SOME INTEGRABILITY THEOREMS by YUNG-MING CHEN

(Received 3 June, 1964; and in revised form 5 January, 1965)

1. P. Heywood [3] proved the following theorems:

THEOREM A. If $0 \leq \gamma < 2$, if $x^{\gamma-1}g(x) \in L(0, \pi)$, and if $b_n = \frac{2}{\pi} \int_0^{\pi} g(x) \sin nx \, dx$ (1.1)

for n = 1, 2, 3, ..., then the series $\sum_{1}^{\infty} n^{-\gamma} b_n$ is convergent.

THEOREM B. If
$$0 \le \gamma < 1$$
, if $x^{\gamma - 1} f(x) \in L(0, \pi)$, and if
 $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx$ (1.2)

for n = 1, 2, 3, ..., then the series $\sum_{1}^{\infty} n^{-\gamma} a_n$ is convergent.

THEOREM C. Suppose that $g(x) \in L(0, \pi)$, that b_n is defined by (1.1) for each n, that $0 < \gamma \leq 1$, and that the series $\sum_{n=1}^{\infty} n^{\gamma-1} |b_n|$ converges. Then the integral

$$\int_{\to 0}^{\pi} x^{-\gamma} g(x) \, dx$$

exists as a Cauchy-Lebesgue integral.

THEOREM D. Suppose that $f(x) \in L(0, \pi)$, that a_n is defined by (1.2) for n = 1, 2, ..., that $0 < \gamma < 1$, and that the series $\sum_{1}^{\infty} n^{\gamma-1} |a_n|$ converges. Then the integral $\int_{-1}^{\pi} x^{-\gamma} f(x) dx$

exists as a Cauchy-Lebesgue integral.

When the index γ satisfies $1 < \gamma < 2$, Siobhan O'Shea [6] has proved the following theorem:

THEOREM E. Suppose that $1 < \gamma < 2$. Then the series

$$\sum_{n=1}^{\infty} b_n \sin nx \quad (b_n \ge 0) \tag{1.3}$$

converges everywhere to a function g(x) satisfying $x^{-\gamma}g(x) \in L(0, \pi)$, if and only if $\sum_{n=1}^{\infty} n^{\gamma-1}b_n < \infty$.

The present note is concerned with generalizations of these theorems. We shall make use of a class of asymptotic functions which have previously been defined in [2]. By $\phi(x) \sim [a, b]$, $0 \leq a \leq b < \infty$ or $-\infty < a \leq b \leq 0$, we denote a non-negative function $\phi(x)$, not identically zero, such that $x^{-a}\phi(x)$ is non-decreasing and $x^{-b}\phi(x)$ is non-increasing, as x increases in $(0, \infty)$. By $\phi(x) \sim \langle a, b \rangle$, we denote $\phi(x)$ such that there exists some positive constant ε for which $\phi(x) \sim [a + \varepsilon, b - \varepsilon]$. We define $\phi(x) \sim [a, b\rangle$ and $\phi(x) \sim \langle a, b]$ in a similar way. We shall establish the following theorems:

THEOREM 1. If $x^{-1}\phi(x^{-1})g(x) \in L(0, \pi)$, where $\phi(x) \sim [-1, 0\rangle$ or $\phi(x) \sim \langle -2, -1 \rangle$, and if b_n is defined by (1.1) for n = 1, 2, 3, ..., then $\sum_{1}^{\infty} \phi(n)b_n$ is convergent.

THEOREM 2. If $\phi(x) \sim \langle -1, 0 \rangle$ and $x^{-1}\phi(x^{-1})f(x) \in L(0, \pi)$, and if a_n is defined by (1.2) for every n, then $\sum_{n=1}^{\infty} \phi(n)a_n$ is convergent.

THEOREM 3. Suppose that $g(x) \in L(0, \pi)$, that b_n is defined by (1.1) for n = 1, 2, 3, ..., and that $\sum_{n=1}^{\infty} n^{-1}\phi(n^{-1}) | b_n | < \infty$, where $\phi(x) \sim \langle -2, 0 \rangle$; then the integral

$$\int_{-0}^{\pi} \phi(x)g(x) \, dx$$

exists as a Cauchy-Lebesgue integral.

THEOREM 4. If $f(x) \in L(0, \pi)$, and if a_n is defined by (1.2) for n = 1, 2, 3, ..., such that $\sum_{1}^{\infty} n^{-1}\phi(n^{-1}) \mid a_n \mid <\infty, \text{ where } \phi(x) \sim \langle -1, 0 \rangle, \text{ then the integral}$ $\int_{1}^{\pi} \phi(x)f(x) \, dx$

exists as a Cauchy-Lebesgue integral.

THEOREM 5. Let $\phi(x) \sim \langle -2, -1 \rangle$, and let $b_n \ge 0$ for every *n*. Then the trigonometric series $\sum_{1}^{\infty} b_n \sin nx$ converges everywhere to g(x) such that $\phi(x)g(x) \in L(0, \pi)$, if and only if $\sum_{1}^{\infty} n^{-1}\phi(n^{-1})b_n < \infty$.

2. It is natural to inquire whether the result in Theorem A can be extended to integrability of the function $x^{-\gamma}\{g(x)\}^p$ for p > 1 (cf. *Math. Z.* 66 (1956), 9–12). The answer is in the negative even when p = 2. This may be justified by the example: $g(x) = (\pi - x)^{-\frac{1}{2}}$. Here we have $\pi b_n/2 \simeq K(-1)^{n+1} n^{-\frac{1}{2}}$, so that if $\gamma = \frac{1}{3}$, p = 2, then $x^{-\gamma}\{g(x)\}^2 \in L(0, \pi)$, but $\sum_{n=1}^{\infty} n^{\gamma} b_n^p = \sum_{n=1}^{\infty} n^{\frac{1}{2}} b_n^2 = \infty$.

As a particular case in Theorem 1, we may set $\phi(x) = x^{-\gamma}L(1/x)$, where $0 < \gamma < 2$ and L(t) is a slowly increasing function in the sense of Karamata ([4], [5]; cf. also [7, p. 186]).

Similar conditions may be applied to Theorems 2 to 5. By $a(x) \simeq b(x)$ and $a(x) \simeq b(x)$, as $x \to c$, we mean $a(x)/b(x) \to 1$ and $K_1 < a(x)/b(x) < K_2$, respectively, as $x \to c$. Here and later the letter K denotes a positive constant, not necessarily the same at each occurrence.

LEMMA 1. Let

$$g(x) = \sum_{1}^{\infty} \lambda_n \sin nx, \qquad (2.1)$$

where λ_n decreases steadily to zero. If $\phi(x) \sim [-1, 0\rangle$ and if $\lambda_n \simeq \phi(n)$ as $n \to \infty$, then $g(x) \simeq x^{-1}\phi(x^{-1})$, as $x \to +0$.

Proof. Since $\phi(x) \sim [-1, 0\rangle$, by Lemma 1 in [2], $\phi(x)$ is absolutely continuous in (δ, ∞) , where $\phi(x)$ decreases monotonically. From $\phi(x) \sim [-1, 0\rangle$, we obtain $x\phi(x) \sim [0, 1\rangle$, where $x\phi(x)$ is non-decreasing in $(0, \infty)$. It follows that

$$g(x) = \sum_{1}^{\infty} \lambda_n \sin nx = \sum_{1 \le n \le \lfloor 1/x \rfloor} + \sum_{n > \lfloor 1/x \rfloor} = S_1 + S_2, \qquad (2.2)$$

where

$$|S_1| \leq Kx \left| \sum_{1}^{\lfloor 1/x \rfloor} n\lambda_n \right| \leq Kx \int_{1}^{1/x} t\phi(t) dt \leq Kx \left(\frac{1}{x}\right) \left\{ \frac{1}{x} \phi\left(\frac{1}{x}\right) \right\} = \frac{K}{x} \phi\left(\frac{1}{x}\right).$$
(2.3)

By Abel's transformation, it is easy to verify that

$$|S_2| = |\sum_{n>1/x} \lambda_n \sin nx| \leq \frac{K}{x} \phi\left(\frac{1}{x}\right).$$
(2.4)

It remains to show that $g(x) > Kx^{-1}\phi(x^{-1})$, as $x \to +0$. To see this, write

$$g(x) = \sum_{1}^{\infty} \Delta \lambda_n \frac{\sin^2 \frac{1}{2} (n + \frac{1}{2}) x}{\sin \frac{1}{2} x} - \frac{\lambda_1}{2} \tan \frac{x}{4}$$

= $\sum_{1}^{\infty} \Delta \lambda_n \frac{\sin^2 \frac{1}{2} (n + \frac{1}{2}) x}{\sin \frac{1}{2} x} + o \left\{ \frac{1}{x} \phi \left(\frac{1}{x} \right) \right\} = S_3 + S_4,$ (2.5)

say. If $\phi(x) \sim \langle -m, 0 \rangle$, then $x^{\epsilon}\phi(x)$ decreases and $x^{m}\phi(x)$ increases for some $\epsilon > 0$ in $(0, \infty)$. This implies that $n^{\epsilon}\phi(n) > (2n)^{\epsilon}\phi(2n)$ and $n^{m}\phi(n) < (2n)^{m}\phi(2n)$. It follows that $\phi(n) - \phi(2n) > (2^{\epsilon}-1)\phi(2n) > 2^{-m}(2^{\epsilon}-1)\phi(n) = K\phi(n)$. Write $\lambda_{n} = \{1+o(1)\}\phi(n)$, as $n \to \infty$. Then

$$S_{3} > \frac{K}{x} \sum_{\pi/2x \leq n \leq 3\pi/2x} \Delta \lambda_{n} \geq \frac{K}{x} \{\lambda_{[\pi/2x]+1} - \lambda_{[3\pi/2x]}\} > \frac{K}{x} \phi\left(\frac{1}{x}\right), \tag{2.6}$$

. . .

as $x \to +0$. Hence $g(x) > (K/x)\phi(1/x)$, as $x \to +0$.

LEMMA 2. If $\phi(x) \sim \langle -1, 0 \rangle$, then, for small positive x,

$$\left|\sum_{1}^{\infty} \phi(n) \cos nx\right| \leq \frac{K}{x} \phi\left(\frac{1}{x}\right), \tag{2.7}$$

and also, for any positive integer N,

$$\sum_{1}^{N} \phi(n) \cos nx \bigg| \leq \frac{K}{x} \phi\left(\frac{1}{x}\right), \tag{2.8}$$

where K in (2.8) is independent of N.

The proofs of (2.7) and (2.8) are similar. For brevity, we only prove (2.7) here. Since $\phi(x) \sim \langle -1, 0 \rangle$, there exists $\varepsilon > 0$, such that $x^{1-\varepsilon}\phi(x)$ increases and $x^{\varepsilon}\phi(x)$ decreases in $(0, \infty)$. By differentiating these functions we obtain

$$\varepsilon\phi(x)/x \leq -\phi'(x) \leq (1-\varepsilon)\phi(x)/x,$$

where $\phi'(x)$ exists almost everywhere. It follows as in the proof of Lemma 1 that

$$f(x) = \sum_{1}^{\infty} \phi(n) \cos nx = \sum_{1 \le n \le \lfloor 1/x \rfloor} + \sum_{n > \lfloor 1/x \rfloor} = S_1 + S_2,$$

say. Here we have

$$|S_1| \leq K \int_1^{1/x} \phi(t) dt \leq \frac{K}{x} \phi\left(\frac{1}{x}\right) - K \int_1^{1/x} t \phi'(t) dt$$
$$\leq \frac{K}{x} \phi\left(\frac{1}{x}\right) + K(1-\varepsilon) \int_1^{1/x} \phi(t) dt \leq \frac{K}{x} \phi\left(\frac{1}{x}\right),$$

where the last inequality is obtained by shifting the term $K(1-\varepsilon)\int \dots$ to combine with $K\int_{1}^{1/x} \phi(t) dt$. Also, as in the proof of Lemma 1, we have $|S_2| < Kx^{-1}\phi(x^{-1})$. The result follows.

LEMMA 3. If $\lambda_n \geq 0$, and if the series $\sum_{1}^{\infty} \lambda_n \sin nx$ converges everywhere to a function g(x)such that $x^{-1}g(x) \in L(0, \pi)$, then $\sum_{1}^{\infty} \lambda_n < \infty$.

LEMMA 4. If $\lambda_n \ge 0$ and if the series $\sum_{i=1}^{\infty} \lambda_n \sin nx$ converges everywhere to the function f(x), such that $\phi(x)f(x) \in L(0, \pi)$, where $\phi(x) \sim \langle -1, 0 \rangle$, then

$$\sum_{1}^{\infty} \frac{1}{n} \phi\left(\frac{1}{n}\right) \lambda_n < \infty.$$
(2.9)

Lemma 3 is due to R. P. Boas [1]. For the proof of Lemma 4, it is sufficient to prove that the *n*th partial sum of (2.9) is bounded. Write $\psi(x) = x^{-1}\phi(x^{-1}) \sim \langle -1, 0 \rangle$. The con-

104

dition $\phi(x)f(x) \in L(0, \pi)$ with $\phi(x) \sim \langle -1, 0 \rangle$ implies that $\phi(x) \ge K_{\phi} > 0$ in $(0, \pi)$ and that $f(x) \in L(0, \pi)$. Using Lemma 2, we see that

$$\sum_{1}^{n} \frac{1}{k} \phi\left(\frac{1}{k}\right) \lambda_{k} = \sum_{1}^{n} \psi(k) \lambda_{k} = \frac{2}{\pi} \sum_{1}^{n} \psi(k) \int_{0}^{\pi} f(x) \cos kx \, dx$$
$$= \frac{2}{\pi} \int_{0}^{\pi} f(x) \sum_{1}^{n} \psi(k) \cos kx \, dx \leq \frac{2}{\pi} \int_{0}^{\pi} |f(x)| \left| \sum_{1}^{n} \psi(k) \cos kx \right| dx$$
$$\leq K \int_{0}^{\pi} \frac{1}{x} \psi\left(\frac{1}{x}\right) |f(x)| \, dx = K \int_{0}^{\pi} \phi(x) |f(x)| \, dx < K.$$

LEMMA 5. If $\phi(x) \sim \langle -2, -1 \rangle$, and if

$$g(x) = \sum_{1}^{\infty} \phi(n) \sin nx, \qquad (2.10)$$

then $g(x) \asymp x^{-1} \phi(x^{-1})$.

Here it should be remarked that $x^{-1}\phi(x^{-1})$ tends to zero as $x \to +0$. So it is not obvious that $\phi(n)$ in (2.10) can be replaced by $\lambda_n \simeq \phi(n)$, as in (2.1) of Lemma 1.

Since $\phi(x) \sim \langle -2, -1 \rangle$, we have $n\phi(n) \to 0$, as $n \to \infty$. By [7, Chap. 5, (1.3)], we see that $g(x) \to 0$, as $x \to +0$. On the other hand,

$$g'(x) = \sum_{1}^{\infty} n\phi(n) \cos nx = \sum_{1}^{\infty} \psi(n) \cos nx,$$
 (2.11)

where $\psi(x) \sim \langle -1, 0 \rangle$, and the series (2.11) converges uniformly in (δ, π) for any $\delta > 0$. It follows from Lemma 2 that

$$g(x) = \lim_{\delta \to +0} \int_{\delta}^{x} g'(t) dt = O\left\{ \int_{0}^{x} \frac{1}{t} \psi\left(\frac{1}{t}\right) dt \right\} = O\left\{ \int_{0}^{x} \chi(t) dt \right\},$$
(2.12)

as $x \to +0$, where $\chi(t) = t^{-1}\psi(t^{-1}) \sim \langle -1, 0 \rangle$. Then, as in the proof of Lemma 2, we see that the right-hand member of (2.12) is $O\{x\chi(x)\} = O\{x^{-1}\phi(x^{-1})\}$.

Furthermore, it follows as in the proof of Lemma 1 that $g(x) > Kx^{-1}\phi(x^{-1})$. Thus the proof of Lemma 5 is completed.

3. We come now to the proof of Theorem 1. The argument is similar to the proof of Theorem 1 in [3]. For any positive integer N, write

$$\frac{\pi}{2} \sum_{1}^{N-1} \phi(n) b_n = \int_0^\delta g(x) \sum_{1}^{N-1} \phi(n) \sin nx \, dx + \int_\delta^\pi g(x) \sum_{1}^\infty \phi(n) \sin nx \, dx - \int_\eta^\pi g(x) \sum_{N}^\infty \phi(n) \sin nx \, dx - \int_\eta^\pi g(x) \sum_{N}^\infty \phi(n) \sin nx \, dx \quad (3.1)$$
$$= I_1 + I_2 + I_3 + I_4,$$

say. Take $\delta = 1/N$, $\eta = 1/\sqrt{N}$. We shall see that I_1 , I_3 , I_4 tend to zero and I_2 tends to a finite limit. In view of Lemmas 1 and 5, it follows from the hypothesis $x^{-1}g(x)\phi(x^{-1}) \in L(0, \pi)$ that the expression

$$\lim_{N\to\infty}I_2 = \lim_{\delta\to+0}\int_{\delta}^{\pi}g(x)\sum_{1}^{\infty}\phi(n)\sin nx\,dx$$

is finite. Similarly, in view of (2.5) and Lemma 1,

$$|I_{1}| \leq \int_{0}^{\delta} |g(x)| \left| \sum_{1}^{N-1} \phi(n) \sin nx \right| dx \leq K \int_{0}^{\delta} \frac{1}{x} \phi\left(\frac{1}{x}\right) |g(x)| dx = o(1), \quad (3.2)$$

as $N \to \infty$. By similar arguments, it is easy to show that $I_3 = o(1)$ and $I_4 = o(1)$, as $N \to \infty$. This completes the proof of Theorem 1. Similar arguments apply in the proof of Theorem 2. The result follows in a similar way, except that Lemma 1 is replaced by Lemma 2. Here we cannot replace $\phi(x) \sim \langle -1, 0 \rangle$ by $\phi(x) \sim [-1, 0 \rangle$. This may easily be seen from the special case $\phi(x) = 1/x$, where $\sum n^{-1} \cos nx \sim -\log x$, as $x \to +0$ [3, p. 174]. This also means that Theorem 2 does not hold for the case $\phi(x) \sim \langle -2, -1 \rangle$.

For the proof of Theorem 3, we write

$$\chi(x) = g(x) - \psi(x),$$

where

$$\psi(x) = \sum_{1}^{N} b_n \sin nx, \quad N = [\delta^{-1}],$$

and

$$\int_{\delta}^{\pi} \phi(x)g(x) dx = \int_{\delta}^{\pi} \phi(x)\psi(x) dx + \int_{\delta}^{\pi} \phi(x)\chi(x) dx.$$
 (3.3)

Let

$$X(x) = \int_0^x \chi(t) \, dt$$

From Lemma 1 in [2], we see that $\phi(x)$ is absolutely continuous in $[\delta, \pi]$ for any $\delta > 0$. Since $g(x) \in L(0, \pi)$ implies $\chi(x) \in L(0, \pi)$, integration by parts gives

$$\int_{\delta}^{\pi} \phi(x)\chi(x) \, dx = \phi(\pi)X(\pi) - \phi(\delta)X(\delta) - \int_{\delta}^{\pi} \phi'(x)X(x) \, dx$$

By similar arguments as in [3], it can readily be shown that the first and second terms on the right tend to zero as $\delta \to 0$. It remains to show that the last term tends to zero as $N \to \infty$. In fact, since $\phi(x) \sim \langle -2, 0 \rangle$ implies that $\phi(x)$ is absolutely continuous, it follows that

$$\left| \int_{\delta}^{\pi} \phi'(x) X(x) \, dx \right| \leq \int_{\delta}^{\pi} \left\{ -\phi'(x) \right\} | X(x) | \, dx \leq \sum_{N+1}^{\infty} n^{-1} | \, b_n | \int_{\delta}^{\pi} \left\{ -\phi'(x) \right\} \, dx$$
$$= \sum_{N+1}^{\infty} n^{-1} | \, b_n | \left\{ \phi(\delta) - \phi(\pi) \right\} \leq \phi(\delta) \sum_{N+1}^{\infty} n^{-1} | \, b_n | = o(1),$$

106

as $N \rightarrow \infty$, where $-\phi'(x)$ is positive almost everywhere. Hence

$$\int_{\delta}^{\pi} \phi(x) X(x) \, dx \to 0,$$

as $N \to \infty$. Then it is sufficient to consider

$$\int_{\delta}^{\pi} \phi(x)\psi(x) \, dx = \int_{0}^{\pi} \phi(x)\psi(x) \, dx - \int_{0}^{\delta} \phi(x)\psi(x) \, dx$$
$$= \int_{0}^{\pi} \phi(x)\psi(x) \, dx - \int_{0}^{\delta} \phi(x) \sum_{1}^{M} b_{n} \sin nx \, dx - \int_{0}^{\delta} \phi(x) \sum_{M+1}^{N} b_{n} \sin nx \, dx \quad (3.4)$$
$$= J_{1} + J_{2} + J_{3},$$

say, where $M = [\delta^{-\frac{1}{2}}]$. Write $\theta_n(t) = \phi(t/n)/\phi(1/n)$ for n = 1, 2, 3, ... It is easy to see that $t^{-\epsilon} \le \theta_n(t) \le t^{\epsilon-2}$ (0<t<1), $t^{\epsilon-2} \le \theta_n(t) \le t^{-\epsilon}$ (t>1).

Since $\theta_n(t)$ decreases steadily to zero as $t \to \infty$,

$$\left| \int_{0}^{\pi} \phi(t) \sin nt \, dt \right| = \frac{1}{n} \phi\left(\frac{1}{n}\right) \left| \int_{0}^{n\pi} \theta_{n}(t) \sin t \, dt \right|$$

$$\leq \frac{1}{n} \phi\left(\frac{1}{n}\right) \left| \left(\int_{0}^{1} + \int_{1}^{\pi}\right) \theta_{n}(t) \sin t \, dt \right|$$

$$\leq \frac{1}{n} \phi\left(\frac{1}{n}\right) \left\{ \int_{0}^{1} t^{e-2+1} \, dt + \int_{1}^{\pi} t^{-e} \, dt \right\} \leq \frac{K}{n} \phi\left(\frac{1}{n}\right).$$
(3.5)

Hence

$$J_{1} = \sum_{1}^{N} b_{n} \int_{0}^{\pi} \phi(x) \sin nx \, dx \to \sum_{1}^{\infty} b_{n} \int_{0}^{\pi} \phi(x) \sin nx \, dx,$$

as $N \to \infty$, where the last series converges absolutely. It remains to estimate J_2 and J_3 . We have

$$|J_{2}| \leq \sum_{1}^{\lfloor\sqrt{N}\rfloor} |b_{n}| \frac{1}{n} \phi\left(\frac{1}{n}\right) \int_{0}^{\lfloor1/\sqrt{N}\rfloor} \theta_{n}(t) \sin t \, dt$$

$$\leq K N^{-\epsilon/2} \sum_{1}^{\infty} n^{-1} \phi(n^{-1}) |b_{n}| = o(1), \qquad (3.6)$$

$$|J_{3}| \leq \sum_{\lfloor\sqrt{N}\rfloor}^{N} n^{-1} \phi(n^{-1}) |b_{n}| \int_{0}^{n/N} \theta_{n}(t) \sin t \, dt$$

$$\leq \sum_{\lfloor\sqrt{N}\rfloor}^{N} n^{-1} \phi(n^{-1}) |b_{n}| \int_{0}^{1} t^{\epsilon-1} \, dt$$

$$\leq K \sum_{\lfloor\sqrt{N}\rfloor}^{\infty} n^{-1} \phi(n^{-1}) |b_{n}| = o(1), \qquad (3.7)$$

and

Finally, it should be remarked that the proof of Theorem 4 is practically the same as that of Theorem 3. Using Lemma 3 and Lemma 4, the proof of Theorem 5 follows in a similar way as in [6] and is omitted here.

My thanks are due to the referee for pointing out a number of slips and for valuable suggestions.

REFERENCES

1. R. P. Boas, Jr, Integrability of trigonometric series (III). Quart. J. Math. Oxford Ser. (2) 3 (1952), 217–221.

2. Y. M. Chen, On two functional spaces, Studia Math. 24 (1964), 61-88.

3. P, Heywood, Integrability theorems for trigonometric series, Quart. J. Math. Oxford Ser. (2) 13 (1962), 172-180.

4. J. Karamata, Sur un mode de croissance regulière des fonctions, Mathematica (Cluj) 4 (1930), 38-53.

5. J. Karamata, Sur un mode de croissance regulière, Bull. Soc. Math. de France 61 (1933), 55-62.

6. Siobhan O'Shea, Note on an integrability theorem for sine series, Quart. J. Math. Oxford Ser. (2) 8 (1957), 279–281.

7. A. Zygmund, Trigonometric series, 2nd edn, Vol. 1 (Cambridge, 1959).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF HONG KONG

108