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VARIATIONAL AND NUMERICAL METHODS FOR
SYMMETRIC MATRIX PENCILS

PETER LANCASTER AND QIANG YE

A review is presented of some recent advances in variations] and numerical meth-
ods for symmetric matrix pencils XA — B in which A is nonsingular, A and B are
hermitian, but neither is definite. The topics covered include minimax and max-
imin characterisations of eigenvalues, perturbation by semidefinite matrices and
interlacing properties of real eigenvalues, Rayleigh quotient algorithms and their
convergence properties, Rayleigh-Ritz methods employing Kryiov subspaces, and
a generalised Lanczos algorithm.

1. INTRODUCTION

Pencils of matrices A.A — B where A and B are both hermitian (or real sym-
metric), and A is a real or complex parameter occur in a wide variety of applications
of mathematics. The case in which A (or B) is positive definite is well-understood
although the algorithm development still goes on (see [1], for example). When both
A and B are indefinite the spectral properties of the pencil can be considerably more
complicated, but such pencils arise naturally in system theory, factorisation of matrix
functions, vibration problems, and the analysis of more general hermitian and sympletic
transformations (see references [2, 9, 10, 15] and many others), and so they are now
a focus of mathematical analysis and algorithm development (see [7, 25, 34], for ex-
ample). It is therefore timely to present a survey of some recent extensions of classical
variational methods and dependent numerical methods for such problems, and that is
our objective in this paper.

We say that Ao is an eigenvalue and x a corresponding eigenvector of a pencil
XA—B if (Ao-A — B)x = 0 and i ^ O . We suppose that A and B are hermitian and that
A is nonsingular but not necessarily definite. When A is positive definite, the algebraic
problem is equivalent to the eigenvalue problem of a single hermitian or real symmetric
matrix. But when A is indefinite, the problem is significantly harder. Indeed, for the
real case, it is known that every (generally non-symmetric) real regular matrix pencil
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2 P. Lancaster and Q. Ye [2]

(when det (AA — B) is not identically zero) is equivalent to a real symmetric matrix
pencil (see Theorem 4 of [16]). It is our intention to survey some recent progress that
shows to what extent the classical variational results and related numerical methods for
single symmetric matrices have been carried over to our symmetric pencil case.

We mention that some arguments can be extended to the infinite dimensional case
by introducing an indefinite metric defined by A. But we will concentrate on the finite
dimensional case as we believe that several essential insights are revealed in this context,
and because this has to be understood for computational purposes.

We give a survey of results that are presently clear, and without proofs in most
cases. The details appear in independent works (see [17, 18, 36]). Our purpose here is
to give a birds-eye view of the emerging theory and algorithms.

Some preliminary ideas, including canonical forms for hermitian matrix pairs under
congruence, are presented first of all. Then Section 3 contains generalised min-max and
max-min characterisations of eigenvalues for diagonable hermitian pencils, and com-
parison with early results of Phillips. These results are used in Section 4 to derive the
effects of positive perturbations on the eigenvalues of such pencils. The topic of numer-
ical algorithms is broached in Section 5 with discussion of local and global convergence
properties of generalised Rayleigh quotient algorithms. The global results are confined
to definite pencils (defined in Section 2). The next topic is Rayleigh-Ritz projection
methods for definite pencils. Extensions of classical theory are presented which admit
eigenvalue estimates and finally, the extension of Lanczos tridiagonalisation algorithm
to pencil problems.

The reader may like to keep in mind four significant problems classes in increasing
degrees of generality.

1. Hermitian pencils with A > 0 (the "classical" case).
2. Definite pencils (there exist real numbers a and 0 such that a A + f)B >

0).

3. Diagonable pencils with real spectrum.
4. Hermitian pencils with A nonsingular.

The results summarised in this paper refer mainly to classes 2 and 3. Some generali-
sations to the fourth class are also known. See [20] for the basic minimax theory, for
example.

2. PROTOTYPES AND PRELIMINARIES

Variational characterisations of eigenvalues for hermitian matrices extend easily
to pencils \A — B where A* = A, B* = B and A > 0. Indeed, by introducing a
scalar product defined by (x, y) — y*Ax, the pencil eigenvalue problem is found to be
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[3] Variational and numerical methods 3

equivalent to the eigenvalue problem for a single transformation that is self-adjoint with

respect to ( , ) .

The Courant-Fischer characterisation of eigenvalues for XA — B with A > 0 takes

the following form ([3, 8]; see also [10]):

THEOREM 2 . 1 . Let Sj (1 ^ j ^ n) denote an arbitrary (n — j + 1)-dimensional

subspace of C n , and Ai < . . . ^ An be eigenvalues of an hennitian penal with A

positive definite. Then, for j — 1, . . . , n ,

. x'Bx
A,- = max nun —,1 s, *es,- x*Ax

and An_,-+i = nun max
1+ S eS

x .
j x*Ax

xjtO

Another point of view on the eigenvalue problem for matrix pencils concerns the
simultaneous reduction of the quadratic forms associated with A and B. Again, if A >
0, it is well known that A and B can be simultaneously diagonalised by congruence.
That is, there is a nonsingular matrix X such that

X'AX = I, X*BX = A

where A is the diagonal matrix of eigenvalues of \A — B.

Our objective is to present a generalisation of Courant-Fischer theory to indefinite
pencils (where we replace the condition A > 0 by det A ^ 0), together with its im-
plications for perturbation theory, the development of the Rayleigh-Ritz method, and
some relevant numerical methods. However, these generalisations will be approached
via the corresponding reduction of two quadratic forms, neither of which is definite.

The critical initial step is once more to introduce a scalar product defined by
(x, y) = y* Ax even though it will now be indefinite (the invertibility of A ensures that
(, ) is nondegenerate, however). The canonical form for the pencil under congruence
now depends strongly on the Jordan canonical form for A~XB. Let us state the complete
theorem. This has a history going back to Weierstrass [35], and a complete proof in
this form can be found in [9]. The set of the eigenvalues of a square matrix M is called
the spectrum of M, and denoted by <r(M).

THEOREM 2 . 2 . If A, B are hennitian matrices with A invertible then there is

a nonsingular matrix X such that

where J = Jc®Jr® Jc is the Jordan matrix of A~XB, with tr(Jr) real and A 6 &{Jc)
implies Im\ > 0, and Pe< j is a canonical matrix defined by J and a sign characteristic

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700028732
Downloaded from https://www.cambridge.org/core. IP address: 34.224.102.60, on 24 Jan 2019 at 12:50:08, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972700028732
https://www.cambridge.org/core


P. Lancaster and Q. Ye [4]

t in the following way: we Aave Pe> j =
• 0 0 Pe1

0 PP 0 and if Je, Jr are expressed
Pc 0 0 J

in terms o/ Jordan blocks by Jc = diag[Jx, • . . , Jfc], Jr = diag[Jt+1, . . . , Jt], then Pe,
Pr have a corresponding block-diagonal structure:

Pe = , . . . . Ph], Pr = diag[et+1Pt+1, . . . ,

n

where P< is a s.i.p. matrix, that is, Pi =

.1

and , . . . , £ / are each

equal to +1 or —1. The ordered set e = {ejfe+i, . . . , £/}, whicn is called a sign char-
acteristic of the pair A, B, is uniquely determined to within permutation of signs
corresponding to equal blocks Ji.

In a natural way, we may also associate a sign characteristic with each real eigen-
value of XA — B. It is the set of +1 's and —1 's associated with the Jordan blocks of the
eigenvalue in question. In particular, an eigenvalue of mixed type may be viewed as a
superposition of eigenvalues of positive and negative types. When \A — B is diagonable
(that is, when A~lB is diagonable) the number of entries in the sign characteristic of
a real eigenvalue is just the multiplicity of the eigenvalue.

We say an hermitian matrix pencil \A — B is definite if there exist a, j3 G R
such that aA + fiB is positive definite. The notion of definite pencils has played an
important part in the literature. One of the most important properties of this kind of
pencil is its geometric characterisation (see [5] and the references therein), that is, that
an hermitian pencil XA — B is definite if and only if

c{A, B) := -m£{\x*(A+iB)x\ > 0: ||x|| = 1} > 0.

Furthermore, a definite pencil is diagonable and all its eigenvalues are real. On the
other hand, a diagonable pencil with all eigenvalues real is not necessarily definite.
Investigation of this question leads to the following spectral characterisation of definite
pencils (see [17]).

THEOREM 2 . 3 . An hermitian penal XA - B with A invertible is definite if and
only if it is diagonable, has all eigenvalues real, and the eigenvalues of positive type and
the eigenvalues of negative type are separated.

Here, "separated" has the natural meaning; either all eigenvalues of positive type
exceed all eigenvalues of negative type, or vice versa. A connection is made between
the indefinite and classical cases in the use of subspaces that are positive (nonnegative,
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[5] Variational and numerical methods 5

et cetera) with respect to A. Thus a subspace 5 is strictly A-positive (A-negative) if
x*Ax > 0 ( < 0, respectively) for all nonzero x in 5 , and it is said to be maximal if it
is not a proper subspace of a strictly A-positive (A-negative) subspace.

3. MINIMAX PRINCIPLE

The classical minimax principles (Theorem 2.1) are aimed at conservative vibrating
system problems. A number of generalisations of minimax principles to non-conservative
systems have been made in the last decades (for example [6, 28, 33]). For definite
matrix pencils, Stewart [30] has a generalisation in terms of certain angles. Textorius
[32] discussed self-adjoint operators in an indefinite scalar product space, and his work
extends that of Phillips [27], whose definitions are presented below (specialised to finite
dimensions) to enable direct comparisons.

We are going to present a direct generalisation of Theorem 2.1 (see [17]). Our
approach requires that AA — B has real eigenvalues (which is not necessarily the case)
and that they have certain special properties.

THEOREM 3 . 1 . Let XA — B be a diagonable hermitian matrix pencil with A

invertible and all eigenvalues real. Suppose that Ax ^ . . . ^ Ar < Ar+i ^ . . . ^ At are
eigenvalues of negative type, At+i < . . . < X,_i < A, < . . . < An are eigenvalues of

positive type and Xr < {Xr+i, • • •, A*, Afc+i, . . . , A,_i} < A,. Tien

. , x*Bx , ,
Xk+j = sup inf , fork + j ^ s ,

dimSy=n-i+l *6Sy X AX
x*Ax>0

x'Bx
At_,-+i = inf sup —, for k — j + 1 < r.

dim Sj;=n-j+l xeSj X* Ax
z*Ax<0

As a special case, the following corollary gives a minimax characterisation for a
definite matrix pencil

COROLLARY 3 . 2 . Let XA — B be a diagonable hermitian matrix pencil with
A invertible and all eigenvalues real. Suppose Ax ^ . . . ^ At < At+i < . . . < An are
eigenvalues with X%, ..., At negative type, and At+i, . . . , An positive type, then

x*Bx , .
X{= inf sup — — , fort = 1, . . . , k.

dim S,=n-Jfe+« X£S- X* AX
x*Ax<0

. . , x'Bx , . , ,
Xj = sup inf —, for j = k + 1, . . . , n.

dimS,-=n+*+l-» *^si X*Ax

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700028732
Downloaded from https://www.cambridge.org/core. IP address: 34.224.102.60, on 24 Jan 2019 at 12:50:08, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972700028732
https://www.cambridge.org/core


P. Lancaster and Q. Ye [6]

In

(3.

particular,

1) x*Ax<0

X*

X*

Bx x

Ax' *"
X*

) X*

Bx
Ax

By considering XA + B, we can obtain corresponding results for the case that
eigenvalues of positive type are less than eigenvalues of negative type.

For an hermitian matrix H, we consider the pencil XI — H. In this case all
eigenvalues are of positive type. So, in a trivial way, we can regard the pencil XI — H as
having negative type eigenvalues less than positive type eigenvalues, or vice versa. Then
the corollary will apply and give both the max-min and min-max characterisations of
the classical theory. In contrast to this, the above results show that when eigenvalues of
both types occur, our max-min and min-max characterisations apply only to eigenvalues
of positive and negative types, respectively.

We remark that if XA — B is a real symmetric pencil with all eigenvalues real, then
all discussions can be completed within the real space Rn and we have corresponding
results of the same form with all subspaces 5; C Rn •

The only comparable generalised minimax criterion that we know in this direction
is that of Phillips [27], whose results are established in the context of a Hilbert space
with an indefinite metric. We mention that Theorem 3.1 can also be generalised to
the infinite dimensional case, provided a suitable canonical form for operator pencils
is known. For comparison we now state Phillips' theorem formulated in the matrix
context.

THEOREM 3 . 3 . Let XA — B be an hermitian pencil with A invertible and B
positive definite, and 71 ^ . . . ̂  7* > 0 > /cj ^ . . . ̂  Kj be its eigenvalues. Let N
and P denote strictly A-negative and strictly A-positive maximal subspaces, S be an
arbitrary subspace of dimension i — 1. Then

. . x'Bx
Ki = sup sup inf —,

N SCN'^so

• t • * XBZ

7i = inf inf sup —.
p SCP x€p x'Ax

z'AS=Q

The assumption that B is positive definite is equivalent to assuming that XA — B
is definite (the original assumption in [27] is that A~1B is .A-positive). In this case
fi are positive eigenvalues of positive type, and /c< are negative eigenvalues of negative
type.

Let us make some brief comparisons between Theorems 3.1 and 3.3. First Theorem
3.3 is confined to pencils that are definite, then a translation of the parameter will
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[7] Variational and numerical methods 7

produce a positive definite B matrix. When both results apply, that is, comparing
Corollary 3.2 with Theorem 3.3, the "double" inf-sup or sup-inf characterisation are
more easily applied than the tripled process of Theorem 3.3. Also, Corollary 3.2 leads
to the simple characterisations of equations (3.1), which do not follow directly from
Theorem 3.3. There is also an interesting contrast in the ordering of the sup-inf steps
in the two descriptions.

4. POSITIVE PERTURBATIONS

It is well known that the classical minimax principle implies that if an hermitian
matrix is perturbed by a positive semidefinite matrix, the eigenvalues can only increase,
moreover, an interlacing property holds depending on the rank of the perturbation
matrix. We pose a similar question for matrix pencils; that is, given a symmetric pencil
A A — B, how are eigenvalues of XA — (2? + K) related to those of XA — B for a positive
definite K. In Section 3.3.1 of [9] this question was investigated in the setting of the
inner product space defined by A and local perturbation results were established. It
is shown there that if a simple real eigenvalue has multiplicity r with r = r + + r _ ,
and r_|_' eigenvalues are of positive type and r_ are of negative type, then a positive
definite perturbation of B causes r+ eigenvalues to increase and r_ to decrease. This
behaviour is confirmed here for the case of definite pencils (although Theorem 2.3 shows
that eigenvalues of mixed type cannot arise in this case).

We consider a definite pencil XA — B with A invertible and aA + B > 0 for some
a . In this case, the eigenvalues of positive type are greater than those of negative type.
Suppose Ai < A2 < . . . ^ At < X^+i < . . . < An are eigenvalues with Ai, A2, . . . , A*
negative type and Xk+i, . . . , An positive type. Clearly, the pencil XA — (B + K) with
K ^ 0 is a definite pencil because aA + (B + K) > 0. Indeed, K can be any matrix for
which aA + (B + K) > 0. Since the number of positive (or negative) type eigenvalues
is the number of the positive (negative, respectively) eigenvalues of A, we have that
XA — (2? + K) has k negative type eigenvalues, n — k positive type eigenvalues, and
positive type eigenvalues must be greater than negative type eigenvalues. We denote
them as /ii ^ pi ^ . . . ^ fit < fik+i ^ • • • ̂  f*n • Then Corollary 3.2 applies to both Af
and p.i. We write down the part for positive type eigenvalues as follows:

. . , x'Bx
Xj = sup inf ,

dimS,=n+*+l-i *£Sj * AX

, fx'Bx x*Kx\
and u; = sup inf I — H ;— 1

dimS.=n+t+l-i »€5y \X*Ax X*AxJ
x'Ax>0

for j = k + 1, ..., n. Immediately we obtain the following monotonicity theorem. As
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8 P. Lancaster and Q. Ye [8]

noted above, the main idea is that, under the positive perturbation real eigenvalues of
positive and negative type remain real and increase and decrease, respectively.

THEOREM 4 . 1 . Let XA - B be a definite pencil with A invertible. Suppose
Ai < A2 < . . . < A* < Afc+i < . . . < An are eigenvalues with Ai, A2, . . . , A* of negative
type and Ajt+1, . . . , An positive type. Then for a positive semi-definite matrix K,
XA— (B + K) is definite too and has eigenvalues Hi < /i2 ^ • • • ̂  M* < Mfc+i ^ • • • ̂  A*n
with fti, /i2, • • • i Hk negative type and fik+i, . . . , /xn positive type. Moreover,

Hi — O-\ < Ai, for i = 1, . . . k

and fij > A;- + <T\, for j = k + 1, . . . n.

wiere a\ is the smallest non-negative eigenvalue of XA — K and <r_i is the biggest
non-positive eigenvalue of XA — K.

Now, we suppose K has rank 1 with K = uu*. From the proof of Theorem 3.1,
we have (see [17])

. , (x*Bx x*Kx\
fij = inf ( — H — ); *€T, \x*Ax x'AxJ

where Tj — span{ei, . . . , e*, ej, ..., en} with c< the eigenvector corresponding to fit-
Then dim (Tj PI {u}x) ^n + k-j. Thus there exists a subspace To C Tj l~l {u}-1- C Tj
with dim To = n + k — j . Hence

< nf (x*Bx x*Kx

x*Ax>0

x'Bx <

xeT0 x*Ax ^ J + 1 '
as*Jl«>0

So, we obtain the interlacing property:

THEOREM 4 . 2 . Under the assumption of Theorem 4.1 and rank ( i f ) = 1 , we

have

A,--i < fH> fori = 2, ...,k,

and fij < Xj+i, for j = k + 1, . . . , n — 1.

Obviously, from the theorems, we can obtain a more general form with a rank r
positive semidefinite perturbation K in the form

Aj_r < fii < Ai, for i = 1, . . . , k

and Xj < fij < AJ+P, for j = k + 1, . . . , n,
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[9] Variational and numerical methods 9

where we denote A< •= —oo for t < 0 and Xj = +oo for j ^ n + 1 •

By using a more general minimax theorem (see [20]) similar results can be estab-
lished for more general hermitian pencils rather than just definite pencils. However, we
have confined attention to definite pencils here for clear presentation of the idea and
the details of this work will appear in an independent paper.

5. RAYLEIGH QUOTIENT ITERATION

The Rayleigh quotient iteration is a method for finding eigenvalues by using in-
verse iteration together with the Rayleigh quotient shift. Its local cubic convergence and
global convergence properties make it a competitive method when only a few eigenvalues
of a symmetric matrix are needed. The discussion of local convergence for a hermitian
matrix was started in [31] and [4] and was analysed rigorously and in detail in Os-
trowski [21]. In his series of papers, Ostrowski also generalised the analysis to admit
non-hermitian matrices, and in Lancaster [14], its generalisation to nonlinear eigenvalue
problems was discussed. Then came the proof of global convergence for hermitian ma-
trices in Kahan [11], Parlett and Kahan [26], and its generalisation to normal matrices
in Parlett [24]. Also, the corresponding results for symmetric matrix pencils \A — B
with A positive definite can be found in Parlett [23]. But there has been no discussion
for the case in which A is indefinite; the topic of this review.

We first observe that the Rayleigh quotient p(x) = fsr^f ifi defined only for x with
x*Ax / 0. Then the following Rayleigh quotient algorithm is a natural extension of
the classical case. We use ||-|| to denote any vector norm on C n .

ALGORITHM 5 . 1 . Pick a starting vector x0 £ Cn with \\xo\\ - 1 and x%Ax0 > 0
(or XQAX0 < 0). Then for k = 0, 1, 2, . . .

(i) if x^Axk = 0, stop; otherwise

(ii) form pk = p{xk) = ffc |^ ;

(iii) if pkA — B is singular, then solve (pkA — B)vk+i = 0 to get an approxi-
mation (pk, ffc+i) and stop; otherwise

(iv) solve (pkA - B)yk+i =Axk;

(v) normalise yk+1 to get xk+i = yk+1/ \\Ayk+1\\.

Obviously, difficulties can arise from the fact that A is indefinite. If there is some
k such that x\Axk — 0, the iteration will break down and no information is obtained.
Also, even if x\Axk ^ 0 but oscillates between positive and negative as k increases,
there is no way to ensure convergence. Fortunately, it can be shown that these cases
will not affect the local convergence to a simple real eigenvalue, and will not happen
even for global strategies when the pencil is definite.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700028732
Downloaded from https://www.cambridge.org/core. IP address: 34.224.102.60, on 24 Jan 2019 at 12:50:08, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972700028732
https://www.cambridge.org/core
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Ostrowski [21] has discussed a generalised Rayleigh quotient method for general
non-symmetric matrices (in a so-called two-sided iteration). It is not hard to see that
Algorithm 5.1 is equivalent to applying the generalised Rayleigh quotient method to
A-1B with a special choice of initial vector pair, that is by taking £o = xo a n ( i Co =
Ax0 in two-sided iteration. Under some conditions, (with A diagonable, for example)
Ostrowski proved that the sequence of Rayleigh quotients {pk} converges cubically if
it converges to an eigenvalue. But there has been no discussion about the convergence
of Rayleigh iterative vectors. A new result of this kind is described here.

Let XA — B be an hermitian pencil with A invertible, and

X-1 (A~1B)X = JoiBX = AX 3

where X = [ZQ, Z\, ..., zn-i] is an invertible matrix and J = I is a Jor-
L 0 JiJ

dan matrix, with Ao a simple real eigenvalue. Let || ||̂  be the 2-norm in the basis
{zo, zi, . . . , £n-i} • For the convergence analysis of iterative vectors, we first introduce
a measure of convergence. For any x G Cn, we have a decomposition

x = a • zo + b • u

where a, b € C, and u £ span{zi, . . . , zn_i} with ||u||» = 1- Using this decomposi-
tion, for each Rayleigh iteration vector as* of Algorithm 5.1, we can write

Then c». = |6jt/«fc | is & measure of how z* approaches z0 in direction. Notice that cjt
only depends on the direction of z*.

The following theorem establishes local cubic convergence for the sequence of ap-
proximate eigenvectors. The conclusions provide insights into this phenomenon and are
not intended to provide computable estimates (see [17]).

THEOREM 5 . 2 . Let XA — B be an hermitian matrix pencil with a simple real
eigenvalue Xo and associated eigenvector zo • Let {s*}]^,, be defined as in Algorithm
5.1 and c^ be defined as above. Then if Co is sufficiently small and z0 is A-positive (or
A-negative) then for all k, x^ is A-positive (or A-negative, respectively). Furthermore,
Cfc+i ^ c\M for some constant M where Jfe = 0, 1, 2,

For the analysis of global convergence properties the available results are still con-
fined to pencils with A positive definite. In the following, this property is generalised
to definite pencils. From the point of view of numerical analysis of definite pencils it
should be remarked that an alternative strategy is available. Namely, to first compute
real numbers a and /? such that M := aA+{}B > 0, then make a transformation of the
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[11] Variational and numerical methods 11

parameter to create a pencil with positive definite leading term and apply more familiar
algorithms to this problem. There are two major reasons for not doing this. First, the
computation of a and (3 is itself a substantial task, so that computational efficiency
(at the present state of knowledge) does not give clear guidance on the preferred line
of attack. Second, the resolution of the direct approach for definite pencils may give
some clues on the development of algorithms for indefinite pencils. Furthermore, the
results obtained show that the only significant advantage to be gained from making
such a shift will be the improved stability resulting from a definite leading coefficient.
By working directly with XA — B, without a preliminary shift, there may also be some
advantage in the freedom to decide whether positive or negative type eigenvalues are
to be computed (after transformation of the parameter this distinction is lost).

Note also that if Algorithm 5.1 is applied to the transformed pencil XM — B, and
to the original pencil XA — B two different recursions are obtained. Thus, different
sequences would be obtained from the same starting vectors. Since M > 0, analysis for
the sequence generated by AM — B is an easy extension of the standard results. The
presence of A in the recursion generated by XA — B demands the introduction of an
indefinite scalar product and some new ideas for the generalisation of these standard
results.

The following interesting result shows that the Rayleigh quotient iteration has an

A-sign invariant property (see [17]).

THEOREM 5 . 3 . Let XA — B be a definite pencil with A invertible and x a
vector lor which x*Ax ^ 0 and p(x) = (x*Bx)/(x*Ax) <£ ^(A^B). Then for y =
(p(x)A-B)-1Ax,

(x*Ax)(y*Ay) > 0.

A difficulty in the extension of the argument of Kahan and Parlett leading to global

convergence results (see [26, 24]), concerns an appropriate choice of norm. When A > 0

the norm (sc, A~xx) is used. When A is indefinite but XA — B is a definite pencil

with M = aA + f3B > 0, it turns out that the norm (x, M~xx) is an appropriate
choice. Using this, the critical monotonicity property of residuals can be established
and used to obtain the following result (see [17]).

THEOREM 5 . 4 . (Global Convergence Theorem) Let XA — B be an nxn definite

pencil with n distinct eigenvalues, A invertible, and M = aA+0B > 0. Let {/>*, z*}

be the Rayleigh sequence defined by Algorithm 5.1 and the M~1-norm. Then

!• {pk} converges, and either
2. (pk, **) —• (•*> «) asymptotically cubically, where Bz = XAz, or
3. X2k —* *+» a'2fc+i —* *-> Hoearly, where x+ and x_ are the bisectors

of a pair of eigenvectors whose eigenvalues have mean p = limp*. This
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situation is unstable under perturbations of n .

6. RAYLEIGH-RITZ PROJECTION METHODS USING KRYLOV SUBSPACES

Given a self-adjoint operator A acting on a Hilbert space, the idea behind the
Rayleigh-Ritz method is to take the compression of A to a subspace, usually with
finite dimensions, and use the eigenvalues of the restricted operator as approximations
to eigenvalues of A. Theoretically, we can take a sequence of subspaces that approaches
the whole space in an appropriate sense, and for which the eigenvalues of restricted
operators will approach those of A that we want. However, numerically, we must
terminate this infinite process at some finite stage. From this point of view, the crucial
point is how to choose a good sequence of subspaces that will justify the finite process.

Krylov subspaces Km(q) are candidates and are defined by

Km(q)= span{q,Aq, . . . , ^ " - 1
9 }

where m is a positive integer. It is easy to see that K°°(q) — span{g, Aq, ..., A'q, ...}
is an invariant subspace of A. Indeed, it is the smallest A-invariant subspace containing
q. If A is an n xn matrix, then Kn(q) = K°°{q) is A-invariant, but we usually consider
Krylov subspaces Km(q) with m « n.

The Rayleigh-Ritz methods using the compression to a Krylov subspace has been
very successful for symmetric matrices (for example, Lanczos algorithms, see [22, 23]).
One reason for this is the existence of favourable approximation bounds which ensure
that a Krylov subspace with relatively low dimension can yield high precision approx-
imations of eigenpairs. We now discuss the formulation of Rayleigh-Ritz methods for
symmetric matrix pencil problems.

Let S be a subspace with a basis {pj, . . . ,pm} and denote P — [pi, . . . , pm] . We
define XAi — B\ to be a compression pencil of a symmetric pencil \A — B, where

At, = P*AP, Bi = P'BP.

This compression depends on the choice of the basis. However, the spectrum is invariant
under the choice of basis for S. In particular, if the basis is orthonormal, then A\ and
Bi are the orthogonal compressions of A and B on S respectively.

For a single matrix, there is an approximation error bound of Kanial-Paige-Sadd
and their analysis depends on the classical minimax principle ([13, 22, 29]). Using the
minimax principle described above, we are able to extend the analysis to the definite
pencil problem. The results obtained provide a theoretical basis for applying projec-
tion methods (for example, the generalised symmetric Lanczos algorithms and Arnoldi
algorithms) to definite symmetric pencils.
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The main theorem, applied to definite pencils with projection from a Krylov sub-
space is as follows (see [18]). The importance of this theorem emerges when specific
choices of the polynomials n are made to determine explicit bounds for the eigenvalues
of the compression.

THEOREM 6 . 1 . Let Ar + 1 < . . . ^ An < Ai ^ . . . < AP be the eigenvalues of a
definite pencil XA — B and x r + 1 , . . . , xn, x\, ...xr be corresponding eigenvectors with
x\Axi = 1 for i — 1, . . .T, (that is, Ai, . . . , Ar are of positive type) and x\Axi = —1
for i — r + 1, . . . , n (that is, AP+1, . . . , An are of negative type). Let $i < . . . < 0P

be the positive type eigenvalues of XAi — Bi, the compression of XA — B on a Krylov
subspace Km(q), and z\, ..., zv 6 C m be corresponding eigenvectors. Then p < r.

n

Furthermore, if q — ]T) otjij and we define

n

a*(7r) = £ \n(Xi)ai\
2 (Xi - Of ... (A,- - 6pf sgn (*TAs,-)

»=i

for any polynomial n, then for k = 1, . . . , p

Ajt < 0k < Xk + ek

where ek = min ±
| A t - - A t |

This expression suggests that we expect smaller positive type eigenvalues (that
is, Ai , A2 et cetera) to converge first. It is observed in [7] and [25] that in Lanczos
algorithm the bigger and smaller eigenvalues of the whole spectrum converge first as
in the classical case. Our numerical experience with Lanczos algorithms shows that for
large pencils with good separation of the two eigenvalue types, the larger and smaller
eigenvalues of both positive and negative types converge first.

We can bound et by choosing an appropriate polynomial n G Pm~k in the min-
imisation functional. Let 7j denote the Chebyshev polynomial of degree / with funda-
mental domain [—1, 1]. Then the following polynomial of degree 21

has the property that it is bounded in the intervals [—a, —1] and [1, o] by 1, and
increases rapidly as x approaches zero. By a transformation of intervals, we obtain a
polynomial that is large at Xk and bounded by 1 in [At+i, AP] and [Ar+i, An]. We
therefore apply this polynomial to get a bound for ek. The details can be found in [18].
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7. LANCZOS ALGORITHMS FOR \A - B

As a special Rayleigh-Ritz projection method, the method of Lanczos generates
a sequence of orthogonal bases for Krylov subspaces via a three term recurrence. Its
favourable approximation property has made it a popular method for large symmetric
matrices when only a few eigenvalues are needed (see [22, 23] for the classical case).
For \A — B with A positive definite, the same idea can be applied to construct an A-
orthogonal basis for a Krylov subspace and it is equivalent to application of the method
to a symmetric matrix. In our case A is merely invertible, but a similar three term
recurrence can be used to generate bases for Krylov subspaces, which are orthogonal
with respect to the indefinite scalar product defined by A. We formulate the algorithm
as follows:

ALGORITHM 7 . 1 . Given an initial vector 91 with C\ — q\Aq\ = ±1 and
ax = q{Bqlt the Lanczos algorithm generates {ft, 92, . . . , 9m}, {"i> «2, • ••, «m},
{/?i, @2, • • •. /?m-i} and {ei, e2, . . . , e m } by the following recursion. Denote /3oqo = 0
a n d £0 = 0 , t A e n for j = 1 , 2 , . . .

TJ = (A-1B)qj - tj-iPj-iqj-i -
it Tj = 0 , stop; otherwise,
if r^Arj = 0, stop; otherwise,

\rJArJ\, e i + 1 = sgn (r'jArj), qj+1 = rj/PjCj+i and

1.
2.
3.

4. e i + 1 = sgn qj+1 =

If there is no break down in generating {91, . . . , qj} (that is, the cases 2 and 3 do
not happen), it is easy to check that for Qj = [ft, . . . , 9̂ ] we have

and
Q'jAQj = Pj,

where e) = (0, . . . , 0, 1) € RJ, Pj = diag (fii, . . . , tj) and

Pi

is tridiagonal. In this algorithm, we normalise qj so that | g ^ 9 j | = 1 as in the case
when A is positive definite. But T^ATJ could be very small (since A is indefinite) and
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hence \\qj\\ could be very large. For this reason we introduce another normalisation,
namely, \\qj\\ = 1. Another advantage of this normalisation is that qjAqj provides us
with a criterion for when the algorithm breaks down. In this normalisation, we must
modify equation (7.1), and the tj there would no longer be ±1 but a non-zero number.
The details will not be presented here but referred to [25].

Now, after the j'-step of the Lanczos algorithm has been preformed, we have Tj =
Q*jBQj. Thus we obtain a triangular compression pencil XPj - Tj = Q){XA - B)Qj.

If $i and Si = (su, • • •, »ji) are an eigenvalue and the corresponding eigenvector
of XPj — Tj, then (8i, y<) with j/< = QjSi is called a Ritz pair and is used as an
approximation of an eigenpair of XA — B. The approximation can be measured by the
residual of the Ritz pair and the following identity concerning the residuals of Ritz pairs
is easily proved:

(7.2) Byi - 6iAyi = SjiA(ej+1/3j+iqj+1).

So, an Sji of small absolute value signals the convergence of Ritz pair (9;, y,-),
provided {)j+iAqj+i is bounded. However, in general the error of eigenvalue approxi-
mation cannot be bounded by this residual. This is due to the non-symmetric nature
of the problem. One way to overcome this difficulty is to relate the residual to a per-
turbation E of B. It has been proved in [12] and [25] that (0j, y<) is an eigenpair of
XA-(B + E) with ||£|| = O(sji). From this, |A» - 0,| = O(sji) for some eigenvalue
A{. In [18], we use the tri diagonal structure of Algorithm 7.1 rather than the identity
(7.2) and under some moderate conditions, it is shown that if Sji is small enough

where 7 is a constant. Unfortunately, 7 is not computable in this expression.

For definite pencils, the following result gives a direct bound on min|#i — A(| by

Sji and extends the classical case (see [18]).

THEOREM 7 . 2 . Let {A,-} be tie eigenvalues 0/a definite pencil XA — B with A
invertible and M = aA + ()B > 0. If (0;, j/j) is a Ritz pair, then

Since this bound is invariant under scaling of a and /?, there is no reason to expect
that the term on the right-hand-side is very much bigger than 8ji \\0j+iAqj+i\\M-i. Of
course, these analyses are not intended to provide a computable bound, but shows that
a small Sji does indeed signal the convergence of a Ritz pair.
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