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Abstract

In this paper we consider the scaled limit of a continuous-time random walk (CTRW)
based on a Markov chain {X,,, n > 0} and two observables, t(-) and V (-), corresponding
to the renewal times and jump sizes. Assuming that these observables belong to the
domains of attraction of some stable laws, we give sufficient conditions on the chain
that guarantee the existence of the scaled limits for CTRWs. An application of the
results to a process that arises in quantum transport theory is provided. The results
obtained in this paper generalize earlier results contained in Becker-Kern, Meerschaert
and Scheffler (2004) and Meerschaert and Scheffler (2008), and the recent results of
Henry and Straka (2011) and Jurlewicz, Kern, Meerschaert and Scheffler (2010), where
{X,, n > 0} is a sequence of independent and identically distributed random variables.
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1. Introduction

Continuous-time random walks (CTRWSs) were introduced in [23] and have applications in
the modeling of various phenomena, e.g. in anomalous transport (see, e.g. [9], [13], [26], [27],
and [30]), mathematical finance (see [14] and [21]), and in hydrology (see [4] and [5]). ACTRW
can be described as a random walk subordinated to a renewal process. More precisely, suppose
that (E, d) is a Polish space with & the o-algebra of its Borel subsets, that 7: £ — (0, +00)
and V: E — R are two measurable functions, and that {X,,, n > 0} is a Markov chain with
an initial distribution 7 that is stationary. Suppose also that

N—1
to:=0, tv =Y T(Xp), N >1, (1.1)

k=0
are the renewal times. Particle jumps are given by V(X), k = 0,1,.... Let Sop := 0 and

Sy = Z,](V;O] V(Xy) for N > 1. Forany ¢t > 0, let n(z) := max[N > 0: ty <t]. We define a
stochastic process describing the trajectory of the particle performing a CTRW by

W) = Sy, 1> 0. (1.2)
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We are concerned with describing the limiting behavior of the scaled processes {N~" W(Nt),
t > 0} for an appropriate y > 0 as N — +o0.

The issue of describing the limiting behavior of a CTRW based on a Markov chain, as
described above, arises naturally in the context of investigating the limit of an additive functional
Y@) = fot W (Ky) ds of a Markovian jump processes {K;, ¢t > 0} with phase space F'. Suppose
that the generator of the process is given by

LF(x) = A(x) /F LFO) — FWIPGdy).  f € By(F),

where By, (F) is the space of bounded and Borel measurable functions on F, and P(x,dy) is a
transition probability function of a certain F-valued Markov chain {Z,,, n > 0}. The functions
W and A, defined on F, are Borel measurable and A is positive. Consider a Markov chain {X,, :=
(Zy, &), n > 0}, taking values in E := F x (0, +00), where {§,, n > 0} is an independent
and identically distributed (i.i.d.) sequence of random variables independent of {Z,, n > 0}
and exponentially distributed with intensity 1. Then K; = Z, for ¢t € [t,, t,41), where £, is
given by (1.1), with t(x, &) := X 1(x). Consequently, Y (r) — W(t) = (t — t,)V(Z,) for
t € [ty, th+1), where W () is described by (1.2) with V(x, &) := W(x)t(x, &). A somewhat
related model of the CTRW obtained from a stable Markov process taking values in the phase
space RY x (0, 400) has been considered in [20]. It should be noted that, similarly to ibid., the
jump distribution of the CTRW (given by P (x, dy)) considered in the present paper is allowed
to depend on the current location of the random walker. This type of situation may occur in
applications; see the example related to the quantum transport problem presented in Section 4.

When {X,,, n > 0}isasequence ofi.i.d. random variables, this problem has been investigated
in [2]. In [22] the result is generalized to the case of triangular arrays with rowwise independent
random variables. From Theorem 3.1 of [2] and Theorem 2.1 of [22], it follows in particular
that if {(N’l/ﬂS[N,], N’l/"‘t[N,]), t > 0} converges in law over D([0, +00); ]Rz), with the J;
topology, to a Lévy process {(S;, T;), t > 0}, whose components have no common jumps, then
{N“"/ﬁ W(Nt), t = 0} converges in law over D[0, +o00) with the M topology to

Ly = ST;l, s >0,

where T;] :=inf[r: T; > s] (the first passage time) is the right inverse of the «-stable subor-
dinator {T;, t > 0}.

When common jumps of the components of {(S¢, 7;), ¢t > 0} are admitted with positive
probability, the situation is more complex and only some partial results concerning convergence
are available. In Theorem 3.4 of [2], with the correction to the statement of the result given
in [3], it was shown that one-dimensional statistics of N~*/#W (Nt) weakly converge to the
law of ¢, (the definition of the process is given in (2.19)).

In this paper we formulate sufficient conditions for a Markov chain {X,, n > 0}, see
Theorems 2.4 and 2.5 below, that guarantee the convergence in law of {N ~*/#W (Nt), t > 0}.
As for the hypotheses made about the Markov chain, we assume that the measure 7 satisfies the
spectral gap estimate; see Condition 2.1. Moreover, the transition probabilities satisfy some
additional regularity assumptions; see Conditions 2.2 and 2.4. It was shown in [18] that,
under such conditions, both {N_l/ﬂSlN,], t >0} and {N‘l/"‘t[Ntl, t > 0} converge in law
over D([0, +00), with the J; topology, to respective Lévy processes. We strengthen this
result and obtain the joint convergence in law of the two-dimensional processes {(N ~!/# NIOER
N~V “fing), t = 0} to a respective Lévy process; see Theorems 2.1-2.3. We give a sufficient
condition, formulated in terms of the joint law of (V (x), t(x)) under m (see (2.14)), which
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precludes the possibility of jumps of the limiting Lévy process occurring simultaneously
with positive probability. The above plus an argument from [2] yield the convergence of
{N~=®/BW(Nt), t > 0}. Furthermore, we prove that when the joint law of (V (x), t(x)) under
7 is such that the jumps of the limiting Lévy process have to occur simultaneously almost surely
(a.s.), see condition (2.16), then the convergence of the CTRW still holds. This is achieved by
a careful analysis of the convergence of the right inverses of {N~!/ “tinr, t = 0}, We prove
that the convergence of these processes holds in a sense that allows us to control the size of
the respective plateaus; see Lemma 3.2. This, in turn, suffices to prove the convergence of the
relevant CTRW. The limiting process is {¢;, s > 0}, when no common jumps are allowed for
the limit {(S;, 7;), t > 0} (see Theorem 2.4), or {{; := ST;I,’ s > 0} (see Theorem 2.5; the
process is defined in (2.19)). This result is in agreement with the results obtained in the i.i.d.
case in [19] and [28].

Having in mind possible applications we formulate the result for a counterpart of the CTRW
that arises when {N~%/# S(Nt), t > 0} is replaced by a process obtained by linear interpolation
of its nodal points. Finally, we apply our results to describe the limiting behavior of a jump
process {K;, s > 0} on a one-dimensional torus that arises in quantum transport theory;
see (4.1). This process is the projection onto a O-fiber of the solution of a translation invariant
Lindblad equation. 1t possesses a unique o-finite invariant measure, absolutely continuous
with respect to the Lebesgue measure; see Proposition 4.1. The dynamics of the process
are completely mixing and its one-dimensional statistics converge to a mixture of delta-type
measures supported on the set [T = +00]; see Theorem 4.1. As an application of Theorem 2.4,
we also obtain (see Corollary 4.1) the convergence in law of additive functionals of the type
N—/B fONt Vo(K;) ds. In the particular case considered in [9] the torus is the interval [—m, 7]
whose endpoints are identified, t(—k) = 7 (k) and t(k) ~ |k £ n/2|_2, as |kt m/2| K 1,s0
o= % We assume that V) is odd, i.e. Vo(—k) = —Vy(k). In addition, we suppose that either
Vo(k) ~ |k £ m/2|,as |k £7/2| < 1, and Vj is bounded otherwise, or Vy(k) ~ |k £ /2|7, as
|k + /2| <« 1forsome y > 1, and Vo(k) ~ |k & ko|~" for some ko & {—m/2, w/2}. The law
of V(k, 1) := Vy(k)T belongs then to the normal domain of attraction of the Cauchy law, so
B = % We conclude therefore that the scaling properties of the limiting process are the same
as those of the Brownian motion. We call such a process a fake diffusion.

2. Preliminaries and statements of the main results

2.1. A Markov chain

Let (E, d) be a Polish metric space, and let & be its Borel o -algebra. Assume that {X,,, n >
0} is a Markov chain with state space E and that 7, the law of Xy, is invariant and ergodic for
the chain. We suppose that the following hypotheses are satisfied.

Condition 2.1. Spectral gap condition:
supllPfllp2ry: f L L I fllL2gy =11=a < 1. 2.1)

Since P is also a contraction in L'(7) and L*®(r), we conclude, via the Riesz—Thorin
interpolation theorem, that, for any p € [1, +00),

IPfllLrery < a' =P~ FllLeen (22)

forall f € L”(r) such that [ fdm = 0.
We also suppose that the absolute continuous part of the transition probability function has
some regularity property. Namely, we assume that the following condition holds.
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Condition 2.2. There exist a measurable family of Borel measures Q(x, dy) and a measurable,
nonnegative function p(x, y) such that

P(x,dy) = P;(x,dy) + Q(x,dy) forallx € E, 2.3)

where P,(x,dy) := p(x, y)n(dy) and

CQ):= supfpz(x, ) (dx) < +00. (2.4)
yeE

A simple consequence of (2.3) and the fact that 7 is invariant is that
/p(x, y)r(dy) <1 and /p(y,x)n(dy) <1 forallx € E.

A consequence of condition (2.4) is that P extends to a bounded operator from L' () to L2(7).

2.2. The renewal process

Suppose that t: E — [0, +00) is measurable over (E, &) and satisfies the following
condition.

Condition 2.3. There exist a € (0, 1) and ¢, > 0 such that

lim A%7(t > ) = cq, 2.5)

A——+00
and there exists t, > 0 such that t(x) > t, > Oforallx € E.

We assume that Condition 2.3 holds in order to avoid the issue of explosions or accumulation
points. Furthermore, we suppose that the tails of T under the singular part are controlled by
those corresponding to the absolutely continuous part uniformly with respect to the initial state,
that is, we suppose that the following condition holds.

Condition 2.4.
O, [t = AD)

sup ————"2 < foo. (2.6)
roto b Pa(x, [T = A))

Let {X,,, n > 0} be a Markov chain as in the previous section, and let 7y := 0 and

N—-1
Iy = Z t(Xy) forN > 1.
k=0

For a given ¢ > 0, define n(¢) as the unique (random) integer that satisfies the condition

t € [tarys () +1)- 2.7

2.3. An observable and the CRTW process
Suppose now that V: E — R is measurable. Let Sp := 0 and

N—1
Sy = Z V(X;) forN > 1.
k=0
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We will assume that either

V e L?(r) and / Vdr =0, (2.8)

or, in case V does not belong to L?(7), that there exist 8 € (0, 2) and two nonnegative constants
c; and g satisfying c; +cp > 0 and

+ p—
MV2M=§%U+MDL ng—ng%a+mny ask — +oo.  (2.9)

Furthermore, V is supposed to be centered when 8 € (1, 2). In analogy to condition (2.6),
we assume that the tails of V under the singular part of P(x, -) are controlled by those of the
absolutely continuous part, i.e.

O, [IV] = AD

su - 2.10
AzO,)E)eE Py(x,[IVI = A]) 2.10)

We define the CTRW process W (?) := S, t > 0. Its trajectories belong to the space of
cadlag functions D[0, +00); we will abbreviate this space by &£ in what follows. We define
the piecewise-linear counterpart of the CTRW by

I — It

W(t) = S +
h()+1 — n(r)

V(Xuwy) fort € [twe), taay+1)-

In our subsequent notation we write C := C[0, +00).

2.4. Convergence to a Lévy process

The results presented in this section extend those of [18] to the case of two-dimensional
Markov chains. They can be proved using quite similar arguments. For the convenience of the
reader, we present the main points of the respective proofs in Appendices A and B.

Suppose that the hypotheses made in Sections 2.1-2.2 hold and that Ky is an increasing
sequence converging to co. Our immediate concern is the question of the convergence of the
joint processes {(S,(N), T,(N)), t > 0} as N — 4o00. Here, when 8 # 1,

N -1 N —1
™ = Ky kg, SN = KPSy,

and when 8 =1,
(N) . p—1
S = KN S[ky1] — UNT, (2.11)

where vy = [V 1y <y} dm. Let

vp(§) 3=/R€ﬂ($,?»)v15(d?»),

where
e — 1, B <€ (0,1),
ep(5, 1) == 1 e — 1 —iErl1 (), B=1,
eM — 1 —iAE, B e(1,2),
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and vg(dA) := Beg (AM)|A]71=# dA. Here cp () equals c; for A > Oand g for A < 0. Consider
a Lévy process {(S;, T;), t > 0} given by Ee/§15Fi62Ti — ¢V (€1.82) wwhere
V&1, 82) == Yp&1) + Va(62)
:/ea,ﬂ(SI,52,)\1,)\2)‘)*((1)\17(1)\2), (5}-1,52) ERza

where the coefficients ¢ and ¢, appearing in the definition of v/ (-) are equal then to cq
(see (2.5)) and 0, respectively,

gli1+2282) _ 1 Be,1),
eq,p(&1,82, A1, 42) = efhisi+ha8) _p iSia -1y, B=1, (2.12)
elMdithadd) _ 1 _jxg, Be(1,2),
and
Vi (dA1, i) = vg(dA1)do(dAz) + 8o(dA1)ve (dA2). (2.13)

In our first result we adopt the hypothesis that 7 (x) and | V (x) | cannot be large together. Namely,
we assume that

C
[t > A, |V|2A]§T:, >0, (2.14)
forsome Cx > 0and y > a Vv B.

Theorem 2.1. Suppose that the assumptions made in (2.9) and (2.14) hold, and that V is
centered when B € (1, 2). Then the following statements hold.

(1) If B # 1 then the joint laws of{(St(N), TI(N)), t > 0} converge in law as N — +00 to
{(S;, Ty), t = 0} on D> := D([0, +00), R2) with the J; topology.

(ii) If B = 1, we assume that, for some 8’ > 1,

sup ”PVN”Lﬂ/(n) < +00,
N>1

where Vi :=V 1yjy|<ky). Then the statement of part (i) also holds in this case where
N . =
S, is given by (2.11).

In our next result we allow the jumps of the components of {(S,(N), T,(N)), t > 0} to occur
at the same time. More specifically, let

p(A) i= Cq plAlP", 1 ER, (2.15)
where Cy g 1= ¢y (CE + c;)_l. Suppose that, for some C, > 0 and y > «, we have
C
allt—poV|>A] < A—V forall & > 0. (2.16)

Now consider a Lévy process {(S;, T;), ¢ > 0} such that

V(&1 82) = /Rz €a,8(81, 62, A1, A2)vi(dAy, dA2), 2.17)

where ey g (&1, &2, A1, A2) is given by (2.12) and
Vi (dAy, dAz) := 8p(A2 — p(A1))vg(dry) dAs. (2.18)
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Theorem 2.2. Suppose that (2.16) holds. Then the convergence statements analogous to
Theorem 2.1(i) and (ii) still hold. The only difference is that the limiting Lévy process is
described by the exponent given in (2.17).

Finally, when V € L?(7), i.e. (2.8) holds, we have the following result.

Theorem 2.3. The laws of {(SI(N), Y}(M), t > 0} converge as N — 400 over D x D with
the product of the uniform and Jy topologies to the joint law of independent Lévy processes:
{(S:, Ty), t = 0}. The first component is a zero-mean Brownian motion and the Lévy exponent
of the second component equals Vq (£).

2.5. Convergence of CTRWs

Our first result, concerning the convergence of the CTRW, is as follows.

Theorem 2.4. Under the assumptions of either Theorem 2.1 or Theorem 2.3, the processes
{N=/BW(Nt), t > 0} converge in law in the My topology of D as N — +o00 to {{; =
Ss(t), t = 0}, where {(S;, T;), t > 0} is an appropriate Lévy process and {s(t), t > 0} is the
right inverse of {T;, t > 0}. The result also holds when the process W (t) is replaced by the
linear interpolation process W (t). In the latter case, under the assumptions of Theorem 2.3,
the convergence in law holds over C.

Remark 2.1. If {(S;, T), t > 0} is such that its first component is a Brownian motion then the
components of the process are independent; see Theorem 2.3. In that case {{; = STS—I, s > 0}
is called a Mittag-Leffler process. It is non-Markovian and arises as a limit of an appropriately
scaled additive functional of a Markov process, whose resolvent, applied at the observable,
obeys the power law at the bottom of the spectrum of the generator; see [1] and [10]. We
refer the reader to, e.g. [16] and the references therein for an extensive review of the results
concerning this particular case.

Given the Lévy process {(S;, T;), t > 0} as described in Theorem 2.2, define

& = Nl_i)ljrloo Ss(t)=1/N t>0. (2.19)

The limit is understood a.s. in the J; topology of O. Here S; = 0 when ¢ < 0. Observe that
although the notation suggests otherwise, the process {¢; , ¢ > 0} is cadlag, as a limit of cadlag
processes in the Jj topology.

Theorem 2.5. Under the assumptions of Theorem 2.2, the processes {N~*/BW (Nt), t > 0}
converge in law in the J| topology of D as N — +oo to {¢;, t > 0}, defined above.

Remark 2.2. We point out here that the limiting processes described in Theorems 2.4 and 2.5
have a scale invariance property. Namely, the laws of {¢,;, > 0} and that of {a®/P¢,, t > 0} are
identical for each a > 0. The same scaling invariance also applies to the process {{,, ¢ > 0}.
This remark follows easily from the fact that, in the cases considered in both theorems, the Lévy
processes {(S;qe, Ttqe), t > 0} and {((a®/BS,,aT,), t > 0} have identical Lévy exponents.
Thus, the joint laws of {(Syqe, Tyqe), t > 0} and those of {(a*/BS,,aT,), t > 0} over D, are
identical. This in turn easily implies the scale invariance property.
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3. The proofs of Theorems 2.4 and 2.5

3.1. The case when jumps cannot occur together

Here we assume that the sets of discontinuity points for the components of the limiting
processes {S;, ¢t > 0} and {T;, + > 0} are a.s. disjoint, i.e. that either the assumptions of
Theorem 2.1 or 2.3 hold. Then the weak convergence of { N —o/B W(Nt), t = 0} can be proven
in exactly the same way as in Theorem 3.1 of [2]. We only show the convergence of the linear
interpolation process N ~%/# W (N1).

Assume first that the assumptions of Theorem 2.1 hold. For a given ¢ > 0, recall that n(Nt)
is the (random) integer given by (2.7). Let Ky := N*. We define

[Knt]—1
N -1 N -1
sV =k 3 vixw, T = Ky i,
n=0
sy (t) to be the right-continuous inverse of {T( )t > 0}, ie. sy() := influ: T(N) > 1],

and sN (1) :=sy(t) — N~ = max[u: T(N) < t]. Denote by S(N) the process whose paths

are obtained by the linear 1nterp01at10n between the points (mK ! N > Suk-1), Wwhere m > 0 is
N

an integer. Then N~%/F W(Nt) =8 (* () The following result allows us to replace the first

coordinate process in the statement of Theorem 2.1 by its linear interpolation.

Lemma 3.1. Under the assumptions of Theorem 2.1, the processes {(S',(N), T,(N)), t > 0} con-
verge in law as N — +00 over D x D with the product of the M topologies to the Lévy
process {(S;, Ty), t > 0}, as in the statement of Theorem 2.1.

Before proving the lemma we show how to use it to complete the proof of Theorem 24. By
Skorokhod’s embedding theorem we define a family of processes {(U; (N) ) t > 0} such
that

1. the law of {(U™N), V™), t > 0} is identical to that of {(§), ™), t > 0} for each
N>1,

2. {(U,(N), V,(N)), t > 0} converges a.s., in D x D equipped with the product M| topology,
to {(S, Ty), t = 0}. Here the limiting process is as in Theorem 2.1.

Suppose that {uy(z), t > 0} is the right inverse of {VZ(N), t > 0} and that u, (1) := uy(t) —
1/N¥. The law of {Y(N) = UIENZI), ¢ > 0} coincides with that of N~%/f W (Nt). Moreover,
both {U(N) t >0} and {uN(t)Nt > (0} converge a.s. as N — 400 in the M; topology to
{S;, t = 0} and {s(r), t > 0} (the right inverse of {T;, + > 0}), respectively. In fact,
since {s(¢), t+ > 0} is a.s. continuous, the latter sequence converges in the uniform topology.
Theorem 13.2.4 of [29] therefore implies that the processes {Y,(N), t > 0} converge in the
M, topology to {Y;, t > 0} a.s., provided that the sets of discontinuities of {S;, + > 0} and
{T;, t > 0} are a.s. disjoint. This however is a simple consequence of the independence of
these processes.

Proof of Lemma 3.1. Suppose that T > 0. Recall how the M topology on D[0, T'] can be
metrized; see [29, p. 476] for details. For a given X € D[0, T'], we define by I'x the graph
of X, i.e. the subset of R? given by

'y :=[(,2):t€[0,T], z=cX({—)+ (1 —c)X(¢) for some ¢ € [0, 1]].
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On 'y we define an order by letting (¢1,21) < (f2,z2) if and only if t1 < f, or 7 = 1o
and | X(f1—) — z1] < |X(t1—) — z2|. Denote by IT(X) the set of all continuous mappings
y = (y(l), y(z)): [0, 1] — I'x that are nondecreasing, i.e. t| < t, implies that y (t1) < y(2).
The metric d(-, -) is defined as follows:

. 1 1 2 2 1 2 .
d(X1, X2) = inf[lly"” = v lloo VI = 132l vi = 0, yP) e (X)), i = 1,21

This metric provides a metrization of the M; topology; see [29, Theorem 13.2.1].

For any y; € FS.“")’ we define y, € T’ v as follows. Suppose that y;(¢) belongs to the
graph corresponding to (¢, SI(N)), te [mKX,l, (m+ 1)K1§1) for an integer m > 0. Let y»(¢)
be the nearest neighbor projection of y;(¢) onto the segment joining (mK ;1, S’:\Q, 1) with

-1 (V)
((m+ DKy S,

N
K ). We can use these two parametrizations to estimate the distance d:
m N

d(S.(N)’Sv‘(N)) < CK;1/2(1+1//3)0 m[aTXK ]|V(X”)|1/2
=n= N

for some deterministic constant C > 0 independent of N. Hence, for any n > 0, we obtain
Pld(sS™, 8™y =y < ck — 0 3.1)

as N — +o00. The lemma is then a consequence of (3.1) and Theorem 2.1.

When, on the other hand, the assumptions of Theorem 2.3 hold, we can conclude that, for
eachT,n > 0,
lim P[ sup [SN — 5| > n] —0, (3.2)
N—+o00 +€[0,T]
which implies the weak convergence of the linear interpolation process { N ~%/# W(N1), t > 0}

over C to a Mittag-Leffler process {¢;, ¢+ > 0}. To show (3.2), note that the expression under
the limit on the left-hand side can be estimated from above by

1/2 ] 1/2
> < >
P[O;lfagNTlV(Xn)l > Ky n| <KnTr([VI=Ky™n)
KnT
<—T 2/ L Vidr

MKy )= JIVIzKynl

T 2
= — Vodnm

2
n= Juvi=ky o

— 0

as N — +oo.

3.2. The case when jumps occur together

We assume that the hypotheses of Theorem 2.2 hold and admit Ky := N¢, as in the
previous subsection. Using Skorokhod’s embedding theorem, define a family of processes
{(U,(N), V,(N)), t > 0} such that

1. the law of {(UI(N), VI(N)), t > 0} coincides with that of {(S,(N), T,(N)), t > 0} for each
N > 1,
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2. {(Ut(m, V,(N)), t > 0} converges a.s. in the J; topology of D, to {(S;, Ty), t > 0}. The
latter process is as in the statement of Theorem 2.2. The above means that, forany L > 0,
we can find a sequence {),, n > 1} of increasing homeomorphisms in [0, L] such that
Anv(©0)=0and Ay (L) = L, and

sup |An(z) —t] — O, 3.3)
re[0,L]
N N
sup |U)EN2[) — 8] — 0, and sup |VA(N()z) —T;] — 0, 3.4)
tel0,L] te[0,L]

as N — +oo.

Letuy (¢) and s (¢) be the respective right inverses of V,(N) and T;. On the other hand, if u}kv 1) :=
max[s: U™ < 1] then u (1) = un (1) — 1/N®. Observe that the CTRW {N*/f W (N1), t >

0} has the same law as {Uliivgt), t > 0}
N

We show the following.
(N)
Uu’;v(t)’

in law over D, with the Ji topology, as N — 400 to {{, t > 0} defined in (2.19).

Theorem 3.1. Under the assumptions of Theorem 2.2, the processes { t > 0} converge

Proof. The proof relies on a careful analysis of convergence of processes uy (-) to s(-). We
know that they converge uniformly on any compact interval. In fact, as we show in Lemma 3.2
below for ¢ in a plateau of s(-) of a fixed size, we have )»;1 oup(t) = s(t) for a sufficiently
large N. Matching plateaus of s(-) with those of )ijl o uy(-) we define homeomorphisms Ay
such that limy — 400 UMNO A = Ss(r) uniformly on the set of plateaus of s(-) of a fixed size.
To show that this convergence also extends to the entire [0, T ], we use the fact that the plateaus
of s(-) also correspond to the jumps of {S;, # > 0}; see Lemma 3.3. This is due to the fact that
jumps of S; and 7; are matched by function p(-). Therefore, outside the large size plateaus of
s(-) the trajectory {Ss(), t > 0} cannot suffer large jumps. Since |uy o Ay (t) — s(¢)| is small
for sufficiently large N, we can easily conclude that |U15No Ax (t) — Ss(r)| 1s also small. This
fact also implies that limy—, 4o |Uligi Ax (t) — Ss()—1/ne| = 0 and the theorem follows.

To provide a rigorous proof of Theorem 3.1, we need some auxiliary results. Foreach § > 0,
we denote by As = As(s(-)) the set of ‘plateau points’ of s(¢) of size at least §, i.e.

t € A; if and only if s(¢) is constant in the interval (r — 8,1 4 §) N[0, Tr].

Obviously, As C Ay if 8’ < 4.

Lemma 3.2. Forafixed L > 0, the sequence {un(-), N > 1} converges to s(-) in the following
sense:

@) ||)L;,1 oun — Sllooc = 0 a.s. as N — oo, where the supremum norm is taken over
[0, L],

(i) there exists a decreasing sequence dy — 0 as N — 400 such that A;l ou,(t) = s(t)
fort € Agy,n> N,andall N > 1.

Proof. Let

ay = max[[V™ oy = Tlle, IUN 0y = Slloo, IAn — idlloo, 15" —idllec]  (3.5)

https://doi.org/10.1239/aap/1316792670 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1316792670

792 M. JARA AND T. KOMOROWSKI

and

dy = sup[IlV™ 0 hy — Tlloe, 1U™ 0k — Slloss 1n — idlloos 1A, — idllso].
n>N

Here id is the identity map on [0, L]. From (3.3) and (3.4), we have dy — 0; thus ay — 0 as
N — +ooalso. Since each uy (¢) is increasing and s(¢) is a.s. continuous, in order to prove (i),
it is enough to show that, a.s.,

lim wupn(t) =s() forallt > 0.
N—+o00

We first prove that the convergence holds a.s. for any fixed . We claim that
uny(@) <s(t+ay)+ay as. 3.6)

Indeed, let§ > Oand sy :=s(t +ay) +any +6. Thens(t +ay) = s —ay — 8 < )\;1 (s%), by
definition (3.5). From the definition of the right inverse, t + ay < Ty(;4ay). Since {Ty, s > 0}
is a.s. strictly increasing (see Theorem 21.3 of [25, p. 136]),

V(N) >T, als) AN > Ts(t+ay) —an = 1,

SO
un(t) < s« =s +ay) +ay + 9.

Since § > 0 was arbitrary, (3.6) follows.

Likewise, we prove that uy (t) > s(t —ay) —ay a.s. and, as a result, we conclude that there
exists D, a dense subset of [0, 400), such that limy_ +cc un (z) = s(t) fort € D a.s. Since
all the functions uy are increasing, the convergence can be easily extrapolated to the entire
[0, +00). This completes the proof of part (i).

Forany t € Ay, andn > N, we have

Ty <t —dn < t+dN < Ty,

| )fngs(,)_ —Tion-| = dy, and |V, A OS([) Tsohl < dn.

Therefore, V( ") s— St = V Y(t), which proves that u, (t) = A, o s(¢). This completes the
proof of part (11) and, thus, of the lemma.

For eacht > 0, define AS; = S; — S;_.

Lemma 3.3. Let {d,,, m > 1} be as in the statement of Lemma 3.2. Under the assumptions of
Theorem 2.2, we have

lim sup |AS/| =0 inprobability. 3.7

Mg (Ady)
Proof. Let
B, := [there exists r € [0, L]: |AS;| > ,0_1(4dm) and AT, <d,],
where p(-) is given by (2.15). We show that

P[B,,] =0 forallm > 1. (3.8)
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Suppose first that 8 < 1. Consider the jump process {Z( " (S(r) T(r)) t > 0}, correspond-
ing to the jump measure

v (drg, dag) = 1c(0) (A1, A2)vi(dAy, dAg).

Let z := v{"”’(R2). This process can be realized as follows: Z, ") szt), where Z" is a

sum of n independent random variables distributed according to z~ Ly )(d)q, dXy) and N (1)
is an independent of those variables Poisson process with intensity z. Since the jumps of

{Z,(r), t > 0} are vectors whose coordinates belong to the support of vff) (dAy1, dX1p) (contained
in the curve {(A, p(X)), A > 0}), we have

P[B] =0, (3.9)
where
B := [there exists 7 € [0, L]: |AS"| = p~'B3d,y) and AT, < 2d,,].
Let {Z; := (S, Ty), t = 0}. Itis well known (see, e.g. [7, Theorem 14.27]) that

lim sup |Z() Z;| =0 in probability. (3.10)
r=0+t¢0,L]
Combining (3.9) and (3.10) we obtain (3.8). Thus, (3.7) follows.
The case when 8 € [1,2) can be concluded similarly. However, then the approximating
processes should be of the form {Zl( ) — ¢t t > 0} for some ¢ = (c O) where, in
general, ¢| @ may diverge as r — 0+.

Proof of Theorem 3.1. Step 1. First, we show that limy_, 400 v N(,) = Ss(r) in the J; topol-

Ny _ 77, (N)
ogy. Writing Ui = Azl (1)

convergence in the J; Skorokhod topology of S};luN o t© Ss(y. Forany L > 0, we exhibit
N

, we note that, in light of (3.4), it is enough to show

increasing homeomorphisms Ay : [0, T2] — [O, VIEN) 1, N > 1, such that

Nl_i)liloo Son ) = Ss(r) (3.11)
and
Iim Ayx() =t, (3.12)
N—400
uniformly on [0, 77 ]. Here
on(t) == Ay oun o An(1). (3.13)

‘We can conclude from the above argument and from (3.4) thatlim N_>+OO[U o AN(I) Ss(n]=0
uniformly on compact intervals.

We now display the construction of the homeomorphisms A y(¢) that satisfy (3.11) and
(3.12). Suppose that {d,, n > 1} is a strictly decreasing sequence, as in the statement
of Lemma 3.2. Let {{;, k > 1} be an increasing sequence of positive integers such that
8 =A{n1,..., 1} = s(Ag,). Then,

197

s7' 80 =UIT-. 11 D Ag.
i=1

https://doi.org/10.1239/aap/1316792670 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1316792670

794 M. JARA AND T. KOMOROWSKI

The intervals [T;,_, T3] are the plateaus of s(¢). They are mutually disjoint and each is of
length greater than 2dy. The complement of sV (&) in [0, Tz ]is an open set that is a union of
a finite number of open intervals (relative to [0, 77 ]). Let «; be the minimum of the lengths of
these intervals. Of course, «j decreases to 0 as k — +o00. Let {my, k > 1} be an increasing
sequence of positive integers such that dy < min[ky/2, dy — dx+1] for all N > my. Recall

that then both |V)fzjx\//()t;)— — T;,_| and |V)\(11\>]()t[_) —T;l, i =1,..., £, are less than or equal to d,,
for N > my. Therefore, for each such N, the intervals [VA(]I:()I[)_, V)L(}C/()ti)] (plateaus of uy) are

mutually disjoint for differenti =1, ..., €.
We say that the interval [c, d] follows [a, b] if ¢ > b. Let us take i and j such that
their corresponding plateaus [T}, T3] and [T,j_, T,j] are consecutive (in this order). Then

(N) (N) (N) (N)
[VAN(zj)—’ V)LN(lj)] follows [VAN(“)_, VAN(ti)] for mgy1 > N > my. For these Ns we define

AN(T;-) = V)\(g()z,v)— and An(T;) = V)\(IIVV()ti)’ and elsewhere Ay (?) is defined by a linear
interpolation. It1is obvious from the construction that A y (¢) converges uniformly to ¢ on [0, 77 ]
as N — +o0o0. Combining this with part (i) of Lemma 3.2, we also find that limy _, 4y 0 |on (V) —
s(v)| = 0 uniformly on [0, T ].

Since A y (-) dilates each [T}, _, T ] onto [V;,I\Y()z,-)fv V;f\:’()ti)] with a scale greater than dy.1 /d
for any ¢ € Ay, we have Ay(t) € Ag,,,, and, thanks to Lemma 3.2, we then have, for all
N > mp1(= k+ 1),

Son ) = Ssoan @) = Ss(t) = Sy (3.14)
see (3.13) for the definition of o (¢). The last equality is a consequence of the fact that both
Apn(?) and t belong to the same [T}, T;,] for some i = 1,..., ¢ and s(An(t)) = s(t).
On the other hand, we have uy o Ay () = An(#). Suppose now that ¢’ € [T;,_, T;,] and
t € [T,;—, T;1 N Ag,. We then have Sy = Sg) = S;; and, since

N)

’ (N) (
AN(t)v AN(Z) € [V s V}LN(ti)]’

AN (ti)—

we have uy (An (@) = un(An(t)) = Ay (t;). This implies that

(3.14)
Son ) = Son) = Sst) = Ssr))-

We have shown that limy _ oo Soy (1) = Ss(r) uniformly on 51 (4y) for each k.
The statement on the uniform convergence on the entire [0, 77 ] follows from Lemma 3.3.
Indeed, suppose that ny is so large that

sup (Joy () — s@) + [AN @) — V) < de A K for N > ny. (3.15)
vel0, T ] 2

Also, assume that ¢ ¢ s~V (8k). We claim that
no element from 4§ lies between oy (¢) and s(t) for N > ny. (3.16)

Indeed, suppose that #; € 8, = s(Ag) and s(t) < t; < on(¢). Then, for any v € Ay N
[T;,—, T, 1, we have v — t > dj and

Ay oun(v) =s() =1 < on(r) = Ay ouy o Ay(),

and if v = Ay (v') for some v’ then we have to have v/ < r. This however implies that
Ay@) — v > v —1 > di, which is impossible in light of (3.15). The case when s(f) > t; >
o () can be dealt with similarly.
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Suppose that €, 0 > 0 are arbitrary and that ki, d; > 0 are sufficiently small so that, for a
certain 0 = sg < --- < sg = L that are kj-sparse, we have w/S(Kk; L) < & and

sup Sy — Syl < w(ki; L) + o.

Si—1=X,y<s;

Recall here that

ws(8; L) := i?_fsup[|St — S|, ti <t,t' <tiy1,i=0,...,N—1],
where the infimum extends over all partitions 0 = 7y < #; < --- < ty = L that are §-sparse,
i.e. suchthaté <ty —¢t; foralli =0,..., N — 1; see [6, pp. 109-110].

Then, for sufficiently large ny, so that (3.15) and, thus, claim (3.16) also hold for any N > ny
between oy (¢) and s(t), there can be at most one s;. Indeed, in the case when there were at least
two such s;s we could estimate |on (t) — s(¢)| > ki, which would clearly contradict (3.15).

If there is no s; lying between oy (t) and s(¢), we estimate [Syy (1) — Ss(r)| < a)/s (kx; L) + o.-
If, on the other hand, there is such a s; then according to (3.16) it cannot belong to s(Ag4, ) and
we can estimate

[Son) — Ssy] < 2[w(kk; L) + 0]+ max AS, <2(o+¢)+ max AS,.
u¢s(Adk) A

ugs dk)
Summarizing, we have shown that

limsup sup [Soyi) — Ssinl < 2(0+¢)+ max AS,
N—+4001€[0,T] ués(Agy)

and (3.11) follows.

Step 2. Let o3 (1) := )L;,l ouy o An(t), where, as we recall, uy (t) = un(t) — 1/N*.
Choose an arbitrary ¢ € s’l(&(), and suppose thatt € [T;,—, T;,]N Ay, forsomei =1, ..., {.
Then, as we know, Ay (1) € Ag, N [V(N) v ]. Thus, s(t) = t; and u}, o An(t) =

AN ()= " AN (i)
An(t) — 1/N*. We conclude therefore that

Scrjf,(t) = Ss(t)ch
for some ¢y > O such that cy — 0as N — +00. As a result, we obtain

N1—1>I—I+-100 Salf,(t) =& (3.17)
forallt € | J;> s~ 1(81). On the other hand, if s(r) ¢ g1 Bk then, according to Lemma 3.3,
we have AS;(;) = 0 and, thanks to (3.11), we conclude that

NETOO S(T;\k]([) = NETOO SO'N(I) = ;t = é‘[—'
We have therefore shown that (3.17) holds for all # > 0 pointwise and that the limiting function
is cadlag. To complete the proof, it suffices only to observe that, thanks to (3.11), the sequence
of cadlag functions {Sg;\k/ @)» t > 0} has to converge in the J; topology on D[0, L]. Its limit
has to coincide with the pointwise limit, because the set of discontinuity points of a cadlag
function is at most countable; see Corollary 12.2.1 of [29, p. 473]. This completes the proof of
the theorem.
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4. An application to a jump process arising in a quantum transport problem

We illustrate the results obtained in the previous sections with an application to a jump
process that arises in quantum mechanical transport; see [9]. Recall that the one-dimensional
torus T is an interval [—r, 7] with the endpoints identified. Suppose that {K;, ¢ > 0} is a jump
process on T whose generator is given by

Lf (k) = V(k)Af(Q, RLf©) — f(k)]1do (4.1)

for f € Bp(T), the space of bounded Borel measurable functions on T. The function
rO_1 > r(0, k) > rg > 0is continuous on T x T, even and doubly stochastic, i.e. F (=0, —k) =
7(8, k) and

/f(@,k)d@:/f(k,@)d@:l forall k € T.
T T

On the other hand, we assume that y (k) is also even and strictly positive except for a possible
set consisting of two points {—kq, ko}. More precisely, we have y (—k) = y(k), and there is
ko € T such that y (kg) = 0 and inf;_g,>s ¥ (k) > O for any 6 > 0. We suppose furthermore
that y (k) <1t ! for some 7, > 0 and fT y ~!(k) dk = +oo. This kind of process appears while
considering the transport of particles in quantum systems; see, e.g. Section 4.3 of [9]. It is easy
to see that m . (dk) = y’l (k)m1(dk) is an infinite, reversible, invariant measure for the process.
Here m(dk) = dk/(2m) denotes the normalized Lebesgue measure on the torus. Indeed, for
any f € By(T),

1
f L (ma@k) = 5 / [ PO, 0LFO) — F()1d6 dk
T T JrJT

=i/f(e)dQ/f(Q,k)dk—L//f(e,k)f(k)dedk
27'[ T T 27’[ TJT
=0.

The process {K;, t > 0} can be realized using a Markov chain and a renewal process that
corresponds to the jump times. Consider a skeleton Markov chain {(X},, p,), n > 0}, defined
on Ty, x (0, +00), where Ty, := T\{—ko, ko}, {0s, n > 0}isani.i.d. sequence of exponentially
distributed random variables with intensity 1, and {X,,, n > 0} is an independent Markov chain
with state space Ty,, whose transition probability equals 7(0, k) d6. Let t(k, p) := y~Lk)p,
fo:=0,and t, := Y\ =0 T(Xp, 1), n = 1. Welet K; := X,, for 1 € [ty tni1).

4.1. Harris recurrence property
Our first result concerns the recurrence property of {K;, ¢ > 0}.
Proposition 4.1. Supposethath € (0, t,). Consider an embedded Markov chain {K,,n > 0}.

Itis Harris recurrent with respect to the measure my, i.e. for any Borel subset B withm[B] > 0,
we have

Plthere existsn > 0: K,, € B] = 1. “4.2)

Proof. To simplify the notation, let » = 1. Our hypotheses on the skeleton chain guarantee
that

P[D] =1, 4.3)
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where D = [X,, € B infinitely often]. Let A, := [X,, € B, t,4+1 — 1, > 2]. To see that (4.2)
holds, it suffices only to prove that
PIC] =1, 4.4)

where C := Unzo A,. Note that 1¢cc(w) < f(w), where
f@) = T T0Be(Xn) + 1(Xn) Lz x, ) <2) -
n>0
However, )
Ef =E| [ [Lse(Xn) + 15(X,)(1 — ezV(X"))]:|

=n>0

<E|[[lse(Xu) + 15(X) (1 — e—z/f*n]

“n>0

=E|[[ [[1se(Xn) + 15(X)(1 — e 2/)], D}

“n>0

=0,
and (4.4) follows in light of (4.3).

As an immediate corollary of the above proposition and Theorem 1 of [15, p. 116], m, is the
unique o -finite invariant measure under the process that is absolutely continuous with respect
tomq.

Denote by { Py, t > 0} the transition semigroup of the process {K;, > 0}. It satisfies the
following integral equation:

t
Pifk) =e P £ k) + y (k) / e~ ds / Pk k)P f (k') K. (4.5)
0 T

Forany N > 1 and T > 0, define

N-—1
AN(T) := |:(so,...,sN1):si20,i=0,...,N—1, Zs,- fT}.

Iterating (4.5) we can easily show that

Pf) =e "W fk)

+00 N
+ Z y (k) / - / / .. ./e—fV(kN) H{y(kl.)e—Si(}/(ki)—)/(kzv));(ki’ ki—1)}
N=1 i=l1

AN (1) (TN
x fky)ds™ dk™),

Here ko := k, ds™ :=dsg - --dsy_; and dk®) := dk; - - - dky. The component of the transi-
tion probability that is absolutely continuous with respect to m therefore equals

+00 N
D (k, k/) = Z y (k) / e / / .. /e—ty(k ) H{y(ki)e—si(y(ki)—y(k ))f(ki’ ki—1)}
N=l1 Av@ (N =l
x ds™) gD,
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Here k' := ky. Thus, forevery h > 0, C € B(T,) with dist(C, {—ko, ko}) > 0, and m(C) >
0, we have infy g'cc pn(k, k") > 0. The transition probability function of any embedded chain
{Kun, n > 0} is therefore aperiodic in the sense of [17]. Suppose that fo = dvg/dm, € Lz(m*)
is a density. Thanks to the reversibility of m,, we find that vy P; is absolutely continuous with
respect to m and its density equals

dvg P,
ft = !

= P fo forallz > 0.
dm,

4.2. Mixing property of the process

Theorem 4.1. Suppose that the initial law v is absolutely continuous with respect to the
Lebesgue measure m1. Then voP; converges weakly as t — 400 to the measure [y, =
1/2(8ky + 8—ky). In addition, the process is completely mixing, i.e. if vo and v}, are two
absolutely continuous initial laws then

lim |voP, — vy P;|lTv = 0. (4.6)
t—>—+00

To prove the above result, we first show the following.

Proposition 4.2. For any compact set K C Ty, and a measure vy as in Theorem 4.1, we have

lim voP[K]=0. 4.7)
t——400

Proof. Using a density argument, it suffices to show (4.7) for a measure vg whose density
belongs to L?(my). Thanks to the strong continuity of the semigroup {P;, + > 0} in L'(my),
in order to prove (4.7), it suffices to show that, for any 4 > 0,

lim vgPuu[K]=0. 4.8)
n——+00
From the Harris recurrence property, see Proposition 4.1, we know that, for any set A C Ty,

with m,[A] > 0, we have P, 14(x) > 0, m,-almost everywhere; hence, from [12, pp. 85-102]
we have (4.8) for any K such that +00 > m,[K] > 0 (cf. Theorem C of [12, p. 91]).

Proof of Theorem 4.1. Let h € (0,t,). Define C := ﬂn>0 C,, where G, is the smallest
o-algebra generated by {K,,;,, m > n}. According to Theorem 1 of [17, p. 45] the tail o--algebra
of the chain that is Harris recurrent and aperiodic has to be trivial. Therefore, according to
Lemma 3 of [17, p. 43], (4.6) follows.

Observe thatif u (k) is a density with respect to m,(dk) = y’l (k) dk such that u(—k) = u(k)
then

uPi(—k) =uP(k). 4.9)

This follows from the fact that v, (k) := u P,(—k) satisfies
dv
- ® =vLld). k) =uk).

Since u P, (k) satisfies the same equations from the uniqueness of solutions, we obtain u P, (k) =
vy (k) = uP;(—k). Letvy(dk) := u(k)my(dk). Combining (4.9) with Proposition 4.2 and (4.6),
we conclude that vy P; converges weakly to %(8_1(0 + d8k,) as t — 4o00. From the (already
shown) complete mixing property we conclude in particular that, for any initial distribution 10,
absolutely continuous with respect to m, we have uo Py = %[5—k0 + Ok, 1, weakly over C(T),
ast — +o00.
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4.3. Limit theorems for additive functionals of the process

In this section we will be concerned with the convergence of the laws of N7 fONt Y (Ky)ds
for an appropriate y > 0 and W (k). Suppose that y (k) ~ clk — ko|*, when |k — ko| < 1,
for some x > 1 and ¢, > 0. Then the law of 7(k, p) = y_l(k),o under m; ® A, where
A(dp) := e P dp, belongs to the domain of attraction of a stable subordinator with index
a = 1/«; thus, Condition 2.3 holds. One can easily verify that the other assumptions about the
Markov chain made in Section 2.1 hold for {(X},, p,), n > 0} as well.

Note that fé V(Kg)ds = W(t), where W(t) is the linear interpolation of a CTRW corre-
sponding to the renewal times {ry, N > 0} and the partial sums {Sy, N > 0} formed for
V(k, p) := W(k)t(k, p). When V € L%(m; ® 1) and

+00
// V(k, p)dkr(dp) =0, (4.10)
T JO

we obtain the following corollary from Theorem 2.4.

Corollary 4.1. The processes {Y[(N) = N_“/szNt W (Ky)ds, t > 0} converge over C[0, +00)
as N — +00 to the law of the Mittag-Leffler process that corresponds to an a-stable subordi-
nator.

Assume also that the law of V (k, p) under m| ® A belongs to the domain of attraction of a
B-stable law. Denote by sy (¢) the right inverse of {Tt(N), t > 0}.

Corollary 4.2. Supposethat 8 # 1and, for 8 € (1, 2), that condition (4.10) holds. In addition,
assume that ©(k, p) and V (k, p) satisfy (2.14). Then the processes

Nt
{Y,(N) = N—“/ﬁ/ W (K,)ds, t > 0}
0

converge in law over D with the M topology to {¢; := Sg(r), t = 0}, where {S;, t > 0} is a
B-stable process and s(t) is the right inverse of an independent, a-stable subordinator. When
B =1, the result still holds for {Y,(N) —cnsy(t), t = 0}, where

CN = / V(k, p) dkA(dp).
[IV(k,p)|<N]

Remark. In Section 4.3 of [9] the generator of the jump process is given by Lf(k) =
ccos?k JpF(K'—K)[f (k') — f(k)]dk’ for some constant ¢ > 0 and a density function 7 (k) sat-
isfyingr, <7 (k) <rg ! for some r € (0, 1). Theorem 4.1 implies that vg P; converges weakly
t01/2(8_5 /2 +85/2) ast — +oo for any initial measure vy absolutely continuous with respect
to the Lebesgue measure. This answers in the affirmative the conjecture made in [9]. For an
observable W such that V = Wt € L2(m; ® 1), the functionals {N’l/4 foNt V(Kg)ds, t > 0}
converge in law to a Mittag-Leffler process. Note that when W(—k) = —W (k) belongs to the
normal domain of attraction of a Cauchy law and it is not singular at /2, then the processes
{N_l/2 fONt W (Ky)ds, t > 0} converge in law as N — 400 to a process that has the same
scaling properties as a Brownian motion but is not Markovian (recall that we call it a fake
diffusion).
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Appendix A. The proofs of Theorems 2.1 and 2.2

Theorems 2.1 and 2.2 can be proved from the result we formulate below. It is essentially a
two-dimensional version of Theorem 4.1 of [11, p. 840]. Since its proofis a simple modification
of an argument presented ibid., we omit its presentation here. Also, for simplicity, we only
consider the case when Ky = N.

Before formulating the result we introduce some notation. Suppose that {Z, y,n > 0,
N > l}isanarray of R2-valued random vectors on (2, &, P) and that {Gnn,n>=—1,N>1}
is an array of sub-o-algebras of ¥ such that §,—1 5y C Gu.n, N = 1, n > 0. For a fixed

= (A1, A2) € (0, +00)?, define

(N1]—
(AN) . _ o)
z&N = Z A
n=0
where
@) . _ _ _ _
Znn = ZnN 70 <, im0 BN 70, ny im0y |G-t
and
(N1
AN
ZA5mN Z [Znn = ELZnn 150, 5 imgy | Fam1v]]
n=0

Let |(x1, x2)|co := max{|x1], |x2|}. Suppose that vy is a measure on Ri :=R2\ {(0, 0)} such
that fR2(|x| Dvo(dx) < +o00. To simplify the statement, we assume that vy is absolutely
continuous with respect to the two-dimensional Lebesgue measure.

Theorem A.1. (See [11].) Assume that, for any g € C;° (Ri) such that 0 & supp g, we have

N

fim_ B[ ElgZun) | §aeiv) = [ s dam@h.dia) =0, (1)

N—+ e ]Ri

N
li E(E[g(Z _inD? = A2
Ngm;) (ELS(Zn.N) | Gn1.8]* =0, (A2)
and

lim hmsupE[ sup |z N>|oo]=0 (A3)

[Alo=>0+ N +o00  Lref0,7]

forany T > 0. Then, for each A = (A1, Ay) € (0, +oo)2, the processes {ZI(A’N), t >0}
converge in law over Da, with the Ji-topology to the Lévy process {Z; = (Z,(I), Z,(z)), t >0}
such that Be'&1% +8 2> _ o €.8) gpg

V(& E) = f (eS1Mtire 1)y (day, dig)
SAHEINY|
+ / SRR 1 (g + hE) lvo(dhr, dha).  (A4)
[Ail<A;, i=1,2]

To use the above theorem, we transform slightly the process { X; N) = (S, ) T(N)) t > 0}
In order to simplify the notation, we consider only the 8 € (1, 2) case; the g € (0, 1] case can
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be proved similarly (in fact, it is even simpler then). Suppose that y € (1, §). Thanks to the
spectral gap condition (2.1), we can find a unique zero-mean solution y in LY (;r) of

(I-Pyx=V. (A.5)
For a fixed M > 0, we let My := MNY? and
™M) = 7)) Lz oy <my) - (A.6)

We also let Z,,, v (M) := (Z\'y, ZC) (M), where

Z0 =0, ZM = — Ry (X Xa),  n= 1

NU/B
Here Ro(x,y) := x(x) — Px(y). In addition, Z'*\ (M) := N="/*t™)(X,), n > 0. For
N,n > 0, welet §, n be the o-algebra generated by Xo, ..., X,,. By conventionwelet§_; y
be the trivial o-algebra.

Define the process

[Nt]—1
zV ) =z z0 ) = Y ZoyM), 120 (A7)
n=0

A simple calculation shows that

[Nt]—1

XM -z ) = (N‘/ﬂ[xofo) — Px(Xing-], N7V r(Xn)l{T(x,,>>MN}).
n=0

Hence, due to (A.12) below and (2.5), for any 7, 0 > 0, we have

lim lim supP[ sup [ XN = ZM (Mo = o] —0. (A.8)
M—+00 N 100 Lte[0,T]

To prove Theorems 2.1 and 2.2, it suffices therefore to show the convergence of the processes
{Z,(N)(M), t >0}, N>1, for a fixed M > 0 to a Lévy process {Z;(M), t > 0} whose
exponent equals

V(&L &) = /R z[e"‘f'““’mz—l—imsl + 12E) ] Ly <my vi(dAg, dAo). (A.9)

From now on we drop M from our subsequent notation of stochastic processes, writing
Zan = Zon M), ZN) =z (M), and Z, := Z,(M).

Below we verify that the processes {Z,(N), t > 0}, N > 1, satisfy the assumptions of Theo-
rem A.1 with the measure vy equal to v, given by (2.13), or (2.18) correspondingly. Accepting
this claim for a moment we show how to reach the conclusions of the aforementioned theorems.
Let Ay := M. From Theorem A.1 we deduce that the processes

[Nt]—-1
zM@an=z" - > ElZ,y1

>
n=

n,

1
1z 1=A1)
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converge in law over D to a Lévy process {Z;, t > 0} whose exponent is equal to ¥ (&1, &)
given by (A.4) (with A, = M). Since E[Zr(L 3\, | G9n—1,n] =0and |Z 23\,| < M a.s., we obtain

[Nt]— [Nt]—1
_ M
}: E[Zz{) 1 (20 1<anicty | Bnmtnd == D0 EIZ a1 0 ) | et
n=0 n=0
(A.10)
This, together with (A.11) and (A.12) below, and hypothesis (2.5), implies that, for any 7' > 0,
we have
[Nt]—1
sl mSpE] sup D BlZuN Yz a0 Yz | $r-1v]] =
i —

Letting A1 — +o00, we deduce that the processes {Zt(N), t > 0} converge in law over D; to a
Lévy process with Lévy exponent (A.9).

We start with the following lemma which, among other things, allows us to justify the limits
in (A.8) and (A.10).

Lemma A.1. We have
7] 7]
T(x =2)= A_ﬁ(l +o(1)), T(x <—A) = A_ﬁ(l +o0(1)), asi— 4oo. (A.11)
In addition,
IPIxIlp2) < +00 (A.12)
and there exists C > 0 such that

1Pt 20, < CNY*™V forall N > 1, M > 0. (A.13)
L2(r)

Proof. Observe first that

.10 +00 2
||P|V|||Lz(j,) C/(/o Py(x,1V] >)»)d/\) m(dx)

2
=C/</ p(x,y)IV(y)Iﬂ(dy)> 7 (dx)

Jensen 2 | Vv (y) |7T (dy)
< Cf(fp (x’y)—||V||L1(,,) ) @OV 1,

< CCOIVIE -

Sincey = (I — P)~'V =Y,y P"V fromthe above, we deduce that P|x| < (I—P)~'P|V|;
thus P|x| € L?(). From this and the Poisson equation (A.5), it follows that x satisfies (A.11).
To show (A.13), we write

IPr™2, < c@l<™M3,

() ()

My 2
5C(2)<f n[r>)»]d)»>
0

My da 2
(] %)
b 14+A%

< ¢/'N2/a1),
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A.1. Proof of (A.1)
Since
[N1]-1

1 2
sup Y PUZINI = Avor [ZO)1 = M | §uin]
tel0.T1 ;5

lim limsupE
Aj—=>+400 N 4o

[Nt]—1

1
sup > PUZINI = Ap | Guo1v]
tel0.T] 12,

= lim limsupE
A1=>+00 N5 400

=0,

it suffices to show (A.1) for g € Ci° (Ri). In that case we can expand g(Z,+1,n) using Taylor’s
formula around z™) (X,,4.1), where z™) (x) := (N~VBV (x), N~ /¢ (V) (x)), and obtain

N-1 N-1
> El(Zuyin) | Gl =D ElgG™ (Xu11)) | Gl
n=0 n=0

N-—1 1
£y / EIRXui1, X0 VeV 0)) | Guldh.  (A14)
n=0 0

Here 2" (3) := AR(Xu11, Xu) + 2 (X,41) and

R(x,y) == (N"VP[Pyx(x) = Px(], =N~ Pt™(y)).
Denote the first and second terms on the right-hand side of (A.14) by I and 1] y, respectively.
We can write Iy = 1}&/1) + 1(2), where

N
Iy = / gM )P (X,1,dy) — N / g™ (x))m (dx),
n=1

19 = N/g(z(N)(x))n(dx).

Note that

N

Y PGy(Xuo1)
n=1

where Gy (x) := gz (x)) — [ g™ (y)w(dy). Letuy := (I — P)"'PGy. By the
spectral gap condition (2.2) we have

E|I{| =E

3

1
1 —a?

/u%v(x)n(dx) < /(PGN)Z(x)n(dx).

Let a, := dist(0,supp g). Note that

2
/ (PG ()7 (dx) < 2||g||io[ / ( / P, y)n(dy)) (dv)
[t(y)=a*N1/2/2]

2
+/</ p(x,y)ﬂ(dy)) n(dX)}
[IV()Iza*NV/ /2]
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<2C|gll2,N~! [ / f p*(x, y)m(dy)m(dx)
[tr(y)=a*N1/® /2]

+ // P (x, y)n(dy)n(dx)]
[V ()|=a*N1/E /2]
<2C|glZ N o(1) (A.15)

as N — +4o00. In addition, we can rewrite

[Nt]—1
ZPGN(Xn 1) =unXo) —unXv) + Y, Un,

n=1 n=1

where U, := un(X,) — Pun(X,—1), n > 1,is a stationary sequence of martingale differences
with respect to {,, n > 0}. Consequently,

1/2

N 2\ 1/2
ElLy)| < (E[Z PGN(Xn_1>] ) < C(N / (PGN)2<y>n<dy>) -0,
n=1

by virtue of (A.15). To prove that

lim E
N— 400

IN—/g(M,?»z) 10, mM1(A2)vi(dAy, dA2)| =0

it suffices to use the argument above and the following result.
Proposition A.1. Suppose that g € C(° (R2). Then, under the assumptions of either Theo-

rem 2.1 or 2.2, we have

Jim 1 = f g(h1, 22) 1o,y (A2)vs(dAy, dAz), (A.16)

where vy (dr1, dXy) is given by (2.13) or (2.18), respectively.

Proof. Case 1:(2.14) holds. Suppose that y > k1 > oV B, where y is the same as in (2.14),
and that

Ay = M) > N1/ V> = NU/B
2 2

By = |t > XN/ V| > = N1/
2 2

Observe that 7(Ay) = o(1/N) and n(BN) = 0o(1/N). To compute the limit in (A.16), it
suffices therefore to compute limy_, 400 X N ,1=1,2, where

K= N [t @, =12

and
V= [rW) < %*Nl/“, UE %Nl/ﬁ}

C}(\%) — |:_L_(N) > 2 NV v < = 2 1/K1:|
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Up to a term of order o(1), we have JCS) =J€I<\§), where ng) =N f g(ZEN)(x))n(dx), and
ZM @) = NV (), 0), 28V (x) 1= (0, N~1e M) (x)). We can write

+o00
lim X’ = lim NH/ﬂ/ Hg(N"VExL, 00w (V > 1) dx
0

N—400 N—+00

+oo
+ lim Nl—l/ﬂ/ 01g(=N"VBL 0)r(V < —A)da
N—400 0

(2'29)/ 3120, O)C{ijﬂ) da.

Likewise,

A
lim K@ = / 9g(0, )\)C"‘( ) dx,
N—+o00 0

and (A.16) follows.
Case 2: (2.16) holds. We will need the following lemma.

Lemma A.2. Suppose that (2.16) holds. Then there exists a constant Cy such that

C
n[lf—poxl>k]§/\—: (A.17)

The exponent y is the same as in (2.16).

Proof. The left-hand side of (A.17) can be estimated by
mllt—poVI=IA]+x[looV —poxl=ir] (A.18)

The first term can be estimated directly from (2.16). When 8 < «, we have [p (A1) — p(X2)| <
p(A1 — Xp) for all A1, Ax € R. The second term in (A.18) can be estimated from (A.12) by

WP CIPxIR,
T||Pxl> 5 SW

and (A.17) follows for g € (0, 2).
When, on the other hand, 8 > «, the second term in (A.18) can be estimated by

m[lmax{e’ o V,e" o x}[(V — x)| = A]
<[l oVPx| = Ir]+m[le o xPx| = 1] (A.19)

To estimate the first term on the right-hand side, we recall that, according to Young’s inequality,
MA2 < AY/p+ A% /q for any A1, A2 > O and p,q > 0 such that p~! 4+ ¢g~! = 1. Choose p
such that p1 := p(B/a — 1) < B/ and (B + 2)/(2w) > q > B/a. The first term in (A.19)
can be estimated by

2llV] = CAP 4+ 7[|Px| = Cor /9]

for some constants C, C; > 0 independent of A. The first term can be estimated by C 2B/
while the second can be estimated by C APy 12(x)- These together yield the desired
bound on the first term in (A.19). The second term can be dealt with similarly.
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Let
Ay = [IVI = ta,NYP 200 t™) > Ta, N,

and, forsome y > k > a,let By :=[|[poV — 1| > N'/€]. Observe that, from (2.14), (2.16),
and Lemma A.2,

n(AN)g% and m(By) < (A.20)

< N
Also, let p™ (x) := p(x) 1{p<pmy)(x). Define

My = (NVBY (), N~V M) 6 v (x)).
Note that z™ (x) = 2™ (x) 4+ ™) (x), where

r™M @) =0, NVt ™Mx) = o™ o V().

Note that z") (x) lies outside the support of g on AY;. Therefore, the expression under the limit
in (A.16) can be written as

N f g™ () 1y m(dx) = In + gn.
where
Iy =N / g™ gy 1py m(dx), gy =N / g™ (1)) 1oy 1 7(dx).
Note that

(A.20) )
Iy < Nlglloom(By) < CN 77""|igllc = 0 as N — +o0.

Finally, gy = 1(\}) + gzﬁ), where

V=N / gEM(x)) 1ay 1 7(d),
1
@ .= N //0 VeE™ @) + ar™M))r™ (x) 14, 1p¢ 7(dx) d.

Given § > 0, we choose Ny so that, for N > Ny, we have Nk < sNVe Let

and Dy := [N~Y%t € (M — 8, M + 8)]. Note that (recall that My := MN %)

BNy ucy uby)© c Ey
=(ByNpoV <My, Tt <MyDU(ByN[poV =My, ©> My)).

‘We have

¥ < NIVglls / r™ () 1y 15 7(dx)

< CN"HV1vg | o (An) + NIIVE ol (CP) + 7(CP) + 7 (D).
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The first term on the right-hand side comes from the estimate ™ (x)| < N/~1/¢ that holds
on Ey. The remaining terms can be estimated by

ca(1+0o()IVEllocl(M —8)"% — (M +8)~],

where o(1) — 0 as N — +oo. This expression can be made arbitrarily small when § > 0 is
chosen sufficiently small.

Concerning the term g;;), we can repeat the above argument and justify in that way that it
is equal, up to a term of order o(1), to

10 = [ 4 nma
T d —-1/8 —1/a (N)
=N //0 Jg(N AN P (W) Loan<v(x)y m(dx) dA

0 d
- N / / =g (NP N7 M () 1022 v (o)) 7 (dx) di.
—00 dA
Consider the first term on the right-hand side of the above expression. Integrating over x, it
equals

+oo d
N/ ag(N*‘/ﬂA, N~V MG < V]da.
0

Making the change of variable A’ := AN!/# and letting N — 4-o0c, we find that the limit equals
+00 (4 +o0
c / 580 Lo (W pO)AF dr = / g(&, 1jo,m1 (M) p(A))vp(dA).
0 0
The limit for the second term is computed in the same way and we obtain (A.16).

A.2. Proof of (A.2)

Since {X,, n > 0} is stationary and Markovian, it suffices only to show that, for g as in the
statement of Theorem A.1, we have

Glim  NEE[g(Z1n) | o> = 0.

Let § := 1/2dist(0,supp g) > 0. We can estimate the expression under the limit as

SN/B 2
Nliglloo E(IIZ1 n] = 8 | GoD)? < 2|Ig||oo{NE<P[|R0(X1, Xo)| > ' 9»0])

L))

(A21)

1/a

SN
+NE<P[|r<N><X1>| >

The first term on the right-hand side of (A.21) can be estimated by

2lgllocN'"*P EElIRy(X1, X0)| | §0* < CN'>PIPIx171,

for some constant C > 0 independent of N. The expression on the right-hand side tends to O
as N — 400, thanks to (A.12) and 8 € (1, 2).
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The second term on the right-hand side of (A.21) can be estimated, using (A.13), by

2)glloo N EE[r™ (X1) | Go)* < 2llglecN' "2 PT™)7,
< CN'=2/ep2(1/a=D)
C

N
for some constants C > 0 independent of N.

A.3. Proof of (A.3)

Using again stationarity and Doob’s inequality for the martingale {Z;A’N), t > 0}, the
expression under the limit in (A.3) can be estimated from above by

2
Dy 2 @Dy 2
CTN ) (E(Zyy 20 < izi)” T BEIZEN L0 onimr ) [ HonD)
= , ,

The term corresponding to j = 1 can be estimated by, for some constants Cy, C, > 0,
A NVE
CITN“Wfx2<x)1{\X<x)|§A1N1/ﬁ}n<dx> < cerl—Wf A (lx ()] = A)da
0

Aj
= CzTN/ A (Ix(x)] = NYPryda.
0
(A.22)

Using the fact that 7 (| x (x)| > NYB)) < C3N~12~P for some constant C3 > 0, we conclude
that the right-hand side of (A.22) can be estimated by

Ay 5
CT/ MPan=cTa’
0

for some constants C, C’ > 0. A similar estimate can also be obtained for j = 2. Estimate (A.3)
then follows.

Appendix B. The proof of Theorem 2.3

In this section we retain the notation from the previous section. Assume furthermore that
B = 2. Itis well known that, under the hypotheses made in Section 2.1, the components of the
processes {XZ(N) = (St(N), Tt(N)), t > 0} converge in D (see, e.g. [18] and [24, Theorem 2,
Chapter VII]) to a Brownian motion and an «-stable subordinator process. This in turn
implies tightness of the laws of {XI(N), t > 0} over D x D equipped with the uniform and
Ji topologies, respectively. To complete the proof of Theorem 2.3 we only need to show
the weak convergence of finite-dimensional distributions of {X ,(N), t > 0} to the respective
finite-dimensional distribution of a Lévy process {(S;, 7;), t > 0} with exponent

+oo
VL E) = 028 /2 4 /0 @ — Dy (d2)

for some o > 0. By a well-known Cramér—Wold device (see Theorem 9.5 of [11, p. 147]), it
suffices to consider only one-dimensional distributions, i.e. to prove that, for (1, &) € R? and
t >0,

SN + 67N = &8, +&£T, as N — +oo.
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For a fixed M > 0, define Zﬁ?l(M) = Zyitg—l E[t™(X,) | $n_1.n] with t™)(x) given
by (A.6). Using (A.2), we can argue, as in the proof of Equation (4.3) of [11], that

M
lim Z$ (M) =1 / Avg (A1) (B.1)
N—+00 ’ 0

in probability. Since (A.8) is also in force for 8 = 2, thanks to (B.1), it suffices only to show
that, for a fixed M > 0,

§1ZY), + 82230 (M) = €18, + &2T,(M) as N — +oo, (B.2)

where - s o
Z3, (M) = 20, (M) = ZJ, (M),

ZI(\}?[ and ZI(\%,)z (M) are given by (A.7), and {(S;, f’, (M)), t = 0} is aLévy process with exponent

282
o

Y1, &) = >

M .
+ f (€5 — 1 —i&N)vy(dA)
0

for some ¢ > 0. In what follows we omit writing M in the notation of the processes. Note that
{(Zg\})l, Zﬁ)l), t > 0} is a martingale with the increments given by

5 (1) 52
Zon = (Z\N. Z00)

1 1
= (WRO(XH, X1, 357 o (T Xa) B[tV (X,) | gn_l,N]}).

We can therefore use the results of [8]. According to Theorem 1 of [8], in order to show (B.2),
it suffices to prove the following result.

Proposition B.1. Suppose that M_1 n := 0 and

3 &
Mo n = o5 RoXon, X)) + 27 (2 (X)) = B2 ™ (X0) | a1} forn = 0.
Then, for any a < b, we have
[Nt]—1
lim Z EIM; N Yact,y<t) | Gn-1.8] = 1[Gz, 5, (b) — Ge, 5, ()]

N—+o00
n=1

in probability, where the function Gg, g, (-) is given by G¢, g, (L) =0, A <0, and
Ge .6 (V) = 0’6} + calba A

for A > 0 and some o > 0.

Proof. The proof is carried out in two steps. First we prove that, for any interval (a, b) that
does not contain 0 and any C*® function g supported in that interval, we have

[Nt]—1

M
fim Y Ble) | ool = lel” [ @

N
—+00 =0

in probability. The argument is essentially a repetition of the proof of (A.2) in the previous
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section so we omit it. Next, we show that, for any ¢ > 0,

[Nt]—1

1
Z E[M Nl{IMnN\<c | $n—11— EGZIE%
n=0

limsupE
N—+o00

= h(c), (B.3)

where lim._, o+ #(c) = 0. For an arbitrary interval (a, b), where a < 0 < b, we divide it into
a sum of three disjoint intervals, (a, —c), (—c, ¢), and (¢, b), where 0 < ¢ < min[—a, b], and
conclude using the above results and a standard approximation argument that

[Nt]—1
limsupE| Y EIM; y lia<h, y<b) |gn1,N]—r[Gg.,g2<b>—G;l,&(a)]‘ = 0.
N——400 n=0

Proof of (B.3). Suppose that ¢ > 0 is arbitrary. We consider only the case when both
&1, & # 0. The other cases can be proved by adjusting (and simplifying) the argument. Note
that

[Nt]—1 [Nt]—1
Z EL(Mu ) Lm, yi<c) | Gn-1.v] = &F Z E[(Z,(:;\/)2 LM, yi<e) | Gn—-1.N1
n=0 n=0
[N1]-1
52
+8 Y EIZA) M pi<e) | Ga1n]
n=0
[N1]-1
+26186 ) E[Z(l) Z( N Lt yi<e) | Gno1n]-
n=0
Denote the terms appearing on the right-hand side by Uy, Vy, and Wy, respectively. For an
appropriate constant C > 0, we have

E|Wy| < C(NELGEZ] ) D ELEZ7))], 16827y | < 10}/
+ NIE1&  BLNZ N Z0N 1 1825 | > 9c, 1822173 | = 10c]).

Denote the first and second terms appearing in the braces on the right-hand side by WIE} ) and
WIE,Z ), respectively. We have

P16y 7 | > a] < |: Nl/a)i| +T[|:P ) Nl/a)»]
2 >A<m|t> W > .
N 2|8 2|86

The first term on the right-hand side is clearly less than or equal to CN 'A% for all A > 0,
N > 1, and a certain constant C > 0, independent of n > 0. By the Markov inequality
and (A.13), the second term can be estimated by A~ N~1/¢|| Pt lz2(2) < C(AN)~'. We can
deduce that

P[|§QZ(2) | > Al < C(NA)“IA + 217 (B.4)

forall A > 0, N > 1, and a certain constant C > 0, independent of n, N > 0. Using (B.4) and
the elementary estimate {E[[&; Z(l) ]2]}1/2 <CN7'2|x l 22(x)> We obtain

10c 1/2
wi) < cnanz(n)[ / (1 +A1—“>dx} < Cllixl 2 myle( + =92
0

for some constants C, C’ > 0.
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On the other hand, using Chebyshev’s inequality, we obtain

Wmmm
N2

for all A > 0. The constant C > 0 appearing here does not depend on N, n, and A. Thus, for
some constants C, C’ > 0, we have

P& ZL ] > 4] (B.5)

Wy < CNME[&Z]' ). 161Z{'\] > 9c]
< CNM{E[EZ{V)2 1612 > 9} P26 Z{' ) | > 9c]

2 BRI, Xo), 1812 > 9c1)12
-0
as N — +oo. We have proved therefore that limsupy_, , . E|Wy| < Clc(1 + cl=y/2,
where ¢ > 0 can be chosen arbitrarily. Thus, limy_, yo E|Wy| = 0.
Note that
E|Vx| < CNE[&Z0)2 16224 y| < 10c]
+CN'HOB[(e M (X0)%, 161 20| > 9¢, (82203 = 10c]  (B.6)
for some constant C > (. Denote the first and second terms on the right-hand side of (B.6)
by V(l) and V(z), respectively. Estimating in the same way as in (B.4), we deduce that
Vli,l) < Clc(1+ c1 @)11/2 for some constant C > 0. This term can be made arbitrarily small
by choosing a sufficiently small ¢ > 0. On the other hand, from Chebyshev’s inequality for
some constants C, C’ > 0, we have
V) < CNM?P[|& Ro(X1, Xo)| = 9cN'/?]
< C'"M?E[(& Ro(X1, X0))*, [E1Ro(X1, X0)| = 9cN'/?]

— 0,

both a.s. and in the L! sense, as N — +o0. Finally, we can write that Uy = U N — U N, where

[Nt]—1
Oy =6 Y EWZ\)* | Gn-1.n]
n=0
and
[N1]

5 (1
Uy = E%ZE[(Z,(%;/P 1{|Zn.N|>C} | Gn-1,n].

By the ergodic theorem,
%-2 [Nt]—

N 1
On=7 2. [Pvz(xn_l) + PX*Xn1) = (PX*(Xn-)] = S0%E(t as N — +o0,
n=0

both a.s. and in the L! sense. Here

2= 20V G2+ 1X 720 = 1P X7 20)-
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Using stationarity, we deduce that, for a certain constant C > 0,

5 2 2 cN'/2 5(2) ¢
E|Un| < CE[ E| Ry(X1, X0), |E1Ro (X1, X0)| > > or|Z yl> 5| —0

2

as N — +o00. The convergence follows from the L2-integrability of Ro(X1, Xo) and (B.4).

Acknowledgements

The authors would like to express their thanks to an anonymous referee for pointing out
that in an earlier version of this paper the result concerning the case when the limiting process
admits common jumps was erroneously formulated. The work of T. K. was partially supported
by the Polish MNiSW grant NN 201419139 and the EC FP6 Marie Curie ToK programme
SPADE?2, under grants MTKD-CT-2004-014508 and Polish MNiSW SPB-M. The work of
M. J. was partially supported by Agence Nationale de la Recherche, under grant ANR-07-
BLAN-2-184264 (LHMSHE).

(1]
(2]

(3]

[4]
(31
(6]
(8]

[9]
[10]

(1]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]

[20]

References

ATHREYA, K. B. (1986). Darling and Kac Revisited. Sankhya A 48, 255-266.

BECKER-KERN, P., MEERSCHAERT, M. M. AND SCHEFFLER, H.-P. (2004). Limit theorems for coupled continuous
time random walks. Ann. Prob. 32, 730-756,

BECKER-KERN, P., MEERSCHAERT, M. M. AND SCHEFFLER, H.-P. (2011). Correction to ‘Limit theorem for
coupled continuous time random walks’. To appear in Ann. Prob. Available at http://www.imstat.org/aop/
future_papers.htm.

BENSON, D., WHEATCRAFT, S. AND MEERSCHAERT, M. (2000). Application of a fractional advection-dispersion
equation. Water Resources Res. 36, 1403—-1412.

BENSON, D., WHEATCRAFT, S. AND MEERSCHAERT, M. (2000). The fractional-order governing equation of Lévy
motion. Water Resources Res. 36, 1413—-1424.

BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd edn. John Wiley, New York.

BREIMAN, L. (1968). Probability. Addison-Wesley, Reading, MA.

BrowNn, B. M. AND EAGLESON, G. K. (1971). Martingale convergence to infinite divisible laws with finite
variances. Trans. Amer. Math. Soc. 162, 449-453.

CLARK, J., DE ROECK, W. AND MAES, C. (2009). Diffusive behavior from a quantum master equation. Preprint.
DARLING, D. A. AND KAc, M. (1957). On occupation times for Markoff processes. Trans. Amer. Math. Soc. 84,
444-458.

DURRETT, R. AND RESNICK, S. I. (1978). Functional limit theorems for dependent variables. Ann. Prob. 6,
829-846.

FoGUEL, S. R. (1969). The Ergodic Theory of Markov Processes. Van Nostrand Reinhold, New York.
GORENFLO, R. AND MAINARDL F. (2003). Fractional diffusion processes: probability distributions and continuous
time random walk. In Processes with Long Range Correlations (Lecture Notes Phys. 621), Springer, Berlin,
pp. 148-166.

GORENFLO, R., MAINARDI, F., ScaLas, E. AND RABERTO, M. (2001). Fractional calculus and continuous-time
finance. III. The diffusion limit. In Mathematical Finance (Konstanz, 2000), Birkhduser, Basel, pp. 171-180.
Hagrrsis, T. E. (1956). The existence of stationary measures for certain Markov processes. In Proc. 3rd Berkeley
Symp. Mathematical Statist. Prob., Vol. 11, University of California Press, Berkeley, pp. 113-124.

HOPFNER, R. AND LOCHERBACH, E. (2003). Limit theorems for null recurrent Markov processes. Mem. Amer.
Math. Soc. 161, 92pp.

JamisoN, B. AND OREY, S. (1967). Markov chains recurrent in the sense of Harris. Z. Wahrscheinlichkeitsth. 8,
41-48.

JARA, M., KoMOROWSKI, T. AND OLLA, S. (2009). Limit theorems for additive functionals of a Markov chain.
Ann. Appl. Prob. 19, 2270-2300.

JURLEWICZ, A., KERN, P., MEERSCHAERT, M. M. AND SCHEFFLER, H.-P. (2010). Oracle continuous time random
walks. Preprint. Available at http://www.uni-siegen.de/fb6/src/scheffler/research/octrw2.pdf.

KorokoL'Tsov, V. N. (2009). Generalized continuous-time random walks, subordination by hitting times, and
fractional dynamics. Theory Prob. Appl. 53, 594—609.

https://doi.org/10.1239/aap/1316792670 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1316792670

Limit theorems for CTRWs 813

[21]
[22]

[23]
[24]
[25]
[26]

[27]
[28]

[29]
[30]

MAINARDI, F., RABERTO, M., GORENFLO, R. AND ScaLAas, E. (2000). Fractional calculus and continuous-time
finance II: the waiting-time distribution. Physica A 287, 468—481.

MEERSCHAERT, M. M. AND SCHEFFLER, H.-P. (2008). Triangular array limits for continuous time random walks.
Stoch. Process. Appl. 118, 1606-1633.

MoNTROLL, E. W. AND WEIss, G. H. (1965). Random walks on lattices. II. J. Math. Phys. 6, 167-181.
ROSENBLATT, M. (1971). Markov Processes. Structure and Asymptotic Behavior. Springer, New York.

Sato, K. 1. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.
SHLESINGER, M., KLAFTER, J. AND WONG, Y. M. (1982). Random walks with infinite spatial and temporal
moments. J. Statist. Phys. 27, 499-512.

SHLESINGER, M. F., ZASLAVSKY, G. M. AND KLAFTER, J. (1993). Strange kinetics. Nature 363, 31-37.
STRAKA, P. AND HENRY, B. I. (2011). Lagging and leading coupled continuous time random walks, renewal
times and their joint limits. Stoch. Process. Appl. 121, 324-336.

WHITT, W. (2002). Stochastic-Process Limits. Springer, New York.

ZASLAVSKY, G. M. (2002). Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461-580.

https://doi.org/10.1239/aap/1316792670 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1316792670

	1 Introduction
	2 Preliminaries and statements of the main results
	2.1 A Markov chain
	2.2 The renewal process
	2.3 An observable and the CRTW process
	2.4 Convergence to a Lévy process
	2.5 Convergence of CTRWs

	3 The proofs of Theorems 2.4 and 2.5
	3.1 The case when jumps cannot occur together
	3.2 The case when jumps occur together

	4 An application to a jump process arising in a quantum transport problem
	4.1 Harris recurrence property
	4.2 Mixing property of the process
	4.3 Limit theorems for additive functionals of the process

	A The proofs of Theorems 2.1 and 2.2
	A.1 Proof of (A.1)
	A.2 Proof of (A.2)
	A.3 Proof of (A.3)

	B The proof of Theorem 2.3
	Acknowledgements
	References

