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1. Introduction. Let D be the discriminant of an algebraic number field F of degree n over
the rational field R. The problem of finding the lowest absolute value of D as F varies over
all fields of degree n with a given number of real (and consequently of imaginary) conjugate
fields has not yet been solved in general. The only precise results so far given are those for
n = 2, 3 and 4. The case n = 2 is trivial; n = 3 was solved in 1896 by Furtwangler, and n = 4
in 1929 by J. Mayer [6]. Reference to Furtwangler's work is given hi Mayer's paper. In this
paper the results for n = 5, that is, for quintic fields, are obtained.

2. The fundamental theorem. Let Fx be a quintic field, and let F( (i = 2, 3, 4, 5) be the
conjugate fields. If px is an integer of F± we shall use pt (i =2, 3, 4, 5) to denote its conjugates
and write Epi for px + p2 + p3 + p4 + p5, etc. The method used is based on the following theorem

THEOKEM 1. / / F1 is a quintic field of discriminant D then we can write

where px is an algebraic integer in Fx such that

and 5(27

Proof. Let (1, p'v 6'v <j>'v ifs'^) be an integral basis for the given field Flt and

di p[ i î> $i, ^,') t n e corresponding bases for the conjugate fields F( ( i=2, 3, 4, 5). Write
5

f(x) =f[xv x2, x3, xlt x5) = S

say. Then f(x) is a positive definite quadratic form of determinant | D |. For rational integers
xlt ..., x5, the expressions Xi(i = l, ..., 5) represent an algebraic integer of pandi t s conjugates.

5 5

Thus, for integral (x) ^ (0), III Xt I ̂  1, and hence SI Xt | 2>5, by the inequality of the arith-
i=i i=\

metic-geometric means. Hence the minimum of the form f[x) is 5, this being attained at the
point (1, 0, 0, 0, 0).

We now define successive minima mlt m2, m3, m4, m6 oif(x) as follows :
mx is the minimum off(x) for all integral (x) ¥= (0), so that mx =5 and is attained at the

point foH (1,0,0,0,0);
m2 is the minimum of/(x) for all integral (a;) not proportional to (xx), attained at (x2), say ;

m3 is the minimum of f(x) for all integral (x) not linearly dependent on (xx) and (x2),
attained at (x3), say ; and so on. Then clearly

5=»re1^m2^m3<m4<TO6. (1)

Also it has been proved that
E CM.A.
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58 JOHN HUNTER

(since | D | is the determinant of f(x)), where y5 is the "minimum" of all positive definite

quadratic forms in five integral variables. Since ys = V8, we obtain

m1m2msmi'm,5^:8 \ D \ . (2)

By (1) and (2),

5»ij><8|Z>|. (3)

Let f(x) = 5xf + 2612a;1a;2 +. . . + 2blsx1x5 + b22x\ +.. .

\Xl + 5 2 + • •• + 5 x&) + 9 ^ 2 1 x*'X*'

so that g is a positive definite quadratic form in the variables x2, x3, xit x5. Now suppose that
m2=f{*i, a2, a3, a4) a5).

By definition of m2, a2)..., a5 are not all zero, since m1 arises at the point (1, 0, 0, 0, 0). Write
S =g.C.d. (a2, a3, a4, a5).

We show that 8 = 1. Suppose not; then we can take 8>2 and, puttingo^ = 8j8,(i =2, ..., 5),
we have

m2 =/ (
Now let m'2 = min f(x), under the condition that xi = /3,(i =2, ..., 5) are fixed. Then, since

not all the /?,- are zero, it is clear that

m2^m'2.

Suppose that

<=f(Y,P: -.)8.)=6{y+i Zb
i=2

Now, given any set of integers (/32, ..., /?5), we can always choose an integer y such that

|y+i E \
t=2

Thus, from the definition of m'2,

Hence

Thus

so that

since 8>2. It follows that m a < | + ^ = f . But m 2 ^5 . Hence we have a contradiction, and
therefore 8 = 1. Thus

m2 —J\ali a2> a3> a4> a5)>

w h e r e g . c . d . ( a 2 , a 3 , a 4 , a 5 ) = l . N o w , s i n c e g . c . d . ( a 2 , a 3 , a 4 , a 5 ) = l , w e c a n find a 4 x 4

i n t e g r a l m a t r i x

' a 2
a3 03 73 ^3

a4 Pi y4 84

Ys 8 5 '
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of determinant 1 (the (j8,-) and y5 are not related to the (/?<) and y5 above). Put

x< = *iX'a + PiX'3 + YiX'i + 8^ (i = 2, . . . . 5) .

This is an integral unimodular substitution. Applying it to f{x), we have
5

f(x) = E | x[ + (ax + fta2 + 0<a3 + $ a 4 + </^a5)a;2 + ( )x'3 + ...\2,

5

= E I xx + Pix2 + e(x3 + tfXi + i/r^g 12,
t—1

say, dropping the dashes from the x'{. Since the substitution is integral and unimodular
follows that (1, plt 6lt <f>lt 4>i) is an integral basis for F1 and that (1, pt, 9it <f>(, fa), i =2, 3, 4, 5,
are the corresponding bases for the conjugate fields. Now, if

5

f(x) = E

then bu = 5 , 622 = ^71 />,• |2, and
2612 = E{pi + pf) = Spi + EPi = 2ZPi,

since Ep{ is a rational integer. Also, by the above substitution, (x) =(a1, a2> a3, a4, a6) corre-
sponds to (a;') = (0, 1, 0, 0, 0). Hence

m2 = 27|p,.|2=622.

Thus, by (3),

Now, from the equations for x2, ...,x5 in terms of x2, ..., x'5 it follows that (x2,..., x6) = (0, ..., 0)
if and only if (x't, ..., a;5) = (0, ..., 0). Thus, taking ^ = 1, x2= ± 1 , x3 = xi=x5=0, in the sim-
plified notation, we have, from the definition of w2,

Therefore | b12\

and so | E pt \ <f.
Hence, since 27p,- is a rational integer, | Spt | =0, 1 or 2.

We have now shown that there is an integer px in Fv not a rational integer, such that the
inequalities in the statement of Theorem 1 hold. Hence, since a quintic field has no non-
trivial subfields, F1=B(p1) and the result follows.

We note that the same proof establishes the corresponding result in which " quintic
field " is replaced by " number field of degree W ^ 1 4 with no non-trivial subfields."

3. Totally real quintic fields. Let i^ be a totally real quintic field of discriminant D;
then D>0 . By Theorem 1, we can assume that Ft =R(p1), where p1 is an algebraic integer in
Ft such that

| ^ , | = 0 , I ,or2, (4)

and 5(E\ P< |2)4<8D. (5)

Since the />,• are all real and Sp\ is a rational integer, (5) gives

27PJ«fZ))*], (6)
where the expression on the right is the integral part of (f-D)*. Let
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60 JOHN HUNTER

g(x) =a;5 + a1x
4 + a2x

3+a3x
2+aix+as=0 (7)

be the irreducible equation for px over R, so that, by the definition of an integer in an algebraic
field, the af are rational integers. Also, since p2, p3, pit ps are the conjugates of plt tlie roots of
(7) are plt ..., p5. Thus 2pt = -av Hence, from (4), by replacing p{ by - p{ if necessary, we
can suppose that

«!=(), 1, or 2. (8)
Since 77p,- is a non-zero rational integer we have | 17p{ | ^ 1, and thus, using the inequality

of the arithmetic-geometric means,

Hence, from (6),

Now Up? = 5, | npt | ^ 1 together imply that p? = l (i = l, ..., 5), and so that g(x) is reducible.
Thus

6<27p*<[(fZ>)*]. (9)

Since (SpiY = Ep^ +2Zptpj and Spipi=a2 we deduce, from (9), that

- * ( [ ( # # ) * ] - « ? K « 2 < - i ( 6 - « ? ) • (10)
From (8) and (10) it follows that a2 must be negative. An inequality for aB is given by

so that the values of a5 which can arise are obtained by inserting in (11) the possible values of
Zpf given by (9).

An inequality for a3 can be obtained by using the fact that, if g (x) = 0 has five distinct
real roots, then g" (x) = 0 must have three distinct real roots and so its discriminant must be
positive. The inequality, which involves a^ and a2. is

I 0,-^(150x0.-40?) I <£s{2al-5a2)J(4al - lOo,). (12)
The above discussion shows that any totally real quintic field F1 of given discriminant D

can be written as R^), where p1 is an algebraic integer whose irreducible equation (7) is such
that %, a2, a3> a5 satisfy (8), (10), (12) and (11). We now take D = 14641, the discriminant of
the field defined by a root of the equation

x5 +xi -4a:3 - 3a;2 +3x +1 =0,

and shall show eventually that this is in fact the minimum discriminant of totally real quintic
fields. That 14641 is the discriminant of this field follows from Lemma 1 below and the follow-
ing facts :

(i) The discriminant of the equation is 14641 = II4. (ii) From (9) we obtain [(fD)t]>6,
and thus D^810. This is an improvement on Minko\, ski's result, D^(55/5!)2, which gives

LEMMA 1. If the integer p of a quintic field F1 of discriminant D satisfies no equation of
degree less than five with rational coefficients, then, if Dp is the discriminant of the irreducible
equation of degree five satisfied by p,

9

where d is a rational integer.
This is a particular case of a well-known result [4(a)].
In the above case Dp = 14641 = (II)2 . 121 = (121)2 . 1 and hence the only possibility is

DP=D = 14641, since the equation is irreducible and 810>121>l .
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THE MINIMUM DISCRIMINANTS OF QUINTIC FIELDS 61

With the above value of D, and noting that if ax = 0 we can, by changing p{ into - p< if
necessary, ensure that a 3 ^0 , we now have, from (8), (9), (10), (11) and (12), the following
ranges for Oj, a2, a3, with corresponding first approximations to ranges of possible values of a6 :

al

0
0
0
0
1
1
1
2
2
2
2

a2
-6
-5
-4
-3
-5
-4
-3
-4
-3
-2
-1

a3
[0,9]
[0,7]
[0,5]
[0,3]
[-11,4]
[-8,3]
[-5,2]
[-14,2]
[-11,1]
[-7,0]
[-5,0]

8
5
3
1
7
4
2
8
5
3
1

(13)

where, for example in the case a1=Q, a2 = - 6 , a3 runs through the interval 0<a3<;9, anda5

the interval | a5 | < 8 with a5 = 0 omitted.
We now proceed to apply a succession of inequalities for a4 and as which at the same time

considerably reduce the ranges of values for ax, a2, a3 given in (13). We note first that necessary
conditions for equation (7) to have five real roots are given by Newton's inequalities [3] :

(i) a2<-|af, (ii) a1a3<2-a|, (iii) a2a4<£a§, (iv) a3a5

with strict inequality since the pt must be distinct. Of these, (i) and (ii) give no new informa-

tion, (iii) gives a 4 > ——. r a § , and (iv) we shall use later.
^ I a2 I

Another inequality for a4 is obtained from the fact that the discriminant of g' (x) =0 must
be positive. On reduction, this inequality can be expressed in the form

K^2000al+A1al+A2ai+A3>0, (14)

where Ax = (2160a^2 - 1800a| -432a*) - 2400a1a3,

A 2 = (405a! - 108afa|) + (432a?a2 - lSOOa^Dag + (2700a2 - 120a2)a|,

A3 = (36afa| - 135a|)a§ + (5400^ - 128a3)a» - 675a*.

As an aid in the application of this inequality for a4 we obtain, by the following lemma, a
simpler one-sided inequality for a4.

LEMMA 2. A set of necessary and sufficient conditions for g(x)=§ to have five real roots is
that the following symmetric determinant and its principal minors be positive, viz.

D' = | -10a2 3(^2 -15a3

_ 1 K« fi^S

- 20a4 4a2a3 -
, - 25a6 2a2a4 - 20a1a5

2axa3 - 20a4 axa4 - 25a5

a3 - 20a4 4a2a3 - 15axa4 - 25a5 2a2a4 - 20a1a5

a4 - 25a5 6a§ - 10a2a4 - 20a1a5 3a3a4 - 15a2a5

3a3a4 - 15a2a5 - 10a3a6

Also

in the notation of Lemma 1.
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62 JOHN HUNTER

Proof. Let (a1, ..., a5) be a set of roots of the equation g(x) = 0, so that Eaf = -alt etc.
5

XJXJVJ \f l^flj " I j "fl' 3' 4/ **~ \ 0 t 1 ^i™2 13 • ^i^&i '

Then, it is known [5(a)] that on reducing this real quadratic form in x0, ..., xx to canonical
form by a real linear transformation, the number of squares with negative coefficient is equal
to the number of pairs of complex roots of g (x) = 0. Hence g (x) — 0 has five real roots if and
only if <t> is positive definite. Writing s, = Za.^, we have

50 = (5xo+six1+s2x2+s3x3+sixi)
2+h(x1, x2, x3, xt), (15)

4

where h(xlt x2,x3,xi)= E a{jx{X],

with a,3- = 5si+i — SjSj.
Clearly g (x) = 0 has five real roots if and only if h is positive definite.

We now apply the integral unimodular substitution

0 1 Oj o a

0 0 1 «!
^0 0 0 1

of determinant 1, and use the usual relations
5

i=0

where ao = l, 50 = r when r < 5 and s(=0 when i < 0 , giving the «„ in terms of the av. By direct
calculation, we find that

4

/ifXj, X^y X3i X^J = fl \gi, gg» b3» £4) = = ^ ^,-iSiSi)
i ,3=l 3

where (a'.) is the 4 x 4 matrix whose determinant is given in the enunciation of the lemma.

Hence g (x) = 0 has five real roots if and only if h' is positive definite, that is, if and only if
(a'{.) is positive definite, which is the required result.

Also, the determinant of 0 is

Hence, comparing the determinants of the quadratic forms on each side of the identity (16)
we have

This lemma provides four conditions for g (x) = 0 to have five real roots :

(i) Aa\ - 10a2>0, which is automatically satisfied ;

[a\ — 10a2, 3a1a2 — 15a3

)a1ai - 15as, 6a | - l O a ^ - 20a4

which, with a4 > - ^-j r- a\,
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t „ 1 .„ „ _ , 9 ( a , ^ -5a , ) 2 . . . .
g l v e s - oi „ i a 3 < a 4 < -T7L (3a| - 5a!a3 - — . — i - | — — ^ ; (16

2 | a21 10 40 2a| — 5a2

4af - 10a2, 3aja2 - 15a3, 2a1a3 - 20a4

3a!©* - 15a3, 6a | - l O a ^ - 20a4, 4a2a3 - ISOJO,, - 25a5

2a 1 a 3 -20a 4 , 4a2a3 - 15a]O4 - 25a5, 6a§ - 10a2a4 -

(iii)

that is, Y = Bjal + 2B2a5 + £ 3 > 0 , (17)

where JBX = - 25 (2af - 5a2),

B3=E+Fai + Gal +

and C = (12a1a! - 3ajo^) + (8a{ - 33afal - 20ai)a3

D = 650^2 - 14aJ - 150a3,

E = (a\a\ - 4a|)a§ + ( l S a ^ - 4aJ)a| - 27a|,

F = (12oJ - 3afo|) + (14o?a2 - 62a1a|)a3 + (117a2 -

G = 97a?a2 - 18a* - 88al -1320^3;

(iv) D '>0 .

To assist in reducing the number of possibilities for os, we use another necessary condition
for g (z) = 0 to have five real roots which can be easily applied, and which arises from work of
Hermite [5(6)]. This involves the discriminant of a quadratic covariant of the equation and,
on simplification, leads to the inequality

X = 625a!+5/^05+#2<0, (18)

where H1 = (- Zaxa\ + 8a^a3 + 5a2a3) - 50ajO4,

and H2 = Coaxal - 2a|a|) + (6o| - 15o§ - lOo^a^a,, + (9a? + 40a2)a|.

We can now apply, as follows, the inequalities which have been established for o4 and oB.
Using the ranges for ax, a2 and o3 given in (13), we first obtain, systematically, the values of o4

which satisfy both (14) and (16) (in some cases there are no values). The possible values of a6,
corresponding to each of the possible sets of values of a1; a2, a3 and a4, are now obtained by
applying (18), using the condition o3a5<2a4

!/5 wherever possible and then applying (17).
Many of the remaining equations are reducible, containing either a rational linear or a rational
quadratic factor, and so can be eliminated. At this stage we find that none of the values of
ox and o2 in the set (av a2) = (0, -3 ) , (0, - 4 ) , ( 1 , -3 ) , (2, - l ) a n d ( 2 , - 2) gives an irreducible
equation with five real roots, and that the ranges of possible values of o3, o4 and a5 for the
other pairs of values of e^ and a2 are very considerably reduced.

To the equations which remain we have now to apply the condition D'>0 and, for those
satisfying this condition, determine DPl=D'j53. These operations can be combined by
using

£Pl = 3125<4 + Hia\ + H2al + #3o5 + Hit (19)

where H1 = P1 + P2a4,

H3=i
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64 JOHN HUNTER

and Px = (256af + 22500^1 -1600a?a2) + (2000a? - 3750a2)a3,

P2 = -2500«i,

Qi = (108a! - 21a\a\) + (144a?al - 630ajal)a3 + (560a2a2 - 128a4 + 825a2)a§ -

Q2 = (1020a2a2 - 192a*a2 - 900a!) + (160a? - 2050a1a2)a3 + 2250a2,

Q3 = -50a2 + 2000a2,

\a\)al + (16a? - 72a1a2)a* + 108a|,

- 72a*)a3 + (356aaa| - 80a?a2)a| + (24a2 - 630a2)ai,

R3 = (24aia| - 6a?a|) + (144a* - 746a2a2 + 560a!)a3 + 1020a1o§,

Rt = (leOOiaa - 36a?) - 1600a3,

Si = (a\a\ - 4al)al + ( l S a ^ - 4a|)a| - 27a«,

£2 = (16a* - 4«2as) + (i8a3«2 - SOojaDag + (144a2 - 6a?)a|,

S3 = (144a?a2 - 128a| - 27a*) - 192a1a3.

On examining first the three simplest cases (a,, a2) =(0, -5 ) , (1, -4 ) and (2, -3 ) , we are
left with the irreducible equations of positive discriminant given in the following table :

0
0
0
1
2
2
2

a2
-5
-5
-5
-4
-3
-3
-3

a3
0
1
1

-3
-4
-5
-6

a4
4
3
5
3
2
1
0

1
-1
-1
1
1
1
1

38569
24217
24217
14641
24217
36497
24217.

Using Lemma 1, we easily see that each of these discriminants is also the discriminant of the
corresponding algebraic number field.

From the three remaining cases (av a2) = (0, -6 ) , (1, -5 ) and (2, -4 ) , 54 equations are
left, and are such that the corresponding equation discriminants are not less than 24217.
We have now to show that there is no corresponding field discriminant less than 14641. For
the cases (a1,a2) = {0, - 6 ) and (2, -4 ) , Ep\ =a? -2a 2 = 12. Hence, by (6), these cases can
arise only if D^f . 12* = 12960. Thus, in these two cases, by Lemma 1, only those equation
discriminants have to be considered, which can be written as d?A, where A is an integer such
that 1 2 9 6 0 < J 4 < 1 4 6 4 1 , and d is any integer greater than 1. Similarly, in the case (av a2) =
(1, - 5), the corresponding range for A is 9151 <^4 < 14641. Only the four equations given in
the following table arise for further discussion :

ai

0
2
2
2

a2
-6
-4
-4
-4

a3
2

-5
-6
-6

a4
6
3
2
3

a5

-2
1
2
2

42. 13997 = 2*. 13997
42. 13658 = 25. 6829
42. 13989 = 2*. 3. 4663
42. 14389 = 2*. 14389.

The entries in the last column give the prime-factorisations of the discriminants. To determine
the powers of 2 in the corresponding field discriminants we use the known result [4(6)] :

t

LEMMA 3. If p= II p«« is the representation of prime p in terms of its prime divisors in the
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algebraic number field R(p) and the degree of p( is/,-, then the power, Dv, of p contained in the
discriminant of the field R (p) is given by

D, = h

where e~{ = e{if p\ e( and e(+ KeJ<( r 4 +1 )e{if p \ e{, p
r< being the power of p in e^

The representation of 2 in terms of its prime divisors is obtained very simply by the
method described in Berwick's Integral Bases [1]. The second dissection criterion of Chapter
VII applies in each of the four cases and, with Lemma 3, shows that the field discriminants
are all greater than 14641.

Combining the results obtained in this section we have :

THEOBEM 2. The minimum discriminant of totally real quintic fields is 14641, the correspond-
ing field being R{p), where p is a root of the equation

x5 + x1 - 4a:3 - 3a;2 + 3x +1 = 0.

The equation is the cyclotomic equation whose roots are the binomial periods a,- + l/a(, the a<

being the primitive 11th roots of unity.
We note that it appears likely that the second minimum is 24217, the field being defined

by the equation x5-5x-3+a;2+3a;-l =0. Other small discriminants of totally real quintic
fields are 36497, 38569, 65657, 70601, 81509, 81589, 89417, 101833, ....

4. Q uintic fields with one real and four imaginary conjugate fields. We first note
that the field defined by the irreducible equation x5 -x3 +x2 +x-l=0 has discriminant 1609
and hence, by Theorem 2, must have one real and four imaginary conjugate fields.

Proceeding as in § 3, using Theorem 1 and taking D = 1609, we find that any field of the
type under discussion of discriminant not exceeding 1609 can be represented as R{pi), where
p1 is an algebraic integer such that, in the notation of § 3,

% = - Z p , . = 0 , l o r 2 , 5 < £ | pt |
2<7-123...,

and | a5 | ^ 2. For simplicity of notation we write p, a±ir, a±i|3, where p, a, r, a and /3 are
real, for the one real and four complex conjugates of pv so that Epi = p + 2a + 2a.= -av

2\ p , | 2 = p2 + 2(<72+a2+T2+i32)) a2 = i{al-U) where U^Sp^p* +2(a2 +a2 - T 2 -/32), etc.
The ranges of values of a2 are given by the following lemma :

LEMMA 4. / / f/

where p2

and p ,

then -(a-262/5)<f7<a,
provided that 5a - 6 2 > 0 .

The Lagrangian method can be applied and gives the result fairly easily. This leads to
the following inequalities for a2:

By considering the function Ep\ under the restrictions on Spit S \ pt |
2 and 2p\, the

solution of a much more complicated maximum and minimum problem leads to the following
ranges for a s :
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«2

- 3
- 2
- 1

0
1
2
3

= 0
a

[0,
[0,
[0,
[0,
[0,
[0,
[0,

3

4]
3]
3]
3]
3]
3]
2]

JOHN

« 2

- 3
- 2
- 1

0
1
2
3

HUNTER

a3

[-6,2]
[-5,2]
[-4,2]
[-3,3]
[-3,3]
[-2,4]
[-1,4]

a2

- 1
0
1
2
3
4

a1 =

a3

[-5,
[-4,
[-3,
[-1,
[0,5]
[1,6]

0]
1]
3]
4]

For a4 the use of Sp\ proves to be much too complicated. By considering a4 itself under
the restrictions on Spt and S\ p, |2 we obtain, again by a complicated discussion, the ranges:

aj=0 : -3<a4<3,

In this case there is no simple sequence of inequalities such as that used in § 3. We have
to deal directly with J9Pi as given in (19) and, fixing alt a2, a3 and a6, use the condition -DPl>0
to determine ai and at the same time DPl. The following lemma gives some help in this work.

LEMMA 5. / / the irreducible equation

g (x) = x5 + atx* + a^c3 + a3x
2 + aAx + ab = 0

has one real and four complex roots, then,

i / a s > 0 , either a3> -a^^-a^ or at> -a2-l,

and if a 5 <0 , either a 3 < -ax - a 5 or a 4 > - a 2 - l .

This follows easily by considering g(0), g(l) and g( -1).
The smallest equation discriminant (of an irreducible equation) which appears is 1609,

this being also the discriminant of the corresponding number fields. By using first Lemma 1
with suitable values for A, in the notation of § 3, and then applying Lemma 3 with Berwick's
second dissection, it can be shown that all except eight of the other irreducible equations define
fields of discriminant not less than 1609. Using either a suitable transformation of variable or
Berwick's third dissection or by finding an integral basis for the field defined by the equation
(Berwick, Chapter IX), we find that these eight equations define fields of discriminant greater
than 1609.

There are ten equations defining fields with discriminant 1609. They are given by :

ax
0
0
1
1
2
2
2
2
2
2

- 3
- 1
- 1

3
0
1
2
3
3
3

a3
0
1

- 1
3

- 3
- 2
- 1

3
3
5

at

2
1
0
2
0

- 2
- 2

1
3
3

a5

1
- 1

1
1
1

- 1
- 1

1
1

" I ,
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the first nine having equation discriminant 1609 and the tenth equation discriminant
78841 = 7 2 . 1609. Denoting the roots of these equations by xv p,x2,..., x9, respectively, we
have

x1 = l/xt = - p4 - ps -1, x2= - 1/p,
xi = llxz = ~ P3 ~ 1> xh = llx« = V P 2 - l>
xa=-p*, *9 = P4-

Hence these equations define the same field.
Thus, from the results of this section we have :
THEOBEM 3. The minimum discriminant of quintic fields with one real and four imaginary

conjugate, fields is 1609, the corresponding field being B(p), where p is a root of the equation

x5-x*+x2+x-l=Q.

From the work, it appears likely that the second minimum is 1649, the corresponding field
being defined by the equation x&+xi-xi -x + 1 =0. The succeeding minima appear to be
1777, 2209, 2297, 2617, 2665, 2869, 3017, 3089, .... The method in fact provides quite an
extensive table of quintic fields of the type under discussion with their discriminants.

5. Quintic fields with three real and two imaginary conjugate fields. The method
used in this case was identical with that used in § 4. Since no new problems arise we shall
simply state the result as :

THEOBEM 4. The discriminant of minimum absolute value of quintic fields with three real
and two imaginary conjugate fields is —4511, the corresponding field being R(p), where p is a root
of the equation

x5 -2a;3 +x2- 1=0.

It appears likely that the second minimum is -4903, the corresponding field being de-
fined by x& +x* -x3 -2x2 -x + 1 =0. The succeeding minima appear to be -5519, -5783,
-7031, -7367, -7463, -8519, -8647, -9439, -9759, -10407,. . . . The method gives an

even more extensive table of fields and discriminants in this case.
These results were contained in a dissertation accepted in 1953 for the Ph.D. degree by

the University of Cambridge. H. Cohn [2] has recently predicted the results in a numerical
study of certain quintics.
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