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1. P. Heywood [3] proved the following theorems:

THEOREM A. 7/0 ^y < 2, ifxy~lg{x) eL(0, n), and if

2 C"
bn = - \ g(x) sin nxdx (1.1)

oo

for n = 1, 2, 3, .... then the series £ n~ybn is convergent.
i

THEOREM B. 7/0 gy < 1, ifxy~1f(x) e L(0, JI), and if

f(x) cos nx dx (1.2)2f"
tjo

for n = 1, 2, 3, ..., then the series^ n yan is convergent.
I

THEOREM C. Suppose that g(x)eL(0, n), that bn is defined by (1.1) for each n, that
00

^ 1, and that the series Y n7'1 \ bn \ converges. Then the integral

x yg(x)dx

cists as a Cauchy-Lebesgue integral.

THEOREM D. Suppose that f(x) e L(0, n), that an is defined by (1.2) for n = 1, 2, ...,
00

0 <y < 1, and that the series £ ny~l \ an \ converges. Then the integral

x~yf(x)dx
•>o

• a Cauchy-Lebesgue integral.
When the index y satisfies 1 <y < 2, Siobhan O'Shea [6] has proved the following

theorem:

THEOREM E. Suppose that 1 <y < 2. Then the series

(1.3)
n = l

converges everywhere to a function g(x) satisfying x~yg(x) 6 L(0, 7t), if and only if
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The present note is concerned with generalizations of these theorems. We shall make use
of a class of asymptotic functions which have previously been defined in [2]. By (j)(x) ~ [a, b~\,
0 ^ a ^ 6 < o o o r — co < a^b £0, we denote a non-negative function <f>{x), not identically
zero, such that x~"<j)(x) is non-decreasing and x~b<j>(x) is non-increasing, as x increases in
(0, oo). By 4>(x)~ (a, by, we denote <f>{x) such that there exists some positive constant e for
which </>(*) ~ [a+e, b — e]. We define <f>{x) ~ [a, by and 4>(x) ~ <a, 6] in a similar way.
We shall establish the following theorems:

THEOREM 1. If x~1(t)(x-1)g(x)eL(0,n), where </>(*) ~ [ - 1 , 0> or 4>(x) ~ < - 2 , - 1 > ,
00

and ifbn is defined by ( l . l ) /or n = 1, 2, 3, ..., then £ <l>(n)bn is convergent.
I

THEOREM 2. //<£(*) ~ < - 1 . 0> and x~*<K*~ ')/(*) e ^(0, n), a«rf «/an w deyi«erf by (1.2)
00

/or euery n, then £ <j){n)an is convergent.
I

T H E O R E M 3 . Suppose that g(x) e L ( 0 , ?t), </ia/ o n is defined by (l.l) for n = 1, 2, 3 , ..., awrf
00

"] M ' V C ' 1 " 1 ) I ̂ n I
 < 0 0> w/icre </»(x) ~ < —2, 0>; //len f/ie integral

i:4>(x)g(x) dx
- 0

oj a Cauchy-Lebesgue integral.

THEOREM 4. Iff(x)eL(0, n), and if an is defined by (1.2) for n = 1, 2, 3, .... SMC/I

"'(^(n"1) | an | <oo, where 4>(x) ~ ^ —1, 0), then the integral

<f>(x)f(x) dx

as a Cauchy-Lebesgue integral.

THEOREM 5. Let (j)(x) ~ < — 2, —1>, and let 6 n ^ 0 for every n. Then the trigonometric
00

series £ bn sin nx converges everywhere to g(x) such that <fi(x)g(x) eL(0, TI), if and only if
I

2. It is natural to inquire whether the result in Theorem A can be extended to integra-
bility of the function x~y{g (x)}p forp>l (cf. Math. Z. 66 (1956), 9-12). The answer is in the
negative even when p = 2. This may be justified by the example: g(x) = (n-x)~*. Here
we have nbJ2~K(-\)n+xn-*, so that if y =$, p = 2, then x-y{g(x)}2 e L(0, n), but

As a particular case in Theorem 1, we may set <t>(x) = x~yL{\jx), where 0 <y < 2 and
L(t) is a slowly increasing function in the sense of Karamata ([4], [5]; cf. also [7, p. 186]).
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Similar conditions may be applied to Theorems 2 to 5. By a(x)~ b(x) and a(x)X b(x), as
.v- -> c, we mean a{x)jb{x) -* 1 and Kx < a{x)lb(x) < K2, respectively, as x -> c. Here and later
the letter K denotes a positive constant, not necessarily the same at each occurrence.

LEMMA 1. Let

9ix)~ nx> (2.1)

where kn decreases steadily to zero.
^ ^ +0.

—1, 0> and if Xn~ (j)(n) as n-»oo, then

Proof. Since <f)(x) ~ [— 1, 0>, by Lemma 1 in [2], <j)(x) is absolutely continuous in
(<5, oo), where <f>(x) decreases monotonically. From </>(x) ~ [— 1, 0>, we obtain x<j>(x) ~ [0, 1>,
where A-^(A-) is non-decreasing in (0, oo). It follows that

g(x) = £ kn sin nx =

where

"f
By Abel's transformation, it is easy to verify that

S2 | = | £ An sin nx
n> 1/x X \X

It remains to show that g(x) > Kx V(-v'~')> a s x -* +0- To see this, write

sin 2 4

sin

(2.2)

(2.3,

(2.4)

(2.5)

say. If i^(x) ~ < - w , 0>, then XE</>(A-) decreases and x'"(j)(x) increases for some e > 0 in
(0, oo). This implies that nc(j>{n) > (2«)e0(2n) and nm4>(n) < (2/i)m</>(2«). It follows that
0(n)-^(2#i) > (28-l)<^(2n) > 2"m(2E-l)^(n) = K<j>(n). Write An = {l+o(l)}^(«),asn-»oo.
Then

as x -> + 0. Hence g (x) > (Klx)(f) (1 /x), as x -> + 0.

X \X
(2.6)
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LEMMA 2. If $ (x) ~ < - 1 , 0>, then, for small positive x,

00

£ <f>(n) cos nx
X \X

and also, for any positive integer N,

£ (j>{n) cos nx

(2.7)

(2.8)

where K in (2.8) is independent of N.
The proofs of (2.7) and (2.8) are similar. For brevity, we only prove (2.7) here. Since

4>(x) ~ ( —1> 0)> there exists e > 0, such that x1''^^) increases and x^H*) decreases in
(0, oo). By differentiating these functions we obtain

where (t>'(x) exists almost everywhere. It follows as in the proof of Lemma 1 that

00

/(*) = E <H")cos nx = E + y. = s , + s 2 ,
say. Here we have

£
«>[!/*]

rl/x x / i \ ciix

^K\ <f>(t) dt g td L\-K t<t>'(t) dt

where the last inequality is obtained by shifting the term i C ( l - e) to combine with

K\ 0 (0 dt. Also, as in the proof of Lemma 1, we have | S2 \ < foT1^*"1). The

result follows.

00

LEMMA 3. If kn ^ 0, and if the series £ Xn sin nx converges everywhere to a function g{x)
I

00

such that x~lg (x) e L(0,7t), then Y, K < °°-

OO

LEMMA 4. If ln ^ 0 and if the series £ K sin nx converges everywhere to the function f{x),

that (j)(x)f(x) 6 L(0,7t), where <t>(x) ~ < - 1 , 0>,

n \n
(2.9)

Lemma 3 is due to R. P. Boas [1]. For the proof of Lemma 4, it is sufficient to prove that
the nth partial sum of (2.9) is bounded. Write i/r(x) = x~ V O T 1 ) ~ < - 1 , 0>. The con-
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dition (f>(x)f(x) eL(0, n) with <f>(x) ~ < - l , 0> implies that </>(*)^ K* > 0 in (0, n) and that
f(x) e L(0, n). Using Lemma 2, we see that

n i / i \ n 9 n

U ( T \ t <KfcM* I H ) ( f ( ) cos fcx dx
k \kj J

= -["fix) t <Kk) cos kx dx Z l[" \f(x) E iZ'(fc) cos kx dx

V ^ ) I/to I <** = xf 0(x) |/(x) | dx<K.

LEMMA 5. If<t>{x) ~ < - 2 , - 1 > , and if

(2.10)

Here it should be remarked that x~l<j>(x~*) tends to zero as x -» +0. So it is not obvious
that <̂ >(«) in (2.10) can be replaced by kn~ <f)(n), as in (2.1) of Lemma 1.

Since <j>(x) ~ < - 2 , - 1 > , we have «$(«) -* 0, as n -»oo. By [7, Chap. 5, (1.3)], we see
that g(x) -* 0, as x -> +0 . On the other hand,

00
cos M;>c = E i K n ) c o s

where ij/(x) ~ < - 1 , 0>, and the series (2.11) converges uniformly in (S, n) for any S > 0. It
follows from Lemma 2 that

g(x) = lim T fl'(0 d« = o\V lp(*\ dt\ = ojf* x(0 * j , (2.12)

as^-> +0, where x(0 = t~14/(.t~1) ~ (~ '» 0>. Then, as in the proof of Lemma 2, we see that
the right-hand member of (2.12) is 0{xx(x)} = O f x " 1 ^ * " 1 ) } -

Furthermore, it follows as in the proof of Lemma 1 that g(x) > Kx~l<t>{x~l). Thus the
proof of Lemma 5 is completed.

3. We come now to the proof of Theorem 1. The argument is similar to the proof of
Theorem 1 in [3]. For any positive integer iv", write

% "I Hn)b. = [*gix) "f: 4>in) sin nx dx+ [" g(x) £ 0(n) sin nx dx
2 i Jo i Js i

/*l( oo (*n oo

- g(x)T <j)(n) sin nxdx-\ g(x)J^ <£(n) sin nx dx (3.1)
h N Jo N
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say. Take 8 = \IN,1\ = 1/jN. We shall see that Iu I3, / 4 tend to zero and /2 tends to a finite
limit. In view of Lemmas 1 and 5, it follows from the hypothesis x'^gix^ix'1) e £(0, n)
that the expression

Pit oo

lim 12 = Hm g(x) £ <f>(n) sin nx dx

is finite. Similarly, in view of (2.5) and Lemma 1,

h
Jo *

^ ( T ) | g{x) \ dx = o(l), (3.2)

as N-*oo. By similar arguments, it is easy to show that /3 = o(l) and /4 = o(l), as
N-*co. This completes the proof of Theorem 1. Similar arguments apply in the proof of
Theorem 2. The result follows in a similar way, except that Lemma 1 is replaced by Lemma 2.
Here we cannot replace 0(x) ~ < - 1 , 0 > by <£(x) ~ [ - 1 , 0>. This may easily be seen from the
special case 4>(x) = l/x, where X!71"1 cos nx ~ — log x, as x -> + 0 [3, p. 174]. This also
means that Theorem 2 does not hold for the case <p(x) ~ < — 2, —1>.

For the proof of Theorem 3, we write

X(x)=g(x)-\j/(x),
where

<//(*)=!>„ sin HX, N = [d~ll
i

and

Let

I" <t>(x)g(x) dx = f" 0(xW(x) dx+ f" 0(x)Z(x) dx.

X(x)=\ X(t)dt.
lo

From Lemma 1 in [2], we see that <j>(x) is absolutely continuous in [5,7t] for any 8 > 0.
Since g(x) 6 L(0,7t) implies x(^) 6 £(0,7t), integration by parts gives

dx.I" 0(x)Z(x) rfx = 0(«)X(jt)-^(a)X(5)- f

By similar arguments as in [3], it can readily be shown that the first and second terms on the
right tend to zero as 8 -»0. It remains to show that the last term tends to zero as N -• oo. In
fact, since <j>(x) ~ < - 2 , 0> implies that <£(*) is absolutely continuous, it follows that

f
Ja

-f(x)}\X(x)\ dx% f n-l

= I n-l\bK\{<KS)-H*)}£<KS) I n-l\bn\=o(l),
JV + l JV + l
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as N-* oo, where — (f>'(x) is positive almost everywhere. Hence

107

as N-* oo. Then it is sufficient to consider

I" 0(x)^(x) dx = f * <KxW(x) dx- P <K*W« dx
Ja Jo Jo

(•it /*3 M |*3

= <t>(x)ip(x) dx- <f>(x) £ &„ sin nx rfx-
Jo Jo i Jo

sin nx dx (3.4)

say, where M = [5"*]. Write 6n(t) = </>(r//i)/^(l//j) for n = 1, 2, 3, . . . . It is easy to see that

Since 9n(t) decreases steadily to zero as t -»oo,

i sin nt dx 6n(t) sin tdt

Hence

(3.5)

S |«it

fj = £ bn\ 4>(x) sin nx dx-1 Jo
sin nx dx,

as N-> oo, where the last series converges absolutely. It remains to estimate J2 and J3. We
have

0n(t) sin tdt

and

n-Wn-1)!*.!

r /vi
lv " J

as iV -»oo. This completes the proof of Theorem 3.

Jo

v 0

(3.6)

(3.7)
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Finally, it should be remarked that the proof of Theorem 4 is practically the same as that
of Theorem 3. Using Lemma 3 and Lemma 4, the proof of Theorem 5 follows in a similar
way as in [6] and is omitted here.

My thanks are due to the referee for pointing out a number of slips and for valuable
suggestions.
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