-1) \cdot \sum_{m \ge 1} m \cdot d_{(m+1)}$$

where $d_{(m)} := \dim_{\mathbf{F}}(\mathfrak{D}_{(m)}(\mathfrak{L})/\mathfrak{D}_{(m+1)}(\mathfrak{L}))$. As \mathfrak{L}'_p is powerfully embedded in \mathfrak{L} , Proposition 2.3 and Theorem 2.6 imply that for n > 1 one has

(3.15)
$$\mathfrak{D}_{(n)}(\mathfrak{L}) = (\mathfrak{L}'_p)^{[p]^{h(n)}},$$

where $h(n) := \lceil \log_p(n-1) \rceil$. From this identity one concludes that for $n \ge 2$

(3.16)
$$d_{(n)} = \begin{cases} \dim_{\mathbb{F}} \left((\mathfrak{L}'_p)^{[p]^i} / (\mathfrak{L}'_p)^{[p]^{i+1}} \right) & \text{if } n = p^i + 1 \text{ with } 0 \leq i < e(\mathfrak{L}'_p), \\ 0 & \text{otherwise.} \end{cases}$$

From formula (3.14) one deduces that

(3.17)
$$\operatorname{cl}^{\operatorname{Lie}}(\mathfrak{u}(\mathfrak{L})) = 1 + (p-1) \cdot \sum_{n=0}^{e(\mathfrak{L}'_p)-1} p^n \cdot \dim_{\mathbf{F}}((\mathfrak{L}'_p)^{[p]^n}/(\mathfrak{L}'_p)^{[p]^{n+1}}).$$

As in Proposition 3.1, this yields $\operatorname{cl}^{\operatorname{Lie}}(\mathfrak{u}(\mathfrak{L})) \leq 1 + d(\mathfrak{L}'_p) \cdot (p^{e(\mathfrak{L}'_p)} - 1).$

For an associative F-algebra \mathfrak{A} with unit, we denote by \mathfrak{A}^* the group of units of \mathfrak{A} . Let cl(G) denote the nilpotency class of the nilpotent group G. If $\mathfrak{L} \in \mathfrak{F}_p$, then $\omega(\mathfrak{L})$ is nilpotent and $u(\mathfrak{L})^* = \mathbb{F}^* \times (1 + \omega(\mathfrak{L}))$. Hence, $u(\mathfrak{L})^*$ is nilpotent and $cl(u(\mathfrak{L})^*) = cl(1 + \omega(\mathfrak{L}))$. According to a result of Du (see [8]), if an associative F-algebra \mathfrak{T} is radical, that is, \mathfrak{T} coincides with its Jacobson radical, and Lie nilpotent, then $cl_{\text{Lie}}(\mathfrak{T})$ coincides with the nilpotency class of the adjoint group $\mathfrak{T}^\circ = 1 + \mathfrak{T}$. As a consequence one obtains the following:

COROLLARY 3.4. Let $\mathfrak{L} \in \mathfrak{F}_p$. If \mathfrak{L}'_p is powerfully embedded in \mathfrak{L} , then

$$(3.18) p^{e(\mathcal{L}'_p)} \leq \operatorname{cl}(\mathfrak{u}(\mathcal{L})^*) \leq 1 + d(\mathcal{L}'_p) \cdot (p^{e(\mathcal{L}'_p)} - 1).$$

4. COHOMOLOGY FOR RESTRICTED LIE ALGEBRAS

Let \mathfrak{L} be a restricted Lie algebra and let $\mathfrak{u}(\mathfrak{L})$ denote its restricted universal enveloping \mathbb{F} -algebra. The k^{th} -cohomology group with coefficients in the left \mathfrak{L} -module M is given by

(4.1)
$$H^{k}(\mathfrak{L}, M) := \operatorname{Ext}_{\mathfrak{u}(\mathfrak{L})}^{k}(\mathbb{F}, M).$$

where \mathbb{F} denotes the trivial left \mathcal{L} -module. Cup-product

$$(4.2) \qquad _ \cup _: H^{\bullet}(\mathfrak{L}, \mathbb{F}) \times H^{\bullet}(\mathfrak{L}, \mathbb{F}) \longrightarrow H^{\bullet}(\mathfrak{L}, \mathbb{F}),$$

which coincides with the Yoneda composition of Ext-groups, gives $H^{\bullet}(\mathfrak{L}, \mathbb{F})$ naturally the structure of a graded commutative \mathbb{F} -algebra. Moreover, every homomorphism $\phi \colon \mathfrak{L} \to \mathfrak{M}$ induces a homomorphism of graded commutative \mathbb{F} -algebras $\phi^{\bullet} \colon H^{\bullet}(\mathfrak{M}, \mathbb{F}) \to H^{\bullet}(\mathfrak{L}, \mathbb{F})$. The reduced cohomology \mathbb{F} -algebra of the restricted Lie algebra \mathfrak{L} is given by

(4.3)
$$H^{\bullet}(\mathfrak{L}, \mathbb{F})_{\mathrm{red}} := H^{\bullet}(\mathfrak{L}, \mathbb{F}) / \mathrm{nil} (H^{\bullet}(\mathfrak{L}, \mathbb{F})),$$

where nil($H^{\bullet}(\mathfrak{L}, \mathbb{F})$) denotes the graded ideal of nilpotent elements of the graded \mathbb{F} algebra $H^{\bullet}(\mathfrak{L}, \mathbb{F})$. Certainly, one of the most striking result on the cohomology of finitedimensional restricted Lie algebras is the theorem of Jantzen (see [11]). It states that if \mathbb{F} is an algebraically closed field of characteristic p, p odd, then $H^{\bullet}(\mathfrak{L}, \mathbb{F})_{red}$ can be identified with the rational functions on the algebraic set $\mathfrak{L}_{[p]} = \{x \in \mathfrak{L} \mid x^{[p]} = 0\}$ generated as \mathbb{F} -algebra in degree 2. One can think of this theorem as the analogue of Quillen's theorem which describes $H^{\bullet}(G, \mathbb{F}_p)$ of a finite group G up to F-isomorphism (see [18]).

4.1. POWERFUL RESTRICTED LIE ALGEBRAS. If p is odd, one can characterise powerful restricted Lie algebras in the class \mathfrak{F}_p in the same way as powerful pro-p groups (see [27, Theorem 5.1.6]).

THEOREM 4.1. Let p be odd and let $\mathfrak{L} \in \mathfrak{F}_p$. Then the following are equivalent:

- (i) \mathfrak{L} is powerful.
- (ii) The mapping $\beta_{\mathfrak{L}} \colon H^1(\mathfrak{L}, \mathbb{F}) \wedge H^1(\mathfrak{L}, \mathbb{F}) \to H^2(\mathfrak{L}, F)$ induced by cup-product is injective.

The proof of Theorem 4.1 makes use of the following simple fact.

[13]

FACT 4.2. Let p be odd, and let \mathfrak{A} be a finite-dimensional Abelian restricted Lie algebra with trivial p-map. Let $\eta \in H^2(\mathfrak{A}, F)$ and let

$$(4.4) \mathbf{s}_{\eta} \colon 0 \longrightarrow \mathbb{F} \longrightarrow \mathfrak{A}_{\eta} \xrightarrow{\tau_{\eta}} \mathfrak{A} \longrightarrow 0$$

denote the corresponding short exact sequence of restricted Lie algebras (see [10]). Then one has $\mathfrak{A}_{\eta}^{[p]} = 0$, if and only if $\eta \in \operatorname{im}(\beta_{\mathfrak{A}})$.

PROOF: As p is odd, the p-map on \mathfrak{A}_{η} induces a p-semilinear map $\psi(\eta) \in \operatorname{Hom}_{\mathbb{F}}^{p}(\mathfrak{A}, \mathbb{F})$ of degree p. This yields a short exact sequence

(4.5)
$$0 \longrightarrow H^1(\mathfrak{A}, \mathbb{F}) \wedge H^1(\mathfrak{A}, \mathbb{F}) \xrightarrow{\beta_{\mathfrak{A}}} H^2(\mathfrak{A}, \mathbb{F}) \xrightarrow{\psi} \operatorname{Hom}_{\mathbb{F}}^p(\mathfrak{A}, \mathbb{F}) \longrightarrow 0,$$

which implies the claim.

PROOF: [Proof of Theorem 4.1] Let $\pi: \mathfrak{L} \to \mathfrak{A}, \mathfrak{A}: = \mathfrak{L}/\Phi(\mathfrak{L})$, denote the canonical projection. One has a commutative diagram

(4.6)
$$H^{1}(\mathfrak{A}, \mathbb{F}) \wedge H^{1}(\mathfrak{A}, \mathbb{F}) \xrightarrow{\beta_{\mathfrak{A}}} H^{2}(\mathfrak{A}, \mathbb{F})$$
$$\downarrow^{\pi^{1} \wedge \pi^{1}} \qquad \qquad \downarrow^{\pi^{2}}$$
$$H^{1}(\mathfrak{L}, \mathbb{F}) \wedge H^{1}(\mathfrak{L}, \mathbb{F}) \xrightarrow{\beta_{\mathfrak{L}}} H^{2}(\mathfrak{L}, \mathbb{F}).$$

Moreover, $\pi^1 \wedge \pi^1$ is an isomorphism, and $\beta_{\mathfrak{A}}$ is injective. For $\eta \in H^2(\mathfrak{A}, \mathbb{F})$, let \mathfrak{L}_{η} denote the pull back of the mappings $\mathfrak{L} \to \mathfrak{A} \leftarrow \mathfrak{A}_{\eta}$, that is, one has a commutative diagram

If \mathbf{s}'_{η} is split, there exists a mapping α making the diagram (4.7) commute. On the other hand, \mathfrak{L}_{η} is the pull back of the mappings π and τ_n . Hence the existence of the mapping α in (4.7) implies that \mathbf{s}'_{η} is split. If $\eta \neq 0$, \mathbf{s}_{η} is a Frattini extension (see Proposition 2.1(e)), and therefore, a mapping α making (4.7) commute must be surjective (see Proposition 2.1(b)).

Let \mathfrak{L} be powerful. Let $\xi' \in H^1(\mathfrak{L}, \mathbb{F}) \wedge H^1(\mathfrak{L}, \mathbb{F}), \xi' \neq 0$, and assume that $\beta_{\mathfrak{L}}(\xi') = 0$. Let $\xi \in H^1(\mathfrak{A}, \mathbb{F}) \wedge H^1(\mathfrak{A}, \mathbb{F})$ such that $(\pi^1 \wedge \pi^1)(\xi) = \xi'$. Hence $\beta_{\mathfrak{A}}(\xi) \neq 0$ and $s_{\beta_{\mathfrak{A}}(\xi)}$ is a Frattini extension. The commutativity of the diagram (4.6) and the previously mentioned remark imply that there exists a surjective map $\alpha \colon \mathfrak{L} \to \mathfrak{A}_{\beta_{\mathfrak{A}}(\xi)}$ making the diagram (4.7) commute for $\eta \colon = \beta_{\mathfrak{A}}(\xi)$. However, by Fact 4.2, one has $\mathfrak{A}_{\beta_{\mathfrak{A}}(\xi)}^{[p]} = 0$. Hence $\mathfrak{A}_{\beta_{\mathfrak{A}}(\xi)}$ is not powerful. On the other hand, as a homomorphic image of \mathfrak{L} the restricted Lie algebra $\mathfrak{A}_{\beta_{\mathfrak{A}}(\xi)}$ must be powerful, a contradiction. This yields the implication (i) \Rightarrow (ii).

Let $\beta_{\mathfrak{L}}$ be injective, and assume that \mathfrak{L} is not powerful. Hence there exists a restricted ideal J of \mathfrak{L} such that $\mathfrak{L}^{[p]} \subseteq J \subseteq \Phi(\mathfrak{L})$ and J has codimension 1 in $\Phi(\mathfrak{L})$ (see Proposition

Π

[14]

2.9). Let $\mathfrak{H}:=\mathfrak{L}/J$ and let

$$(4.8) \qquad \qquad \mathbf{s} \colon \quad \mathbf{0} \longrightarrow \mathbb{F} \longrightarrow \mathfrak{H} \xrightarrow{\sigma} \mathfrak{A} \longrightarrow \mathbf{0}$$

denote the canonical short exact sequence. By construction, s is non-split and $\mathfrak{H}^{[p]} = 0$. Hence by Fact 4.2, there exists an element $\xi \in H^1(\mathfrak{A}, \mathbb{F}) \wedge H^1(\mathfrak{A}, \mathbb{F}), \ \xi \neq 0$, such that $s = s_{\beta\mathfrak{A}}(\xi)$. From the commutative diagram

one concludes that $\beta_{\mathfrak{L}}((\pi^1 \wedge \pi^1)(\xi)) = 0$. Hence $\beta_{\mathfrak{L}}$ is not injective, a contradiction, and this completes the proof of the theorem.

4.2. COHOMOLOGY FOR *p*-CENTRAL RESTRICTED LIE ALGEBRAS. Let \mathfrak{L} be a finitedimensional *p*-central restricted Lie algebra. For such a restricted Lie algebra one has a surjective homomorphism

(4.10)
$$\rho \colon \mathfrak{L}_{(p)} \oplus \mathfrak{L} \longrightarrow \mathfrak{L}, \quad \rho(z, x) \colon = z + x.$$

Applying Künneth' theorem one obtains a mapping

$$(4.11) \qquad \Delta_{\mathfrak{L}} := (\mathrm{red} \otimes \mathrm{id}) \circ \rho^{\bullet} \colon H^{\bullet}(\mathfrak{L}, \mathbb{F}) \longrightarrow H^{\bullet}(\mathfrak{L}_{[p]}, \mathbb{F})_{\mathrm{red}} \otimes H^{\bullet}(\mathfrak{L}, \mathbb{F}),$$

which gives $H^{\bullet}(\mathfrak{L}, \mathbb{F})$ the structure of a left $H^{\bullet}(\mathfrak{L}_{[p]}, \mathbb{F})_{red}$ -comodule algebra. The Hopf algebra structure on $H^{\bullet}(\mathfrak{L}_{[p]}, \mathbb{F})_{red}$ is induced by the mapping $\Delta_{\mathfrak{L}_{[p]}}$ (see [17]). Using this additional structure one deduces the following.

THEOREM 4.3. Let p be odd and let \mathfrak{L} be a finite-dimensional restricted Lie algebra. Then one has an isomorphism of graded commutative \mathbb{F} -algebras

(4.12)
$$H^{\bullet}(\mathfrak{L}, \mathbb{F}) \simeq C^{\bullet} \otimes S^{\bullet}(\mathfrak{L}^{\bullet}_{[p]})$$

where $S^{\bullet}(\mathfrak{L}^{\bullet}_{[p]})$ is generated in degree 2 and C^{\bullet} is a finite-dimensional graded commutative \mathbb{F} -algebra. In particular, $H^{\bullet}(\mathfrak{L}, \mathbb{F})$ is a graded commutative Cohen-Macaulay \mathbb{F} -algebra.

PROOF: Let $\iota: \mathfrak{L}_{[p]} \to \mathfrak{L}$ denote the canonical map. The theorem of Jantzen implies that the reduced restriction map

$$(4.13) j^{\bullet} := \operatorname{red} \circ \iota^{\bullet} : H^{\bullet}(\mathfrak{L}, \mathbb{F}) \longrightarrow H^{\bullet}(\mathfrak{L}_{[p]}, \mathbb{F})_{\operatorname{red}}$$

is surjective. Thus [28, Theorem 3.1] implies that one has an isomorphism of \mathbb{F} -algebras

(4.14)
$$H^{\bullet}(\mathfrak{L}, \mathbb{F}) \simeq C^{\bullet} \otimes H^{\bullet}(\mathfrak{L}_{[p]}, \mathbb{F})_{\mathrm{red}},$$

[15]

[16]

where C^{\bullet} := $\mathbb{F} \Box_{H^{\bullet}(\mathfrak{L}_{[p]},\mathbb{F})_{red}} H^{\bullet}(\mathfrak{L},\mathbb{F})$ and \Box denotes the cotensor product (see [17]). Moreover, since $H^{\bullet}(\mathfrak{L},\mathbb{F})$ is a finitely generated graded commutative \mathbb{F} -algebra (see [12, Section 1.11, Proposition]), C^{\bullet} is also finitely generated. By Jantzen's theorem,

(4.15)
$$\iota^{\bullet}_{\mathrm{red}} \colon H^{\bullet}(\mathfrak{L}, \mathbb{F})_{\mathrm{red}} \longrightarrow H^{\bullet}(\mathfrak{L}_{[p]}, \mathbb{F})_{\mathrm{red}}$$

is an isomorphism. This implies that the augmentation ideal $\omega(C^{\bullet})$ of C^{\bullet} consists entirely of nilpotent elements. In particular, C^{\bullet} is finite-dimensional, and $H^{\bullet}(\mathfrak{L}, \mathbb{F})$ is a graded commutative Cohen-Macaulay F-algebra.

Let B^{\bullet} be a graded commutative \mathbb{F} -algebra. Then B^{\bullet} is said to satisfy Poincaré duality in dimension n, if $\dim_{\mathbb{F}}(B^n) = 1$, $B^{n+j} = 0$ for all j > 0, and if for all $k \in \{0, \ldots, n\}$ multiplication induces a non-degenerate pairing $B^k \otimes B^{n-k} \to B^n$. In [3], Benson and Carlson developed a method for studying the cohomology ring $H^{\bullet}(G, \mathbb{F}_p)$ for a finite group G provided one knows that $H^{\bullet}(G, \mathbb{F}_p)$ is a Cohen-Macaulay \mathbb{F} -algebra and p is odd. Their main result can be summarised as follows:

THEOREM 4.4. ([3, Theorem 6.3]) Let \mathbb{F} be a field of characteristic $p \neq 2$, and let A be a finite-dimensional cocommutative \mathbb{F} -Hopf algebra such that

- (i) A is a Frobenius algebra.
- (ii) $H^{\bullet}(\mathbf{A}, \mathbb{F})$ is a finitely generated Cohen-Macaulay \mathbb{F} -algebra.

Let ξ_1, \ldots, ξ_n be a homogeneous system of parameters of degree $s_1, \ldots, s_n, s_i \ge 2$. Then $C^{\bullet} := H^{\bullet}(\mathbf{A}, \mathbb{F})/\langle \xi_1, \ldots, \xi_n \rangle$ satisfies Poincaré duality in dimension $s := \sum_{i=1}^n (s_i - 1)$.

PROOF: The cocommutativity of the Hopf algebra A ensures that for left A-modules M and N, the tensor product $M \otimes_{\mathbb{F}} N$ is a projective left A-module whenever one of the factors is projective. The property of being a Frobenius algebra implies that the left regular A-module A is also injective (see [1, Proposition 1.6.2]). Therefore one can transfer the proof of [3, Theorem 6.3] ad verbatim.

It is well-known that for a finite-dimensional restricted Lie algebra \mathfrak{L} , the restricted universal enveloping algebra $\mathfrak{u}(\mathfrak{L})$ is a Frobenius algebra (see [4]). Moreover, if p is odd and \mathfrak{L} is a p-central restricted Lie algebra, Theorem 4.3 has shown that the cohomology ring $H^{\bullet}(\mathfrak{L}, \mathbb{F})$ is a Cohen-Macaulay algebra with a homogeneous system of parameters ξ_1, \ldots, ξ_n all of degree 2, where $n: = \dim_{\mathbf{F}}(\mathfrak{L}_{[p]})$. Hence from Theorem 4.4 one obtains:

COROLLARY 4.5. The finite-dimensional \mathbb{F} -algebra C^{\bullet} of Theorem 4.3 satisfies Poincaré duality in dimension $n := \dim_{\mathbb{F}}(\mathfrak{L}_{[p]})$.

REMARK 4.6. Let \mathfrak{L} be a finite-dimensional *p*-central restricted Lie algebra, and let

(4.16)
$$h_{\mathfrak{L}}(t) := \sum_{k \in \mathbb{N}_0} \dim_{\mathbb{F}} \left(H^k(\mathfrak{L}, \mathbb{F}) \right) \cdot t^k$$

denote the Hilbert series of its cohomology algebra $H^{\bullet}(\mathfrak{L}, \mathbb{F})$. One has a multiplicative decomposition $h_{\mathfrak{L}}(t) = c(t) \cdot (1 - t^2)^{-n}$, where c(t) denotes the Hilbert series of C^{\bullet} and

On restricted Lie algebras

 $n := \dim_{\mathbf{F}}(\mathfrak{L}_{[p]})$. The Poincaré duality of C^{\bullet} implies that $c(t) = t^n \cdot c(1/t)$. Hence $h_{\mathfrak{L}}(t)$ satisfies the functional equation

(4.17)
$$h_{\mathfrak{L}}(1/t) = (-t)^{\dim_{\mathbf{F}}(\mathfrak{L}_{[p]})} \cdot h_{\mathfrak{L}}(t).$$

The analogous functional equation also holds for *p*-central groups. Let G be a finite *p*-central group, that is, $\Omega_1(G)$: = { $g \in G | g^p = 1$ } $\leq Z(G)$, and let

(4.18)
$$h_G(t) := \sum_{k \in \mathbb{N}_0} \dim_{\mathbb{F}_p} \left(H^k(G, \mathbb{F}_p) \right) \cdot t^k$$

denote the Hilbert series of the mod p cohomology ring of G. By [6], $H^{\bullet}(G, \mathbb{F}_p)$ is a Cohen-Macaulay \mathbb{F}_p -algebra, and thus by [2, Theorem 5.18.1]),

(4.19)
$$h_G(1/t) = (-t)^{\dim_{\mathbf{F}_p}(\Omega_1(G))} \cdot h_G(t).$$

References

- [1] D.J. Benson, *Representations and cohomology. I*, Cambridge Studies in Advanced Mathematics **30** (Cambridge University Press, Cambridge, 1991).
- [2] D.J. Benson, Representations and cohomology. II, Cambridge Studies in Advanced Mathematics 31 (Cambridge University Press, Cambridge, 1991).
- [3] D.J. Benson and J.F. Carlson, 'Projective resolutions and Poincaré duality complexes', Trans. Amer. Math. Soc. 342 (1994), 447-488.
- [4] A.J. Berkson, 'The u-algebra of a restricted Lie algebra is Frobenius', Proc. Amer. Math. Soc. 15 (1964), 14-15.
- [5] M. Bianchi, A. Gillio Berta Mauri and L. Verardi, 'Groups in which elements with the same p-power permute', Matematiche (Catania) 51 (1996). suppl. (1997) 53-61.
- [6] C. Broto and H-W. Henn, 'Some remarks on central elementary abelian p-subgroups and cohomology of classifying spaces', Quart. J. Math. Oxford Ser. (2) 44 (1993), 155-163.
- [7] J. Buckley, 'Finite groups whose minimal subgroups are normal', Math. Z. 116 (1970), 15-17.
- [8] X.K. Du, 'The centers of a radical ring', Canad. Math. Bull. 35 (1992), 174-179.
- [9] J. González-Sánchez and A. Jaikin-Zapirain, 'On the structure of normal subgroups of potent *p*-groups', J. Algebra 276 (2004), 193-209.
- [10] G. Hochschild, 'Cohomology of restricted Lie algebras', Amer. J. Math. 76 (1954), 555-580.
- [11] J.C. Jantzen, 'Kohomologie von p-Lie-Algebren und nilpotente Elemente', Abh. Math. Sem. Univ. Hamburg 56 (1986), 191-219.
- [12] J.C. Jantzen, 'Restricted Lie algebra cohomology', in Algebraic groups Utrecht 1986, Lecture Notes in Math. 1271 (Springer-Verlag, Berlin, 1987), pp. 91-108.
- [13] A.V. Kelarev, 'Directed graphs and Lie superalgebras of matrices', J. Algebra 285 (2005), 1-10.
- [14] A.V. Kelarev, Ring constructions and applications, Series in Algebra 9 (World Scientific Publishing Co. Inc., River Edge, NJ, 2002).

- [15] A. Lubotzky and A. Mann, 'Powerful p-groups. I. Finite groups', J. Algebra 105 (1987), 484-505.
- [16] A. Lubotzky and A. Mann, 'Powerful p-groups. II. p-adic analytic groups', J. Algebra 105, 506-515.
- [17] J.W. Milnor and J.C. Moore, 'On the structure of Hopf algebras', Ann. of Math. (2) 81 (1965), 211-264.
- [18] D. Quillen, 'The spectrum of an equivariant cohomology ring. I, II', Ann. of Math. (2)
 94 (1971), 549-572. ibid. (2) 94 (1971), 573-602.
- [19] D.M. Riley and J.F. Semple, 'Completion of restricted Lie algebras', Israel J. Math. 86 (1994), 277-299.
- [20] D.M. Riley and A. Shalev, 'The Lie structure of enveloping algebras', J. Algebra 162 (1993), 46-61.
- [21] D.M. Riley and A. Shalev, 'Restricted Lie algebras and their envelopes', Canad. J. Math. 47 (1995), 146-164.
- [22] D.M. Riley and V. Tasić, 'Lie identities for Hopf algebras', J. Pure Appl. Algebra 122 (1997), 127-134.
- [23] S. Siciliano, 'Lie derived lengths of restricted universal enveloping algebras', Publ. Math. Debrecen 68 (2006), 503-513.
- [24] S. Siciliano and E. Spinelli, 'Lie nilpotency indices of restricted universal enveloping algebras', Comm. Algebra 34 (2006), 151-157.
- [25] S. Siciliano and E. Spinelli, 'Lie metabelian restricted universal enveloping algebras', Arch. Math. (Basel) 84 (2005), 398-405.
- [26] H. Strade and R. Farnsteiner, Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics 116 (Marcel Dekker Inc., New York, 1988).
- [27] P. Symonds and Th. Weigel, 'Cohomology of p-adic analytic groups', in New horizons in pro-p groups, (M. duSautoy, D. Segal and A. Shalev, Editors), Progress in Mathematics 184 (Birkhäuser, Boston, 2000), pp. 349-410.
- [28] Th. Weigel, 'p-central groups and Poincaré duality', Trans. Amer. Math. Soc. 352 (2000), 4143-4154.

Dipartimento di Matematica "E. De Giorgi" Universitá di Lecce Via prov. Lecce-Arnesano 73100 Lecce Italy e-mail: salvatore.siciliano@unile.it Universitá di Milano-Bicocca U5-3067, Via R.Cozzi, 53 20125 Milano Italy e-mail: thomas.weigel@unimib.it