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THE STRUCTURE OF REVERSING SYMMETRY GROUPS

MICHAEL BAAKE AND JOHN A.G. ROBERTS

We present some of the group theoretic properties of reversing symmetry groups, and
classify their structure in simple cases that occur frequently in several well-known
groups of dynamical systems.

1. INTRODUCTION

Let X be some space, with automorphism group G :— Aut(X). An element L 6 G is

said to have a symmetry if there exists an automorphism S € G that satisfies LoS = SoL

or, equivalently, S o L o 5 " 1 = L, and a reversing symmetry, or reversor, if there exists

an automorphism R S G so that RoLoR~l = L~l. The set of symmetries is non-empty

(it certainly contains all powers of L) and forms a group, the symmetry group S(L).

On the other hand, the existence a priori of any reversing symmetries for a particular

L is unclear. When L has a reversing symmetry, L is called reversible, and irreversible

otherwise. The set TZ(L) of all symmetries and reversing symmetries of L is a group, too,

called the reversing symmetry group ([17]) of L (see also [10]).

The simultaneous consideration of ordinary and reversing symmetries of reversible

automorphisms (which may arise as the time-one maps of reversible flows) is known

to provide some powerful algebraic insights. As the results of [17, 10] illustrate, the

knowledge of S(L) has several implications on the nature of possible reversing symmetries

in 1l(L). The power of this group theoretic setting has recently been realised in cases

where one has access to the structure of the symmetry group S(L), as in the case of toral

automorphisms ([1, 2]) (via Dirichlet's unit theorem [13, Chapter 15.5]) or polynomial

automorphisms of the plane ([25, 3, 8, 9]) (via the classification of Abelian subgroups

according to [31]).

In many cases of reversible automorphisms (and also in the analogous continuous-

time case of reversible flows), it is in fact found that all its reversing symmetries R are

involutions or elements of small even order. Whenever an involutory reversor exists, the

automorphism L can be written as the composition of two involutions, for example, LoR
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and R, or R and R o L, an observation that goes back to Birkhoff [4]. References [26]
and [20] include reviews of the properties and applications of reversible automorphisms
and flows.

The goal of the present paper is to analyze the general structure of H(L), distilling
and extending some theoretical insights from specific cases already considered in [1, 2,
3, 25]. Most of the algebraic methods we use below are standard. Nevertheless, in view
of the applications to dynamical systems, we try to make the text self-contained as far as
algebraic methods are concerned (also giving references for further background material).

2. MATHEMATICAL SETTING

From now on, we shall work within a given group G, for example, the automorphism
group of some space X. Elements of G will be denoted by / , g et cetera, with 1 being the
neutral element. Motivated by the dynamical systems context, we define the following
subgroups of G. The symmetry group of an element / € G is the centraliser of this
element within G, that is,

(1) 5(/) := centG(/) - {g e G \ fg = gf} = {g e G \ gfg'1 = / } .

The reversing symmetry group TZ(f) is defined as

(2) TZ(f) :={hGG\ hfh-1 = /=»} .

There are well-known facts about the groups S(f) and TZ(f), not all of which are

easy to locate in the literature. In this section, we recall and extend some results that

are relevant to our later discussion, providing short proofs.

Clearly, 1Z{f) is a subgroup of G that contains S(f), and one has, compare [17, 1]:

FACT 1. S(f) is a normal subgroup of R{f), with the factor group 7£(/)/<S(/) either
being the trivial group or C%, the cyclic group of order 2.

PROOF: HlZ(f) — S(f), which happens if/2 = 1 or if / is irreversible, the statement
is trivial. So, assume that there is an r € Ti{f) with rfr~l = f~l / / . Define a binary
grading E : H(f) —> C2 = ({±1},-) by E(/i) := e when hfh~l = fe. This grading
is a group homomorphism with ker(E) = S(f) (hence S(f) is a normal subgroup) and
im(E) = C2 (thus TZ(f)/S{f) ~ C2), which establishes the claim. The grading highlights
the fact that the composition of two reversors is a symmetry. D

The case that f2 = 1 is not of particular interest, as this always gives TZ(f) = S(f),

due to j ~ l = f. So, from now on, we shall always assume

The element / € G satisfies f2 / 1, that is, it is neither 1 nor an involution.

This has an immediate consequence [17, Proposition 5] that we shall need a number

of times below:

FACT 2. If / is reversible, with f2 ^ 1, no reversor of / can be of odd order.
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PROOF: If r is any reversor of / , we have rfr~l = f~l. This implies rf~lr~1 = f
(using 1 = rr~l = rfr~1rf~lr~l = f~lrf~lr~l), hence also r ' / r ~ ' = / ( - 1 ) ' . Then,
r2m+1 = 1 would give / = / - 1 , contradicting the assumption. D

R E M A R K 1. For most applications in dynamical systems, one is mainly interested in
the situation that / is not of finite order, so that

(/> := {/" I n £ Z} ~ Coo.

In this case, the reversing symmetry group Tl(f) of (2) can also be formulated as

(3) ft(/) = normG((/))

because h(f)h~l = (f) is only possible here if / (as a generator of (/)) is conjugated
into a generator, hence into either / or f~l. Equation (3) should then be compared with
S{f) — centG ((/)) , the latter being an obvious reformulation of Equation (1).

If / is oi finite order, normG((/)) contains TZ(f) as a subgroup, but possibly further
elements, for example, elements h with hfh~l = f2. It might then be advantageous, also
in view of questions discussed in [11], to consider this extension.

Let us recall another classic result on the order of reversing symmetries, see [18,
Theorem 1.1.5], with a considerably simplified proof.

FACT 3. Let / € G, with f2 / 1, have a reversor r of finite order. Then, this order is
ord(r) — 2t(2m + 1) for some £ ^ I, and / also has a reversor r' of order 2l. The set of
all reversors of / , within G, is thus given by r'S(f).

PROOF: Clearly, the order of r is even, by Fact 2, and hence of the form stated.
Define r' = r2m+1, which is a reversor of / because 2m + 1 is odd. Clearly, r' has order
2e. Fact 1 implies that we can use 1 and r' as the coset representatives of S(f) in 1Z(f),
so that we get 1l(f) = S{f) U r'S(f). D

An important consequence of Fact 3 is that we may restrict the search for reversing
symmetries to elements of order 2e, £ ̂  1, provided there is a finite order reversor at all.

As mentioned in the Introduction, a particularly frequent case in applications is that
of an involutory reversor. To formulate the corresponding result ([1]), we write N » G

for the semi-direct product of the groups N and G, with N the normal subgroup.

LEMMA 1 . Let f € G be a mapping with / 2 # 1 and symmetry group S(f). If f

has an involutory reversor r, the reversing symmetry group is H{f) = S(f) » C2, with

C2 = (r).

PROOF: Once again by Fact 1, we know that 1 and r can be used as the coset

representatives, that is, IZ(f) = S(f)OrS(f), all seen as subgroups or subsets of G. As

r is an involution, ~R-(f)/S(f) ~ (r) = C2> thus establishing the semi-direct product. 0

Let us give an important example where all reversors are involutions, irrespective of

the structure of <S(/).
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EXAMPLE 1. ([16, 15]) Let E be an elliptic curve defined over a field K. It is bira-
tionally conjugate to a Weierstrass form W: y2 = x3 + Ax + B, with A, B G K. It is well
known, see [30], that the points W(K) on the curve W (or E(K) on the curve E) with
coordinates in K form an Abelian group with associated group law "+". Let G be the
group of birational transformations over K that map E to itself. Then, in the typical case
(that is, when the curve does not permit complex multiplication, which can be worked
out using the so-called j-invariant), G has the form

(4) G ~ T x { ± l } ,

where T is the group of translations on W, P >-> p + j? with Q G W(K), and ±1 stands
for P »-> ±P. Clearly, any f € T, with f2 ? 1, has S(f) = T =2 W(K), that is, S{f)
is Abelian. The reversors of / G G are always involutions, P *-> —P + S, for some
5 G W(K).

The structure of W(K), and hence of S(f), is quite general, depending on the field
K. In particular, W(R) is a one-dimensional compact Lie group, while W(C) ~ T2, the
2-torus. Moreover, W(Q) is a finitely generated Abelian group, hence, by [21, Theo-
rem 1.8.5],

W(Q)~Fx(Cr
00)'«"I

where rw is the rank of the curve and F is the finite torsion group.

Looking more closely at this example, one realises that the extra structure, in com-
parison to Lemma 1, is that any involutory reversor r of / actually conjugates all elements
of the group S{f) into their inverses, not just / . This is a situation that is not a priori
restricted to a translation group structure as in (4). An important part of the semi-direct
product structure H(f) = S(f) xi (r) in Lemma 1 is the induced automorphism a on the
normal subgroup,

(5) a(g) := rgr~l = rgr,

for all g € <S(/)- Given an involutory reversor r, the interplay between the nature of a
and the structure of S(f) can be used effectively to determine the detailed structure of
the group ~R(f), as we shall see below in Theorem 2. In particular, given an involutory
reversor r, the order of any other reversor rg with g € S(f), necessarily of this form by
Fact 1 and of even order by Fact 2, follows from the equations

(6) (rg)2k = (rgr-lg)k = (<T(g)g)k, for k € Z.

This has the following simple consequences (compare Example 1).

PROPOSITION 1. Consider the element f € G of Lemma 1 with an involutory
reversor r, an element g G S(f) and a as in (5). Then, one has:
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(1) a(g) = g~l if and only if the reversor rg is an involution. Consequently, r

is a simultaneous reversor for all elements of the group S(f) if and only if

all reversors of f are involutions;

(2) any finite order reversor of f must have order 2£, where I is the order of
some finite order symmetry of f. So, if no non-trivial symmetry of finite
order exists, there can only be reversors that are involutions or of infinite
order. In this case, ifo-(g') ^ (g1)'1 for some g' € S(f), the reversor rg' is
of infinite order.

PROOF: The first claim is obvious from Equation (6), used with k = 1. The second
claim follows from the observation that (rg)2 = cr(g) g is a symmetry, hence either trivial
or not of finite order under the assumptions made. D

COROLLARY 1 . If all reversors of f are involutions, the symmetry group S(f) is

Abelian.

P R O O F : By part (1) of Proposition 1, a reversor r of / is a simultaneous reversor for
all elements of <S(/). So, if a, b € <S(/), we have rar = a"1, rbr = b'1 and r(ab)r — (ab)~l.

Consequently,
a"1*)"1 = rabr = (ab)~l = b^a'1

which gives ab = 6a. D

That the converse of Corollary 1 is not true is illustrated below in Theorem 2 and
the associated examples.

3. IMPLICATIONS FROM THE SYMMETRY GROUP

To further explore the group theoretic concequences, let us recall the concept of
a group extension, compare [12, Theorem 15.3.1] or [14, Section 1.14]. Fact 1 shows
that we need to look at cyclic (^-extensions of the symmetry group, but not all such
extensions will give reversing symmetry groups. It is thus a natural task to select and
classify those that do. We now present first steps in this direction, building on previous
work by various authors [17, 10, 20].

The main point in using the group theoretic setting comes from the consequences of
the structure of S(f) to that ofTZ(f). Classifying the structure of (non-trivial) reversing
symmetry groups then means:

(1) Start from groups of the form N = centc(/), for some / with f2 ^ 1;

(2) Search for an h € G \ N with hfh~l = f~l;

(3) Classify H = NiihN, a C2-extension of N, according to its group struc-
ture.

Our point here is that such a classification is a purely group theoretic problem. In concrete
examples and applications, special conditions can then lead to further restrictions.
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REMARK 2. It can also become meaningful, or even necessary, to consider the equation
hfh~l = f~l only up to symmetries, that is, to look for solutions of hfh~l = s/"1 with
s € <?(/)• If 8 is of finite order, some power of / , /* say, is reversible in the usual
sense. This is the basic mechanism of reversing fc-symmetries, compare [18, 19] for
details. A similar remark applies to fc-symmetries in comparison to ordinary symmetries.
Conversely, a reversible element / € G might have a root in G that is not reversible itself,
but satisfies such a more general equation. We shall meet this situation below, in part
(3) of Theorem 2.

Let us continue with a general observation, which is a rather direct consequence of a
result of Goodson, see [10, Proposition 2] and the generalisation mentioned afterwards,
and [2, Fact 11].

PROPOSITION 2 . Let f € G be an element of infinite order, and assume that
S(f) = T x {g) where T is some finite group of order N ^ 1 (not necessarily Abelian),
and g is some generator (then necessarily of infinite order). Ifr is a reversor of f, r is an
element of finite order. Its order is even and divides 2N.

PROOF: If r is a reversor, r2 is a symmetry, hence r2 — sgm, for some s € T and
some integer m. Note that, due to the assumption of the direct product structure, we
always have sg = gs, even if T itself is not Abelian. Since the group T is finite and
of order N, we know that s" — 1 for some n > 1 that divides N. This implies that
r2n _ gmn

As / is not of finite order, but clearly an element of S(f), we may assume fN = gk

for some (positive) integer A; without loss of generality, modifying the argument just used
(in particular, A; ^ 0, while k > 0 might require to replace g by g~l).

Since rf = f~xr by assumption (hence also rfl = f~er, for all I € Z), we choose
I - mnN and obtain rgkmn = g~kmn

r. Since gkmn = r2n*, this implies rr2nk = r""2n*r
and thus r4n* = 1, that is, r is of finite order. Since r2n = gmn, this is only possible for
mn = 0, hence m = 0. This implies r2n = 1, so the order of r divides 2N. If / is not of
finite order, it is not an involution, and r can then not be of odd order by Fact 2 (hence
also r / 1 ) . D

REMARK 3. An alternative way to state the result of Proposition 2 is the following.
If / is an element of infinite order, such that the factor group S(f)/(f) is finite, any
reversor r of f must be of finite order. In particular, r2k = 1 for some integer k ^ 1 that
divides the order of the factor group.

THEOREM 1 . Let f eG be an element of infinite order, with S(f) ~ Cx. Iff is
reversible, one has ~R(f) = <S(/) x Ci ~ £>«,, and all reversors of f are involutions.

PROOF: If S(f) = (g) cz C^, we must have f — gm for some 0 / m e Z. Let r
be any reversor of / , which must then be an involution by Proposition 2. This gives the
general structure of H(f) as a semi-direct product by Lemma 1.
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In view of Proposition 1, we now have to look at a(g) = rgr~x. By the previous
argument, all reversors of / are involutions, hence necessarily rgr~l = g~x, and

is clear. D

The situation of Theorem 1 looks rather special, but actually occurs in some impor-
tant dynamical contexts.

EXAMPLE 2. Let G be the space group of the integer lattice Z in dimension one, which
isG = ZxO(l ) = Zxi{±l}, compare [6]. So, G contains all Euclidean transformations
that map Z onto itself, and it has the structure (4) with

T = {Tm : n - n + m | m £ Z } ~ Z .

Now, take f — Tn (with n / 0) as our mapping, the n-fold shift. This is a standard
mapping considered in symbolic dynamics, compare [22], and G is a very natural group
to embed it in. Clearly, S(Tn) — centG(Tn) = T ^ Coo, while the map x \-¥ — x
is an involutory reversor for Tn, noting that (Tn)~

l = T_n. Consequently, we have
TZ{Tn) ~ Cx » C2, as in Theorem 1.

Note that all involutions in G are of the form x >—>• —x + m, with m € Z, and are
always conjugate, within G, to either x >-)• —x o n i - > —x + 1. The latter are conjugate
via a half-integer shift, hence not within G, but within some larger group.

REMARK 4. In the previous example, we could replace Z by Q or E, with obvious
changes to the symmetry group, though the latter is no longer isomorphic with Coo-
Also, if F is the generic lattice in Bd, its space group [6] is G = F x {±1}, as inversion is
then the only isometry of the lattice. The previous example can now easily be extended
to an arbitrary translation / : 1 4 x + a with 0 ^ a g F.

EXAMPLE 3. Consider G = PGL(2, Z), the group of integer matrices with determinant
±1, identified up to an overall sign, that is, PGL(2,Z) = GL(2,Z)/{±1}. By Dirichlet's
unit theorem, one can show [2] that, if M G PGL(2, Z) is not of finite order, its symmetry
group is S{M) = centc(M) ~ Coo. A concrete example, even with Coo = (M), is

(7) M =
1 1

with reversors R =
1 - 1

and R' = RM =

where we write [M] for a matrix up to overall sign. Note that both R and R' are
involutions in PGL(2, Z), but they are not conjugate within this group.

In other examples, M need not be a generator of Coo, as, in general, such a matrix
can have roots in G. Note that the spectrum of M in (7) is only self-reciprocal up to
an overall factor of - 1 , thus M is not reversible in GL(2,Z), though its square is (see
below).
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REMARK 5. Two groups of dynamical systems isomorphic to PGL(2,Z) are:

(1) The group of 3-dimensional invertible polynomial maps which preserve the
Fricke-Vogt invariant

I{x, y, z) = x2 + y2 + z2 - 2xyz - 1

and fix the point (1,1,1). Corresponding to M, R and R' above are,
respectively, the Fibonacci trace map (x, y, z) t-> (y, z, 2yz - x) and its
reversors (x, y, z) i-» (z, y,x) and (x,y,z) i-> (2yz - x,z,y), see [24] and
references therein for details.

(2) The group of homeomorphisms of the 2-sphere S2 that are induced by
taking the quotient of the action of a GL(2, Z) matrix on T2 by the reflection
in the origin. Whenever the GL(2, Z) matrix is hyperbolic, this yields a
so-called pseudo-Anosov map of S2, see [5, 23] for details.

THEOREM 2 . If f € G is a reversible element of infinite order with symmetry
group S(f) ~ C<i x Coo, all reversors must be involutions or elements of order 4. In
particular, one finds precisely one of the following three situations.

(1) TZ(f) ~ C2 x A»> if and only if all reversors of f are involutions.

(2) H[f) — Cx * Ct, if and only if all reversors of f are elements of order 4.

(3) 7l(/) ~ (C2 x Coo) » C2, if and only if there are reversors both of order 2
and 4.

PROOF: By assumption and Proposition 2, we know that a reversor in this setting
must be an involution or an order 4 element.

Let S(f) ~ C2 x CQO with Coo = (3) and an involutory symmetry s, which is
then unique by the structure of the group. If the reversor r is an involution, one has
IZ(f) ~ S(f) x C2. Since rsr is also an involutory symmetry, we get rsr — s by
uniqueness, and r and s commute. Since r ^ s, this gives TZ(f) ^ (C2 x Cx,) » C2, with
either rgr~l = g~l (then simplifying to H{f) ~ C2 x DOQ) or rgr'1 = sg~l (in which
case / must be an even power of g). Note that, in the latter case, g — gr is an element
of order 4, and a reversor of / .

If H(f) = C2 x £>oo, we are in the situation of part (1) of Proposition 1, as r
conjugates all generators of S(f) into their inverses. Consequently, all reversors of / are
involutions then.

If / has a reversor r of order 4, r2 = 5 is the unique involutory symmetry of / , and
/ = r2egm for e € {0,1} and some integer m / 0 . In particular, r2 and g commute, and
rgr~l is a symmetry of / , so that rgr~l = r2kgl for k e {0,1} and some £ £ Z. Clearly,
in view of rfr~* = f~l, this forces £ — —1.

If k = 0, r is also a reversor of g, and we have Tl{f) ^ C^, x C4. Reversors are of
the form rgn or r3^", all of which have order 4. This is the only case for m odd, while
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for m even also k = 1 is possible, that is, rgr~l = r2g~l. This gives a group with the
presentation

which is an index 2 extension of S(f) ~ C2 x Coo, but does not look like a simple semi-
direct product. However, p = g~xr is an involution that satisfies pgp = r2g~x, and it is
a reversor for / . This brings us back to Tl(f) a (C2 x Coo) * C2, where the outer C2 is
generated by p.

This chain of arguments shows that the 3 cases of the theorem are both (alge-
braically) possible and exhaustive. D

REMARK 6. Note that the meaning of the group

(C2 x Coo) * C2 = «s) x (g)) x (p)

in case (3) of Theorem 2 includes the induced automorphism pgp~l = sg'1. This is the
key difference to case (1), where a different induced automorphism permits the simplifi-
cation shown.

Examples of all three cases of Theorem 2 appear among hyperbolic toral automor-
phisms (or cat maps) and polynomial automorphisms of the plane:

E X A M P L E 4. ([1, 2, 28]) Elements M of the matrix group GL(2,Z) that are not of
finite order, including the hyperbolic ones, have S(M) ~ C2 x Coo, where C2 = {±1}-
Reversible elements M, and associated reversors R (with subscripts indicating their or-
der), which illustrate each case of Theorem 2 are:

(2) :

Note that the third case is closely related to the previous PGL(2,Z) matrix in Equa-
tion (7).

EXAMPLE 5. ([3, 9, 25]) Consider the case that G is the group of planar polynomial
automorphisms with coefficients in the field K, that is, polynomial transformations
x' — P(x,y), y' = Q(x,y) that have a polynomial inverse (for ease of notation, we
use {x',y') for the image points), see [7] for general background material. Utilising
the classical result that G is an amalgamated free product of two groups, consequently
giving knowledge of the Abelian subgroups within G ([31]), it can be shown that <S(/) is
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isomorphic to either Coo or Cz x Coo, when K € {Q, K} and / is dynamically non-trivial.
The latter property means, in the language of [3], that / is a so-called CR element of G,

hence neither conjugate to an amne nor to an elementary mapping in G.

Reversible elements (for G with K € {<Q,R}) illustrating each case of Theorem 2
are:

(1) / : x' — x + p(y), y' — y + q(x'), with p ^ q odd polynomials;

s : x' — — x, y' = —y, an involution;

r : x' — —x — p(y), y' = y, an involution;

S(f) = centG(/) = (a) x (/) ~ C2 x C
x;

(2) f:x' = -x + y3, y'=-y - {x')\

involutory symmetry s as in case (1);

r : x' = -y, y' = x, an order 4 reversor, with r2 = s;

S(f) = centG(/) = (a) x (/> ~ C2 x Cx;

K(f) = (/) x (0 ^ ^ x. C4.

(3) f : x' = x + p(y), y' = y + p(x'), with p an odd polynomial,

involutory symmetry s and reversor r as in case (1);

t:x' = y, y' = x + p(y), so that / = t2;

S{f) = centG(/) - (s) x (t) ~ C2 x Coo;

* ( / ) = (<*> x <*» x (r) ^ (C2 x Coo) * C2.

In cases (1) and (2), / has no root in G. In case (3), r' = tr is an order 4 reversor of / .

Note that [27] provides a test for reversibility within the group G, when a reduction

of the polynomial maps to finite fields is possible.

Following on from Theorem 2, it would be nice to have some similarly simple classifi-
cation of the group structure of TZ(f) for more general symmetry groups S(f). However,
things quickly become more involved, in particular if / possesses roots in G, which is a
situation frequently met in practice. If / has no roots in G, one can go further as follows.

THEOREM 3 . Let S(f) ^CpxCx with C^ = (/) and Cp = (h),p an odd prime.

If f is reversible, there axe always involutory reversors, and one meets precisely one of

the following two situations.

(1) H(f) = Coo xi C2p = (/) » (r), with rfr~l = f~l and h = r2, if and only

if a reversor r of order 2p exists;

(2) Tl{f) = (Cp x Coo) * C2, with C2 = (r) and rhr = h~l, if and only if all

reversors are involutions.

PROOF: By Proposition 2, any reversor r of / must be of even order that divides
2p, so either ord(r) = 2 or ord(r) = 2p because p is prime. In the latter case, in line with
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Fact 3, rp is an involutory reversor, so that TZ(f) = (Cp x Coo) * C2 in both cases, by
Lemma 1.

We can thus focus on the equation qfq~l = f~l with q2 — 1, and consider the
possible automorphisms induced by q on S(f). Clearly, qhq~l = qhq is a symmetry of /
of order p, so that qhq = hm for some 1 ^ m ^ p — 1. Since h = q2hq2 = qhmq = hm ,
we must have m2 = 1 (mod p). Since p is a prime (and Fp thus a finite field), this
congruence has precisely two solutions. These are m = ±1 (mod p), either giving qhq = h

or qhq = h~l.

In the first case, h and q commute, and {qh)k = qkhk. This shows that r = qh, which
is also a reversor, has order 2p, and rp = q. Consequently, the reversing symmetry group
becomes Tl{f) = C«> » C2p with C2p = (r) and r2 = h.

In the second case, q is a reversor also for the finite order element h, and the structure
of TZ(f) is as claimed. This brings us back to the situation of part (1) of Proposition 1,
hence all reversors of / are involutions. D

REMARK 7. If one considers S(f) — Cn x C^ — (h) x (/) for n > 1 not a prime, things
quickly become more complicated. In the case that n is odd, any reversor r must have
order 2£ for some £ | n, by Proposition 2. But then, s = rl is an involutory reversor, and
we can again restrict ourselves to looking at the equation sfs — f~l and the induced
automorphism on S(f). In this case, shs = hm for some

m e { U K n | gcd(fc,n) = l},

subject to the additional requirement that m2 = 1 (mod n). This equation always has the
solutions m = ±1 (mod n). They are the only ones for n — p* with A; ^ 1 and p an odd
prime, while more solutions exist otherwise, for example, n = 15 permits m = ± 1 and
m = ±4. The number of solutions is 2°, with a > 1 the number of distinct prime divisors
of n, see [13, Chapter 6.3]. The result of Theorem 3 has to be extended accordingly.

If n is even, such extra solutions may exist as well (for example, n — 8 permits
m = ±1 and m = ±3, while n = 12 is compatible with m = ±1 and m = ±5). Here, if
we write n = 2fc+1(2£+ 1) with k ^ 0, the number of solutions is 2a+min<fc-2>, with a ^ 0
the number of distinct prime divisors of 2£ + 1, compare [13, Chapter 6.3]. In general,
it is no longer true that at least one involutory reversor exists, as we already saw in case
(2) of Theorem 2.

Next, let us take a closer look at a case where an additional symmetry of infinite
order exists. This is motivated both by the structure of (projective) toral automorphisms
in dimensions d > 2, see [2], and by other examples from algebraic dynamics, see [29]
and references therein for an orientation.

THEOREM 4 . Let S{f) = (t) x (g) ~ C^ x CM, with f = gn for some integer

n ^ 0. Then, any reversor r of f is either an involution {hence giving 1Z{f) as in Fact 1)

or it is not of finite order.
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Moreover, r is also a reversor for g, and either o(i) := rtr l —t l or a(t) = tgk for
some k e Z. In the latter case, one can change the generators ofS(f) in such a way that
the equation is satisfied with either k = 0 or k = 1.

Finally, the following group structures for a reversible f with involutory reversor r
are possible after this reduction.

(1) Tl(f) — (t) x ((g) xi (r)) ~ Coo x DQO, if and only if r commutes with t. In
this case, also reversors of infinite order exist.

(2) Tl(f) = ((t) x (g)) x (r) ~ (C^, x C^) » C2, if and only if either a(t) = r 1

(which happens if and only if all reversors are involutions ) or a(t) = tg (in
which case, once again, also reversors of infinite order exist ) .

PROOF: Since rgr~x is a non-trivial symmetry of / , we must have rgr~l — tegl for
some e, £ € Z, not both 0. On the other hand,

g-n = f-l = rfj.-l = rgnr-l = (rffr-l)» = t"Y*

which implies e — 0 and I = — 1. This shows rgr~x — g~l. The statement about the
order of r is obvious from the fact that r2 is a symmetry.

Next, observe that rtr~l ^ 1 is a symmetry, so that rtr~x = tegh for some e, k € Z,
not both 0. Since r2 commutes with t, one finds

t = r2tr~2 = ) V* =
This implies e2 = 1 and k(e - 1) = 0. The solutions are e = - 1 together with k — 0,
which means that r is also a reversor for t, and e — 1 together with an arbitrary A; € Z,
giving rtr'1 = tgk.

In the latter case, one may assume that k ̂  0 (otherwise, replace the generator g by
g~l). If A; > 1, one can define a new generator t = , so that t and g still generate
the same group S(f). It is easy to check that this results in rtr~l — t (respectively tg)
depending on whether A; was even (respectively odd).

For the final assertion, H(f) = S(f) » (r) is clear by Lemma 1, where always
a(g) = g~l. The three cases now follow from the different possibilities how a acts on t. If
r is a reversor for both t and g, we are again in the situation of part (1) of Proposition 1.
Otherwise, non-involutory reversors exist, which must then be of infinite order. D

E X A M P L E 6. ([2]) Consider the matrices M,Re PGL(4, Z) given by

M =

It is easy to check that the involution R conjugates M into its inverse. As follows from [2,
Corollary 6], M has symmetry group S(M) ~ Coo x Coo in PGL(4,Z). One generator is

0
0
0

- 1

1
0
0
2

0
1
0
2

0
0
1
2

and R =

0
0
0
1

0
0
1
0

0
1
0
0

1
0
0
0
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M itself, as this is a matrix without roots in this matrix group, while the other generator
can be either chosen as

N =

1 0 - 3 1
- 1 3 2 - 1
1 - 3 1 0
0 1 - 3 1

or as N':=MN =

- 1 3 2 - 1
1 - 3 1 0
0 1 - 3 1

- 1 2 3 - 1

Note that N can neither possess a root in GL(4, Z) nor in PGL(4, Z) because the sum of
the square roots of the eigenvalues of N is not an integer. The characteristic polynomial
of N is Q{x) = x* — 6x3 + 22a;2 - 14x + 1, which is not self-reciprocal - neither directly
nor up to an overall sign. Consequently, iV is not reversible within G, and neither within
GL(4, Q), compare [2, Propisition 2], and the same statement applies to N'. In fact, one
quickly checks that R and N' commute, thus R!:— RN' is a reversor of infinite order. The
reversing symmetry group thus has the structure TZ(M) — {N') x ((M) x (R)) ~ C^xD,*,,
in line with case (1) of Theorem 4

REMARK 8. The previous example can be considered within GL(4, Z) as well, that is,
as a toral automorphism. Note that the largest eigenvalue of M is a so-called Salem
number. The characteristic polynomial of M is P(x) = i 4 - 2x3 - 2x2 — 2x + 1, which
is irreducible over Z (and hence also over Q). Its roots are r ± y/r (both real) and
(1 - T) ± y/1 — T (both on the unit circle), where r = (\/5 +1)/2 is the golden ratio. The
symmetry is now S(M) ~C^x C^ x C^, with C2 = {±1}, with the other details to be
changed accordingly.

4. COMMENTS AND FURTHER DIRECTIONS

Further extensions of the results along the lines of the previous theorems are possible.
In particular, one might want to extend the setting to symmetry groups of the form
S(f) = Cm x C^, with £ ̂  1 and m even, which occur for toral automorphisms ([2]) as
a result of Dirichlet's unit theorem. Since the methods should be clear from our above
results, we do not go into further detail.

Above, we have looked into the case that S(f) = fix (g) where / was a power of g.
In general, if <S(/) is a finitely generated Abelian group, it is of the form S(f) = T x C£,
with T a finite Abelian group, see [21, Theorem 1.8.5]. For / not of finite order, we
might then also assume that / is an element of one of the Cx factors.

However, in general, S(f) need not be Abelian, hence there is no compelling reason
to start from a product structure such as H x C^ (even with H non-Abelian), as can be
seen from the possibility of fc-symmetries. The general setting is then even more involved,
but can be handled by a computer assisted approach, for example, as in the classification
of crystallographic point and space groups.
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