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Steady-state diffusion in long axisymmetric structures is considered. The goal is to assess one-
dimensional approximations by comparing them with axisymmetric eigenfunction expansions. Two
problems are considered in detail: a finite tube with one end that is partly absorbing and partly reflect-
ing; and two finite coaxial tubes with different cross-sectional radii joined together abruptly. Both
problems may be modelled using effective boundary conditions, containing a parameter known as
the trapping rate. We show that trapping rates depend on the lengths of the finite tubes (and that
they decay slowly as these lengths increase) and we show how trapping rates are related to blockage
coefficients, which are well known in the context of potential flow along tubes of infinite length.
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1 Introduction

Problems involving wave propagation or diffusion in long rigid tubes of slowly varying cross-
section have an extensive literature, with associated approximations. One thinks of the Webster
horn equation or the Fick–Jacobs equation, which are one-dimensional partial differential equa-
tions, in which the unknown function depends on the longitudinal coordinate z and time t;
in steady situations (no dependence on t), ordinary differential equations are obtained. These
approximations are not expected to be useful when the geometry changes abruptly.

What can we do if the slowly varying assumption is violated? This happens if there is an abrupt
change in the tube’s diameter at z = 0 or if the tube contains an object such as a thin disc in the
plane z = 0. (More complicated situations are readily imagined, but the two examples mentioned
are sufficient for our purposes.) One possibility is to connect the solution on the two sides of
z = 0 using certain interface conditions, while still retaining a one-dimensional model. This is
an old idea, in which the effects of a boundary with various structures (such as perforations or
decorations) are smeared out (homogenised) and replaced by an effective boundary or interface
condition. These conditions involve parameters that are supposed to encapsulate properties of the
boundary structures; these parameters have to be calculated or estimated by a separate procedure.
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In the diffusion literature, the approach just described is known as boundary homogenisation.
Quoting from [4]: ‘The key step of our analysis is the replacement of the initial three-dimensional
problem by an effective one-dimensional one. This replacement is not rigorous. Therefore, our
analytical results do not provide an exact solution to the problem.’ This provides one motivation
for our work.

Another possibility is to tackle the fully three-dimensional problem using eigenfunction expan-
sions. Thus, if we assume that the tube has a circular cross-section, we can use cylindrical polar
coordinates (r, θ , z) and the method of separation of variables. We shall use this method for two
specific problems and then compare with one-dimensional approximations.

We shall give detailed consideration of two steady-state axisymmetric problems involving
Laplace’s equation, ∇2φ = 0, and tubular geometries. In the first problem (the ‘finite-tube prob-
lem’, Section 2), the rigid tube has finite length (0< z< �) with φ = φ0 (a constant) at one
end (z = �) and mixed conditions at the other (z = 0, where ∂φ/∂z = 0 for 0 ≤ r< b and φ = 0
for b< r< a). When boundary homogenisation is used, the goal is to calculate ψ(z) � φ with
ψ ′′(z) = 0. To be more precise, we may define

ψ(z) = 1

|A(z)|
∫
A(z)

φ(r, θ , z)r dr dθ , (1.1)

where A(z) is the cross-section at z and |A(z)| is the area of that cross-section. The mixed
boundary conditions at z = 0 are replaced by a single (Robin) boundary condition,

ψ ′(0) = κψ(0), (1.2)

where κ is a constant. In the diffusion literature, κ is known as a trapping rate. Particles dif-
fusing in the tube are partially absorbed at z = 0 and partially reflected; κ characterises the
absorption rate.

Determining κ is a separate and non-trivial task. For example, if we switch the mixed con-
ditions at z = 0, so that φ = 0 for 0 ≤ r< b (representing an absorbing disc) and ∂φ/∂z = 0 for
b< r< a (a reflecting annulus), there is the approximation given in [2], obtained there using
Brownian dynamics simulations. Such approximations do not depend on �, the length of the
tube. A second motivation for our work was to quantify the dependence of κ(�) on �. We shall
see that

κ(�) = κ∞ + O
(
�−1

)
as �→ ∞, (1.3)

where κ∞ comes from solving a potential flow problem for a tube of infinite length. In fact, we
shall also see that κ∞ = C−1, where C is the blockage coefficient for the potential flow. The
slow decay with � in (1.3) is surprising because one might expect to see exponential decay. We
also obtain an estimate of the O(�−1) term; it turns out to be simply −�−1 (see (2.26)), a result
obtained by applying an iterative method to an associated integral equation.

Much is known about blockage coefficients, such as how to compute them and how to estimate
them for obstacles of various shapes in an infinite tube. For details and references, see [14, 15].
Connections between C and κ are expected to find further applications.

In the second problem (the ‘junction problem’, Section 3), two coaxial rigid tubes are joined at
z = 0. The tubes have different radii and different finite lengths. The join is effected using a rigid
annulus, and there are Dirichlet boundary conditions at the two ends of the structure (φ = φ0 at
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one end and φ = 0 at the other). This problem was studied by Berezhkovskii et al. [1] (using
boundary homogenisation, see Section 3.1) and by Kalinay and Percus [10] (using eigenfunction
expansions). The junction problem is more complicated than the finite-tube problem: instead of
mixed conditions at one end of the tube, we now have a mixture of boundary and continuity
conditions at z = 0. It turns out that (1.2) is to be replaced by a condition requiring that ψ ′(0) is
proportional to the jump in ψ across z = 0; the constant of proportionality is essentially κ (see
(3.8)), and it is found to decay slowly, similar to (1.3); see (3.32) for more details. We also relate
κ to the blockage coefficient for potential flow along two coaxial semi-infinite tubes, joined at
z = 0, a problem that is studied in Section 3.2.

There are some concluding remarks in Section 4.

2 Finite-tube problem

Consider the following axisymmetric problem for a rigid tube of finite length �. The potential
φ(r, z) satisfies ∇2φ = 0 for 0< z< �, 0 ≤ r< a together with the following conditions:

φ(r, �) = φ0, 0 ≤ r< a, (2.1a)

∂φ/∂z = 0, z = 0, 0 ≤ r< b, (2.1b)

φ(r, 0) = 0, b< r< a, (2.1c)

∂φ/∂r = 0, r = a, 0< z< �. (2.1d)

Here, φ0 is a constant. (Evidently, the problem could be scaled so that φ0 = 1 and a = 1, if
desired.) A complementary problem (with the mixed conditions at z = 0 interchanged, so that
φ = 0 on the disc of radius b and ∂φ/∂z = 0 on the annulus b< r< a) is studied in [4, 5].

The main quantity of interest is the flux

J = 2π
∫ a

0

∂φ

∂z
r dr. (2.2)

Green’s theorem shows that J does not depend on z, with 0< z< �, but it does depend on �: we
write J (�). In particular, using (2.1b),

J (�) = 2π
∫ a

b

∂φ

∂z

∣∣∣∣
z=0

r dr, (2.3)

an integral of ∂φ/∂z over the annular region at z = 0. Alternatively, an application of Green’s
theorem in the finite tube to φ and z − � gives

J (�) = πa2φ0

�
− 2π

�

∫ b

0
φ(r, 0)r dr, (2.4)

giving J (�) in terms of an integral of φ over the disc at z = 0.

2.1 Boundary homogenisation

Suppose we approximate φ(r, z) by a function of z only, ψ(z); see (1.1). Laplace’s equation
becomesψ ′′(z) = 0, so thatψ(z) = Az + B, with arbitrary constants A and B. The mixed boundary
conditions at z = 0 are replaced by (1.2), ψ ′(0) = κψ(0), where κ is a constant. Combining this
condition with ψ(�) = φ0, we obtain
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ψ(z) = φ0
1 + κz

1 + κ�
and J (�) � πa2ψ ′ = πa2κφ0

1 + κ�
. (2.5)

This calculation is very simple but, of course, we do not know κ: the problem of calculating φ
has been replaced by the problem of calculating κ .

2.2 Rigid disc in an infinite tube

Returning to problem (2.1), suppose we extend φ(r, z) into −� < z< 0 as an odd function of
z, φ(r, −z) = −φ(r, z), 0< z< �. Then we see that the problem is equivalent to some kind of
potential flow past a thin rigid disc of radius b in a tube of cross-sectional radius a. Note that
extending φ in this way means that (2.1c) is satisfied automatically.

The simplest problem of this kind comes by letting �→ ∞, with uniform flow along an infinite
tube. For this problem, the conditions φ(r, ±�) = ±φ0 (see (2.1a)) are replaced by

φ(r, z) = U(z ± C) + o(1) as z → ±∞, (2.6)

where U is the constant speed of the flow far from the disc and C is the blockage coefficient.
(The o(1) terms in (2.6) are exponentially small.) We shall see later that κ in (1.2) and C in (2.6)
are related.

The problem of uniform flow past a rigid disc has been studied previously [18, 17, 14, 15].
There are approximations when b/a is small and when the gap between the disc and the tube is
small (b/a � 1) [17, 14]. Here, we begin with a standard method (that could be used to compute
C numerically) but then we introduce approximations that lead to analytical estimates.

Two exact formulas are worth noting. Hurley’s formula [9], [14, equation (31)] gives

C = 2

a2U

∫ b

0
φ(r, 0+) r dr. (2.7)

We also have flux conservation through the gap,

2π
∫ a

b

∂φ

∂z
(r, 0+) r dr = πa2U . (2.8)

Now, as it is sufficient to consider z> 0, we write

φ(r, z) = U(z + C) + Ua
∞∑

n=1

cnJ0(λnr)e−λnz, 0 ≤ r< a, z> 0, (2.9)

where λn are positive solutions of J1(λna) = 0 and Jn are Bessel functions. The (dimensionless)
coefficients cn and C/a are to be found. The representation (2.9) ensures that ∇2φ = 0 and that
(2.1d) and (2.6) are satisfied. Applying (2.1b) and (2.1c) gives

∞∑
n=1

cn(λna)J0(λnr) = 1, 0 ≤ r< b, (2.10a)

C

a
+

∞∑
n=1

cnJ0(λnr) = 0, b< r< a. (2.10b)
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These are dual series equations for cn and C [19], [6, Example 3.3.1]. For a numerical treatment,
see [17]. Also, if we multiply (2.10b) by r and then integrate from r = b to r = a, we obtain

C

a
= 2ab

a2 − b2

∞∑
n=1

cn
J1(λnb)

λna
(2.11)

after use of ∫ q

p
J0(λnr) r dr = q

λn
J1(λnq) − p

λn
J1(λnp). (2.12)

The same formula for C, (2.11), is obtained by substituting (2.9) in (2.7).
Instead of trying to solve (2.10), let V (r) = ∂φ/∂z at z = 0 for b< r< a; this is the flow speed

in the gap. Thus, using (2.1b) and (2.9),

U − U
∞∑

n=1

cn(λna)J0(λnr) =
{

0, 0 ≤ r< b,

V (r), b< r< a.

This is a Dini–Bessel series. Orthogonality gives

πa2U = 2π
∫ a

b
V (r)r dr (2.13)

(which is (2.8)) and

cn = − 2

Uλna3J2
0 (λna)

∫ a

b
V (r)J0(λnr)r dr, (2.14)

using [16, 10.22.4 and 10.22.5]∫ a

0
J0(λmr)J0(λnr) r dr = a2

2
J2

0 (λna) δmn. (2.15)

Substituting for cn from (2.14) in (2.10a) leads to an integral equation for V (r). This approach
will be pursued later when we return to the finite-tube problem in Section 2.3. However, for the
moment, we note that our calculations are exact, but we do not know V .

Let us make a plausible approximation for V . The simplest possibility is to take V (r) = U0, a
constant; from (2.13), U0 = Ua2/(a2 − b2). Then (2.14) gives the approximation

cn = 2bU0J1(λnb)

Uλ2
na3(a2 − b2) J2

0 (λna)

which, when substituted in (2.11) gives the approximation

C � Capp
disc = 4a3b2

(a2 − b2)2
S0(b/a) (2.16)

where

S0(X ) =
∞∑

n=1

J2
1 (λnaX )

(λna)3 J2
0 (λna)

=
∞∑

n=1

J2
1 (jnX )

j3
nJ2

0 (jn)
(2.17)

and jn = λna (so that J1(jn) = 0). (The notation ‘app’ in (2.16) indicates ‘approximation’.) The
terms in the series S0 decay as n−3; as far as we know, S0 cannot be summed in closed form
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(although it can be written as an integral [13, equation (16)]). It will appear again later; see
(2.24). A generalisation, Sq will also appear later; see (3.14) and Appendix A.

Although the approximation V (r) � U0 may seem crude, it can be refined, taking into account
the fact that V (r) is infinite at the sharp edge of the disc (r = b). For details, with an application
to a disc that almost fills the tube (small gap, b/a � 1), see [15].

2.3 Finite-tube problem: Estimating κ

2.3.1 An integral equation

Let us return to the finite-tube problem (2.1). Look for a solution in the form

φ(r, z)

φ0
= 1 + c0

( z

�
− 1

)
+

∞∑
n=1

cnJ0(λnr) sinh {λn(z − �)}, 0 ≤ r< a, 0< z< �. (2.18)

This representation satisfies (2.1a) and (2.1d). From (2.2), the flux is given by

J (�) = πa2φ0c0/�. (2.19)

Applying the boundary conditions at z = 0, (2.1b) and (2.1c), we obtain dual series equations,

c0 +
∞∑

n=1

cnJ0(λnr)(λn�) cosh λn�= 0, 0 ≤ r< b, (2.20a)

c0 +
∞∑

n=1

cnJ0(λnr) sinh λn�= 1, b< r< a. (2.20b)

Proceeding as in Section 2.2, let V (r) = ∂φ/∂z at z = 0 for b< r< a. Then, using (2.1b) and
(2.18), we obtain

c0 +
∞∑

n=1

cnJ0(λnr)(λn�) cosh λn�=
{

0, 0 ≤ r< b,

(�/φ0)V (r), b< r< a.

Orthogonality gives

c0 = 2�

φ0a2

∫ a

b
V (r)r dr = �

πa2φ0
J (�) (2.21)

and

cnλn� cosh λn�= 2�

φ0a2J2
0 (λna)

∫ a

b
V (r)J0(λnr)r dr

using (2.15). Substitution in (2.20b) gives an integral equation for V ,

1 = 2�

φ0a2

∫ a

b
V (s)

{
1 + a

�

∞∑
n=1

J0(λnr)J0(λns)

(λna) J2
0 (λna)

tanh λn�

}
s ds, b< r< a. (2.22)

This reduction to an integral equation is exact. However, we shall approximate because we are
only interested in calculating c0 (see (2.21)) and, moreover, we shall assume that �/a 	 1.
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2.3.2 Approximation for large �

For large �, tanh λn�� 1, so we can discard the sum term in (2.22) (because of the factor a/�).
Thus, at leading order,

1 � 2�

φ0a2

∫ a

b
V (s)s ds = c0, (2.23)

which gives J (�) � πa2φ0/�. This very simple approximation does not depend on b, although it
is exact when b = 0.

In order to improve our approximations, we use an iterative approach. Thus, suppose that
V (r) = V0/�+ V1/�

2 + · · · , where V0 is a constant defined by φ0a2 = 2V0
∫ a

b r dr, which gives
V0 = φ0a2/(a2 − b2). Substitution in (2.22) then gives

1 � 2�

φ0a2

∫ a

b

(
V0

�
+ V1

�2

)
s ds + 2�

φ0a2

∫ a

b

V0a

�2

∞∑
n=1

J0(λnr)J0(λns)

(λna) J2
0 (λna)

s ds, b< r< a.

Rearranging

c0 = 1 − 2V0

φ0a�

∞∑
n=1

J0(λnr)

(λna) J2
0 (λna)

∫ a

b
J0(λns)s ds

= 1 + 2ba2

�(a2 − b2)

∞∑
n=1

J0(λnr)J1(λnb)

(λna)2 J2
0 (λna)

.

But the right-hand side is a function of r, so average over the annulus: multiply by 2r/(a2 − b2)
and integrate between r = b and r = a:

c0 = 1 + 4ba2

�(a2 − b2)2

∞∑
n=1

J1(λnb)

(λna)2 J2
0 (λna)

∫ a

b
J0(λnr)r dr

= 1 − 4b2a3

�(a2 − b2)2

∞∑
n=1

J2
1 (λnb)

(λna)3 J2
0 (λna)

. (2.24)

The series seen here is S0(b/a), defined by (2.17). It occurred in our approximation to the block-
age coefficient C for potential flow past a thin rigid disc in a tube of infinite length, Capp

disc, given
by (2.16). If we accept that approximation, we obtain the relation

c0 = 1 − Capp
disc/� (2.25)

and then (2.19) gives an approximation for the flux J (�).

2.3.3 Estimating κ

We have two estimates for J , namely

J (�) = πa2φ0

�

(
1 − Capp

disc

�

)
and J (�) = πa2φ0κ

1 + κ�
;

see (2.5) for the second. Equating these and solving for κ , we obtain

κ(�) = 1

Capp
disc

− 1

�
. (2.26)
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Recall that Capp
disc pertains to an infinite tube whereas κ(�) is for a finite tube of length �. We see

that the difference decays slowly as �→ ∞.
The observation that κ(∞) = C−1 is to be expected. If we approximate φ(r, z) for an infinite

pipe (with far field given by (2.6)) by a one-dimensional function ψ(z), we must have ψ(z) =
U(z + C). Suppose the rigid object in the tube is confined to the region |z|< h for some h, and
then apply the condition ψ ′(z0) = κ0∞ψ(z0) (compare with (1.2)), where z0 ≥ h; we have written
κ0∞ to indicate that we are representing the solution in an infinite pipe with a boundary condition
applied at z0. Doing this gives κ0∞ = 1/(C + z0). (For a thin disc, we can take z0 = h = 0.) This
simple calculation shows that we should expect κ to depend on the location at which the boundary
condition ψ ′ = κψ is imposed. Indeed, if we use a different location, using ψ ′(z1) = κ1∞ψ(z1),
we obtain κ1∞ = 1/(C + z1) and then, eliminating C, we obtain

1

κ0∞
− 1

κ1∞
= z0 − z1. (2.27)

We conclude that, unlike the blockage coefficient C, κ is not dependent solely on the shape of
the rigid object in the tube.

2.4 Finite-tube problem: The one-dimensional approximation ψ

Let us construct ψ from φ, using (1.1), which reduces to

ψ(z) = 2

a2

∫ a

0
φ(r, z)r dr = φ0

{
1 + c0

( z

�
− 1

)}
,

an exact formula, after using (2.18). Evidently, ψ(�) = φ0 whereas imposition of ψ ′(0) = κψ(0),
(1.2), gives a relation between κ and c0,

κ = c0

�(1 − c0)
. (2.28)

Now, the leading-order estimate for c0, (2.23), is c0 � 1, and so the exact formula (2.28) does not
provide a useful estimate of κ . However, if we use the refined estimate for c0, (2.25), in (2.28),
we recover the formula (2.26).

3 Junction problem

Two finite rigid coaxial tubes join abruptly at z = 0. The wider tube has length �w and cross-
sectional radius a. The narrower tube has length �n and cross-sectional radius b ≤ a. The potential
φ satisfies ∂φ/∂r = 0 on the tube walls together with ∂φ/∂z = 0 on the annular region, b< r< a,
z = 0−. Dirichlet boundary conditions are imposed at the two ends of the structure. Thus, we
have ∇2φ = 0 inside the structure, together with the following boundary conditions:

φ(r, �n) = φ0, 0 ≤ r< b, (3.1a)

∂φ/∂r = 0, r = b, 0< z< �n, (3.1b)

∂φ/∂z = 0, z = 0−, b< r< a, (3.1c)

∂φ/∂r = 0, r = a, −�w < z< 0, (3.1d)

φ(r, −�w) = 0, 0 ≤ r< a. (3.1e)
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This problem is similar to one considered in [1] and [10] (but note that we have interchanged
a and b).

As in Section 2, the main quantity of interest is the flux,

J = 2π
∫ ρ(z)

0

∂φ

∂z
r dr with ρ(z) =

{
a, −�w < z< 0,

b, 0< z< �n;

J does not depend on z. In particular, using (3.1c),

J = 2π
∫ b

0

∂φ

∂z

∣∣∣∣
z=0

r dr. (3.2)

Applying Green’s theorem in the narrow tube to φ(r, z) and z − �n gives

0 = πb2φ0 − 2π
∫ b

0
φ(r, 0+)r dr − �nJ .

Similarly, applying Green’s theorem in the wide tube to φ(r, z) and z + �w gives

0 = 2π
∫ a

0
φ(r, 0−)r dr − �wJ .

Adding these two equations, noting that φ(r, 0+) = φ(r, 0−) for 0 ≤ r< b, we obtain

(�n + �w)J = πb2φ0 + 2π
∫ a

b
φ(r, 0−)r dr. (3.3)

3.1 Boundary homogenisation

As in Section 2.1, suppose we approximate φ(r, z) by a function ψ(z), with ψ ′′(z) = 0. Imposing
ψ(�n) = φ0 and ψ(−�w) = 0 gives

ψ(z) = A(z + �w), −�w < z< 0 and ψ(z) = φ0 + B(z − �n), 0< z< �n,

where A and B are arbitrary constants. The flux is πa2A for −�w < z< 0 and πb2B for 0< z< �n.
For these to match, a2A = b2B. Thus, in terms of A,

ψ ′(0−) = A, ψ ′(0+) = (a/b)2A, ψ(0−) = A�w, ψ(0+) = φ0 − (a/b)2A�n. (3.4)

We need one more condition to determine A.
In [1, equation (2.3)], the following conditions are imposed at z = 0:

G′
w(0−) = G′

n(0+) = κnGn(0+) − κwGw(0−). (3.5)

These two relations involve the functions Gw and Gn, and the parameters κw and κn.
The constants κw and κn are known as ‘boundary trapping rates’ [1]. Thus κw is the trapping

rate for diffusing particles approaching z = 0 from the wide part of the structure (that is, from
z< 0) and κn is the rate for particles arriving from the narrow part. These two rates are related,
as we shall see.

The first of (3.5) is identified in [1] as flux conservation, so we put Gw(z) = a2ψ(z) for −�w <

z< 0 and Gn(z) = b2ψ(z) for 0< z< �n. The second of (3.5) then becomes

a2ψ ′(0−) = κnb2ψ(0+) − κwa2ψ(0−). (3.6)
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In [1, equation (2.5)], it is argued that the boundary trapping rates satisfy

κn = (a/b)2κw = κ , (3.7)

say. (The authors appeal to ‘the condition of detailed balance’ but an elementary argument
suffices. If we replace the boundary condition (3.1e) by φ(r, −�w) = φ0, the exact solution is
φ(r, z) = φ0 with zero flux. The corresponding one-dimensional solution is ψ(z) = φ0, but this
solution will only satisfy (3.6) if (3.7) holds.) Using (3.7) reduces (3.6) to

a2ψ ′(0−) = b2κ {ψ(0+) −ψ(0−)} . (3.8)

We notice that the right-hand side of (3.8) contains the discontinuity in ψ across the junction at
z = 0 whereas φ(r, 0+) = φ(r, 0−) for 0 ≤ r< b.

Substituting from (3.4) in (3.8), we find that A = κb2φ0/(a2 + κ�) and

J = πa2A = πa2b2φ0

a2κ−1 +�
with �= a2�n + b2�w. (3.9)

It is known [1] that κ → ∞ as b → a, and so the correct result is obtained in this limit.

3.2 Two semi-infinite tubes

Returning to problem (3.1), suppose we let �w → ∞ and �n → ∞, and consider uniform flow
along two coaxial semi-infinite tubes, joined together with a rigid annulus at z = 0. For this
problem, the boundary conditions (3.1a) and (3.1e) are replaced by far-field conditions,

φ(r, z) =
{

Un(z + C) + o(1) as z → ∞, 0 ≤ r< b,

Uz + o(1) as z → −∞, 0 ≤ r< a.

Flux conservation shows that the constants U and Un are related by πa2U = πb2Un. The constant
C is unknown; it is the blockage coefficient. As all boundary conditions are Neumann conditions,
we are free to exclude an additive constant in the behaviour of φ(r, z) as z → −∞.

If we apply Green’s theorem to φ(r, z) and z in the narrow tube, we obtain

UnCπb2 = 2π
∫ b

0
φ(r, 0+)r dr.

If we do the same in the wide tube, we obtain

2π
∫ a

0
φ(r, 0−)r dr = 0.

As Unb2 = Ua2 and φ(r, 0+) = φ(r, 0−) for 0 ≤ r< b, we obtain

C = − 2

Ua2

∫ a

b
φ(r, 0−)r dr. (3.10)

Our goal is to obtain an approximation to C; (3.10) shows that we are mainly interested in φ in
the wide tube. (Of course, a full solution would require matching to φ in the narrow tube through
the aperture at z = 0; see [20] for some details.)
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As the flow is axisymmetric, write φ in the wide tube as

φ(r, z) = Uz + Ua
∞∑

n=1

cnJ0(λnr) eλnz, z< 0, 0 ≤ r< a, (3.11)

where J1(λna) = 0, as before. Differentiating,

U + U
∞∑

n=1

cn(λna)J0(λnr) =
{

V (r), 0 ≤ r< b

0, b< r< a,

where V (r) is the unknown speed in the aperture, V (r) = ∂φ/∂z at z = 0, 0 ≤ r< b and we have
used (3.12c). Orthogonality gives

πa2U = 2π
∫ b

0
V (r)r dr (3.12)

(which is flux conservation again) and

cn = 2

Uλna3 J2
0 (λna)

∫ b

0
V (r)J0(λnr)r dr.

Also, substituting (3.11) in (3.10) gives

C = −2

a

∞∑
n=1

cn

∫ a

b
J0(λnr)r dr = 2b

a

∞∑
n=1

cn

λn
J1(λnb)

= 4b

Ua2

∞∑
n=1

J1(λnb)

(λna)2J2
0 (λna)

∫ b

0
V (r)J0(λnr)r dr, (3.13)

using (2.12). The formula (3.13) is exact, but we do not know V (r).
To proceed, we approximate and try V (r) = Uq(b2 − r2)−q, with 0 ≤ q< 1; conservation

gives Uq = (1 − q)a2b2q−2U . A local analysis near the corner at (r, z) = (b, 0) gives q = 1
3 [12,

Section 63]. Note that q = 0 would mean that V (r) has been approximated by a constant whereas
q = 1

2 would be appropriate when two identical semi-infinite tubes are joined with a rigid iris (a
thin screen with a hole of radius b). Then (3.13) gives

C � Capp
tube = 4bUq

Ua2

∞∑
n=1

J1(λnb)

(λna)2J2
0 (λna)

∫ b

0
(b2 − r2)−qJ0(λnr)r dr

= 22−qb (2 − q) (b/a)q−1
Sq(b/a), (3.14)

where

Sq(X ) =
∞∑

n=1

J1(λnaX ) J1−q(λnaX )

(λna)3−q J2
0 (λna)

=
∞∑

n=1

J1(jnX ) J1−q(jnX )

j3−q
n J2

0 (jn)
, (3.15)

jn = λna and we have used [7, 6.567.1]∫ b

0
(b2 − r2)−qJ0(λnr)r dr = b2−2q (1 − q)

2q(λnb)1−q
J1−q(λnb). (3.16)

Note that the series S0 appeared earlier; see (2.17). Asymptotic approximations to C for b/a � 1
are developed in Appendix A.
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3.3 Junction problem: Estimating κ

Let us return to the junction problem (3.1).

3.3.1 The wide tube

In the wide tube, we can write

φ(r, z)

φ0
= c0

(
z

�w
+ 1

)
+

∞∑
m=1

cmJ0(λmr) sinh {λm(z + �w)} (3.17)

for −�w < z< 0 and 0 ≤ r< a, where J1(λma) = 0. This representation satisfies (3.1d) and (3.1e).
At z = 0, we have

c0 +
∞∑

m=1

cmJ0(λmr) sinh λm�w = ϕ(r)

φ0
, 0 ≤ r< b, (3.18)

where ϕ(r) = φ(r, 0), 0 ≤ r< b; ϕ(r) is the unknown potential in the aperture. Differentiating
(3.17),

c0 +
∞∑

m=1

cmJ0(λmr)(λm�w) cosh λm�w =
{

(�w/φ0)V (r), 0 ≤ r< b,

0, b< r< a,
(3.19)

where V (r) = ∂φ/∂z at z = 0, 0 ≤ r< b and we have used (3.1c). Orthogonality gives

c0 = 2�w

φ0a2

∫ b

0
V (r)r dr = �w

φ0πa2
J (3.20)

using (3.2) and, using (2.15),

cmλm�w cosh λm�w = 2�w

φ0a2J2
0 (λma)

∫ b

0
V (r)J0(λmr)r dr.

If we eliminate cm from (3.17) and assume that V (r) is constant, we obtain [11, equation (3)].
Instead of doing that, we eliminate cm from (3.18), giving an equation relating two unknown
functions, V and ϕ,

2�w

a2

∫ b

0
V (s)

{
1 + a

�w

∞∑
m=1

J0(λmr)J0(λms)

(λma)J2
0 (λma)

tanh λm�w

}
s ds = ϕ(r), 0 ≤ r< b. (3.21)

3.3.2 The narrow tube

Let us make a similar calculation for the narrow tube, starting with

φ(r, z)

φ0
= 1 + d0

(
z

�n
− 1

)
+

∞∑
m=1

dmJ0(μmr) sinh {μm(z − �n)}, (3.22)

for 0< z< �n and 0 ≤ r< b, where μm are positive solutions of J1(μmb) = 0 and the coefficients
dm are to be determined. This representation for φ ensures that (3.1a) and (3.1b) are satisfied. At
z = 0,

1 − d0 −
∞∑

m=1

dmJ0(μmr) sinhμm�n = ϕ(r)

φ0
, 0 ≤ r< b. (3.23)
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Differentiating (3.22),

d0 +
∞∑

m=1

dmJ0(μmr)(μm�n) coshμm�n = (�n/φ0)V (r), 0 ≤ r< b. (3.24)

From this equation, we obtain

d0 = 2�n

φ0b2

∫ b

0
V (r)r dr = �n

φ0πb2
J (3.25)

and, using (2.15),

dmμm�n coshμm�n = 2�n

φ0b2J2
0 (μmb)

∫ b

0
V (r)J0(μmr)r dr.

Eliminating dm from (3.23),

− 2�n

b2

∫ b

0
V (s)

{
1 + b

�n

∞∑
m=1

J0(μmr)J0(μms)

(μmb)J2
0 (μmb)

tanhμm�n

}
s ds = ϕ(r) − φ0 0 ≤ r< b. (3.26)

Chapman and Parker [3] eliminate ϕ between (3.18) and (3.23) and V between (3.19) and
(3.24), giving a set of dual series equations for cm and dm. They solve these equations numer-
ically, with a focus on computing c0, which is related to the flux by (3.20). See also [20,
Section III.B].

3.3.3 An integral equation for V

Eliminating ϕ between (3.21) and (3.26), we obtain

2�w

a2

∫ b

0
V (s)

{
1 + a

�w

∞∑
m=1

J0(λmr)J0(λms)

(λma)J2
0 (λma)

tanh λm�w

}
s ds

+ 2�n

b2

∫ b

0
V (s)

{
1 + b

�n

∞∑
m=1

J0(μmr)J0(μms)

(μmb)J2
0 (μmb)

tanhμm�n

}
s ds = φ0, (3.27)

which is an exact integral equation for V (r), 0 ≤ r< b. It is unlikely that analytical solutions can
be found, so we seek approximations.

3.3.4 Approximation for long tubes

When �w/a and �n/b are large, we can replace both hyperbolic tangents in (3.27) by 1. Moreover,
at leading order, we can discard the infinite series because they are multiplied by a/�w or b/�n.
Doing this leaves the simple approximation(

2�w

a2
+ 2�n

b2

) ∫ b

0
V (s)s ds = φ0 (3.28)

which gives

J � πa2b2φ0/� where �= a2�n + b2�w (3.29)
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appeared in (3.9). Also, comparing (3.29) with (3.20) gives

c0 � b2�w/�. (3.30)

To improve our approximation, we proceed as in Section 2.3.2 and use an iterative approach.
Suppose that V = V0�

−1
w + V1�

−2
w + · · · , where V0 is chosen so that V (s) = V0(s)�−1

w satisfies
(3.28). If we choose V0(r) = Wq(b2 − r2)−q, we obtain Wq = φ0�wa2b2q(1 − q)/�. Hence, we
find that V1 satisfies

2�w

a2

∫ b

0

{
V1(s)

�2
w

+ aV0(s)

�2
w

∞∑
m=1

J0(λmr)J0(λms)

(λma)J2
0 (λma)

}
s ds

+ 2�n

b2

∫ b

0

{
V1(s)

�2
w

+ bV0(s)

�n�w

∞∑
m=1

J0(μmr)J0(μms)

(μmb)J2
0 (μmb)

}
s ds = 0, 0 ≤ r< b.

Using (3.16), we have ∫ b

0
V0(s) J0(λs)s ds = φ0�wa2b2 (2 − q)

2q � (λb)1−q
J1−q(λb)

whence

2

�2
w

(
�w

a2
+ �n

b2

) ∫ b

0
V1(s)s ds = −φ0a2b(b/a)q(2 − q)

2q−1 �

∞∑
m=1

J0(λmr) J1−q(λmb)

(λma)2−qJ2
0 (λma)

− φ0a2b (2 − q)

2q−1 �

∞∑
m=1

J0(μmr) J1−q(μmb)

(μma)2−qJ2
0 (μma)

.

But, as the right-hand side depends on r, we average over the disc: multiply by 2r/b2 and
integrate between r = 0 and r = b, using∫ b

0
J0(λmr)r dr = b

λm
J1(λmb) and

∫ b

0
J0(μmr)r dr = 0.

Doing this gives

2

�2
w

(
�w

a2
+ �n

b2

) ∫ b

0
V1(s)s ds = −φ0a3(b/a)q(2 − q)

2q−2 �
Sq(b/a),

where Sq(X ) is defined by (3.15). For the flux, we obtain

J = 2π
∫ b

0
V (s)s ds = 2π

∫ b

0

(
V0

�w
+ V1

�2
w

)
s ds

= πa2b2φ0

�

(
1 − a3(b/a)q

2q−2�
(2 − q) Sq(b/a)

)
,

where � is defined by (3.29). The sum appearing here also appears in a comparable approxi-
mation for the blockage coefficient C for uniform flow along two coaxial tubes joined together,
Capp

tube, defined by (3.14). Using this, we obtain

J = πa2φ0

�w
c0 � πa2b2φ0

�

(
1 − a2Capp

tube

�

)
. (3.31)
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3.3.5 Estimating κ

We have two estimates for J , namely (3.9) and (3.31). Equating these gives

1

a2κ−1 +�
= 1

�

(
1 − a2Capp

tube

�

)
.

Solving for κ , we obtain

κ = 1

Capp
tube

− a2

a2�n + b2�w
. (3.32)

Again, we see the slow decay of κ with increasing tube lengths.
If we combine the leading-order estimate for κ with (3.7), we obtain

κw = b2

a2
κ � b2

a2Capp
tube

.

For small b/a, we can use the asymptotic approximation (A3), giving

κw � bA

a2
with A =

(
3

2
− q

)(
( 3

2 − q)

(2 − q)

)2

, (3.33)

where it was assumed that V (r) is proportional to (b2 − r2)−q with 0 ≤ q< 1. The proper choice
for q is q = 1

3 ; this gives A � 1.23.
If we take q = 0 (so that V (r) is approximated by a constant, the average flux into the narrow

pipe), we obtain A = 3
8π � 1.18.

If we take q = 1
2 , we obtain A = 4/π � 1.27. This is the limiting value in [1, equation (2.4a)].

The inverse square-root behaviour at r = b implies that the underlying flow problem has been
replaced by the problem of flow through a hole in a thin rigid screen, leading to an error that
can be estimated using (3.33). (For details and references on this ‘iris problem’, see [14, 15].)
Qualitatively, this is a mistake because it ignores the presence of the narrow tube; however,
quantitatively, the values of A for q = 1

3 (A � 1.23) and q = 1
2 (A � 1.27) are close.

Of course, the assumption that V (r) is proportional to (b2 − r2)−q is itself an approximation:
in principle, the exact solution for V could be found by solving the integral equation (3.27), but
this seems to be difficult analytically without further approximations. Numerical solutions could
be sought, but doing this would be expensive (and it would be outside the scope of this paper).

3.4 Junction problem: The one-dimensional approximation ψ

Let us construct ψ from φ, using (1.1), which reduces to

ψ(z) = 2

a2

∫ a

0
φ(r, z)r dr = φ0c0

(
z

�w
+ 1

)
, −�w < z< 0, (3.34a)

ψ(z) = 2

b2

∫ b

0
φ(r, z)r dr = φ0

{
1 + d0

(
z

�n
− 1

)}
, 0< z< �n, (3.34b)

after use of (3.17) and (3.22). These satisfy ψ(−�w) = 0 and ψ(�n) = φ0. Flux continuity,
a2ψ ′(0−) = b2ψ ′(0+) gives a2c0/�w = b2d0/�n, which is seen to hold; compare (3.20) and
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(3.25). Then, applying the condition (3.8) at z = 0 gives

a2c0 = κb2�w(1 − c0 − d0) = κ(b2�w −�c0),

which gives an exact formula for κ ,

κ = a2c0

b2�w −�c0
. (3.35)

Now, the leading-order estimate for c0, (3.30), is c0 � b2�w/�, and so (3.35) does not give a
useful estimate of κ . However, if we use the refined estimate for c0, (3.31), we recover (3.32).

As J = πa2φ0c0/�w = πb2φ0d0/�n, we can write (3.34) as

πa2ψ(z) =J (z + �w), −�w < z< 0,

πb2ψ(z) =J (z − �n + �n/d0), 0< z< �n.

Kalinay and Percus [10, equation (39)] obtained similar formulas. However, their analysis of (3)
does not take account of finite tube lengths and does not gives estimates of κ .

4 Discussion

We have given a detailed study or two problems involving what are nominally one-dimensional
geometries: long tubes with mixed boundary conditions at one end (the ‘finite-tube problem’
discussed in Section 2) or with an abrupt change in cross-section (the ‘junction problem’ dis-
cussed in Section 3). Such problems are often tackled using one-dimensional models coupled
with certain effective boundary conditions; generically, these conditions contain a parameter κ .
The same problems can also be tackled using eigenfunction expansions (separation of variables).
This approach is more complicated but, in principle, it is exact: it can accommodate all lateral
variations of the solution. Comparing the two approaches has given us some insight into κ and
its properties. For long tubes, we might expect to see connections with the blockage coefficient
C; this quantity is uniquely defined by solving a related potential flow problem. Indeed, we find
that, generically, κ is proportional to 1/C. But we also found that κ depends on the length of the
tube �; it approaches its limiting value slowly (as �−1) as � increases. We also saw that moving
the location of the effective boundary condition (from z = z0 to z = z1) also affects κ; see the text
around (2.27). These properties mean that we cannot view κ as being an intrinsic property of the
boundaries or interfaces being modelled.

A further difficulty comes when κ is viewed as a boundary property. For example, κ has been
related to ‘the Hill formula [8] for the flux to an isolated disk on a reflecting wall’ [2, p. 2]. In
detail, Hill [8, p. 4919] solved ∇2φ = 0 in the half-space z> 0 with a rigid/reflective boundary
at z = 0 apart from a circular ‘window’ on which he imposed the boundary condition φ = 0.
This implies that φ can be extended into the region z< 0 as an odd function of z, φ(r, −z) =
−φ(r, z). In other words, the window is regarded as a circular aperture in a thin rigid plane
(leading to a problem that Hill could solve using oblate spheroidal coordinates). But the window
could be the mouth of a tube extending into z< 0, or maybe a cone; in situations such as these,
we cannot impose φ = 0 on the window, we have to impose continuity conditions between the
two regions, just as we did for the finite-tube problem (Section 2) and for the junction problem
(Section 3). Thus, the geometry on both sides of the reflecting wall should be taken into account:
the conceptual replacement of the entry cross-section of the narrow tube by an absorbing disc
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can lead to errors. Similar errors are to be expected when one-dimensional models are used for
more complicated geometrical configurations. Quantifying these errors is difficult, because they
depend on the parameters and geometry of the specific problem of interest: care is warranted.
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Appendix A The series Sq(X )

Recall Sq(X ), defined by (3.15). We are interested in the behaviour of Sq(X ) as X → 0. We use
a method based on Mellin transforms. From [16, 10.9.29], we have

J1(jnX )J1−q(jnX ) = 1

2π i

∫ c+i∞

c−i∞
(−t) (2t + 3 − q) (jnX/2)2t+2−q

(t + 2) (t + 2 − q) (t + 3 − q)
dt,
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where − 3
2 + 1

2 q< c< 0 and 0 ≤ q< 1. Hence

Sq(X ) = 1

2π i

∫ c+i∞

c−i∞
(−t) (2t + 3 − q) (X/2)2t+2−q

(t + 2) (t + 2 − q) (t + 3 − q)
R(t) dt, (A1)

where

R(t) =
∞∑

n=1

j2t−1
n

J2
0 (jn)

does not depend on q. For large n, jn ∼ (n + 1
4 )π [16, 10.21.19] and

J0(jn) ∼√
2/(π jn) cos (jn − π/4) ∼

√
2/(π2n)(−1)n

[16, 10.7.8] whence J2
0 (jn) ∼ 2/(π2n) and

R(t) �
∞∑

n=1

(nπ )2t−1

2/(π2n)
= 1

2
π2t+1

∞∑
n=1

n2t = 1

2
π2t+1 ζ (−2t),

where ζ is the Riemann zeta function [16, 25.2.1]. As ζ (−2t) has a simple pole at t = − 1
2 , the

formula (A1) holds for − 3
2 + 1

2 q< c<− 1
2 . Moving the contour to the right, we pick up a residue

from the pole at t = − 1
2 . We know that ζ (z) has just one singularity, the simple pole at z = 1 with

residue 1, so that ζ (z) � 1/(z − 1) near z = 1. Hence ζ (−2t) � (− 1
2 )/(t + 1

2 ) near t = − 1
2 , giving

a residue there of − 1
2 . Thus

Sq(X ) � −( 1
2 ) (2 − q) (X/2)1−q

( 3
2 ) ( 3

2 − q) ( 5
2 − q)

1

2

(−1)

2
= X 1−q (2 − q)

22−q ( 3
2 − q) 2( 3

2 − q)
(A2)

for small X . For S0, this result agrees with an estimate used in the text below [2, equation (4)].
The formula (A2) can be used to estimate the blockage coefficient for the junction problem

with two semi-infinite tubes when one tube is much narrower than the other, X = b/a � 1. From
(3.14), we obtain

C � 22−qb (2 − q) X q−1
Sq(X ) � b 2(2 − q)

( 3
2 − q) 2( 3

2 − q)
. (A3)

In particular, when q = 1
3 (which is appropriate for the two-tube geometry), we obtain

C

b
� 6

7

(
( 5

3 )

( 7
6 )

)2

� 0.81. (A4)

For comparison, C/b � 8/(3π ) � 0.85 when q = 0 and C/b � π/4 � 0.79 when q = 1
2 .
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