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Computing Galois representations of modular abelian surfaces

Jinxiang Zeng

Abstract

Let f ∈ S2(Γ0(N)) be a normalized newform such that the abelian variety Af attached by
Shimura to f is the Jacobian of a genus-two curve. We give an efficient algorithm for computing
Galois representations associated to such newforms.

1. Introduction

Let f =
∑
n>1 anq

n ∈ S2(Γ0(N), ε) be a normalized newform, Kf = Q({an}n>1) the number
field generated by the coefficients of f . Associated to f there is a modular abelian variety
denoted as Af of dimension [Kf : Q] constructed by Shimura. Let ` be a prime number and l

a prime ideal of Kf dividing (`) with residue field denoted as F. We denote by f̃ =
∑
n>1 ãnq

n

the reduction of f modulo l. Associated to f̃ , there is a continuous representation

ρf̃ : Gal(Q/Q)→ GL2(F) (1.1)

satisfying the folowing:
(1) ρf̃ is unramified at prime p - `N and

Tr(ρf̃ (Frobp)) = ãp,

Det(ρf̃ (Frobp)) = ε(p)p;

(2) V` := Af [m] ⊂ J1(N)[`] is a finite-dimensional F-vector space realizing ρf̃ , where m is the
kernel of the projection T(N, 2) → F, Tn 7→ ãn and T(N, 2) = Z[Tn : n > 1] ⊂ End(Af )
is the Hecke algebra for Af .

The fact that this Galois representation (1.1) can be computed in polynomial time, shown
in [6], is basic for computing coefficients of modular forms of general weights and levels. In
particular, by the theory of congruences of modular forms, the computation of mod-` Galois
representation associated to modular forms of weight k (2 < k 6 ` + 1) and level 1 can be
reduced to the computation of (1.1) with N = `.

Some progress has been made in designing and implementing practical variants of algorithms
for computing coefficients of modular forms of weight k > 2 and level 1. All current methods
put the main effort into constructing the representation space V` ⊂ J1(`)[`] explicitly. One of
the challenges in doing this is that J1(`) as the Jacobian of modular curve X1(`) has dimension
quadratic in ` (dimJ1(`) = (`− 5)(`− 7)/24), which is too large to be handled efficiently using
current algorithms for computing Riemann–Roch space; see [2, 10, 19] for the discussion and
the computation of ` 6 29 cases. Smarter ways for constructing V` are also developed, that is,
if d = gcd(k − 2, `− 1) > 2 then V` lies in the Jacobian JH(`) of some modular curve XH(`).

Received 27 February 2014; revised 23 May 2014.

2010 Mathematics Subject Classification 11Y40, 11F80, 11G18, 11G20.

Contributed to the Algorithmic Number Theory Symposium XI, GyeongJu, Korea, 6–11 August 2014.

This work was partially supported by NSFC grant No. 11271212.

https://doi.org/10.1112/S1461157014000205 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000205


computing modular galois representations 37

This significantly accelerates the calculation, especially when d = k − 2; see [4, 16]. Even so,
the running time increases dramatically as the level increases. The highest level achieved is
` = 43; see [4].

It seems difficult to investigate higher-level cases using previous methods. For example, let
f1 =

∑
n>1 anq

n be the unique (up to Galois conjugacy) newform in S192(SL2(Z)). Then we
have [Kf1 : Q] = 16. The prime 191 is unramified in Kf1 and its decomposition can be written
as (191) = ℘1 ·℘2 ·℘3 ·℘4, where the residual degrees of prime ideals ℘1, ℘2, ℘3, ℘4 are 1, 1, 2,
12 respectively. Our question is: can we compute ap mod ℘i ∈ F191, i = 1, 2, for large prime
p? We cannot use the previous methods, because J1(191) has dimension equal to 881, which
is too large to do any practical calculation.

Using Magma [1], we can check that there is a newform f =
∑
n>1 bnq

n ∈ S2(Γ0(191)) with

coefficient field Kf = Q(
√

5), such that {f mod li : i = 1, 2} = {f1 mod ℘i : i = 1, 2}, where
li are prime ideals of Kf over 191. Moreover, the abelian variety Af is Q-isomorphic to the
Jacobian Jac(C) of a hyperelliptic curve C (see § 2). So, instead of using J1(191), we may
construct a representation space for each f mod li using Jac(C) directly.

In general, let Af be the abelian variety attached to a newform f ∈ S2(Γ1(N)). If dimAf > 4,
then it may happen that Af is not a Jacobian variety. However, if dimAf 6 3, then there always
exists a curve C such that its Jacobian Jac(C) is isogenous to Af ; see [12, 18]. In this case,
instead of Af , the Jacobian variety Jac(C) can be used to compute the Galois representations
associated to f . In this paper we will study this approach, with an emphasis on the case where
Af has dimension 2 and Jac(C) is Q-isomorphic to Af .

The rest of the paper is organized as follows. In § 2 we recall a method for computing an
equation for a curve C whose Jacobian is Q-isogenous to modular abelian surface and introduce
a method for computing the action of Hecke operators on Jac(C). We also present a method
for computing Galois representations using this curve. In § 3 we focus on an application of
computing Galois representations to counting points on modular abelian surfaces. We also
present some computational results.

2. Galois representations and abelian surfaces

2.1. Equations for curves with modular Jacobians

Let C be a non-singular projective curve defined over Q. If there exists a non-constant
morphism π : X1(N) → C defined over Q for some positive integer N , then C is called
modular of level N . A modular curve is called primitive of level N , if it is not modular of level
d for any proper divisor d|N . The corresponding surjective morphism π∗ : J1(N)→ Jac(C) is
defined over Q and Jac(C) is called modular of level N as well. Equations for modular curves
C/Q with genus greater than 1 have been studied by some authors. In particular, modular
curves with genus 2 have been determined completely; see [8].

Let us first recall the method in [8] for computing an equation for the modular curve C. Let
f =

∑
n>1 anq

n ∈ S2(Γ1(N)) be a normalized newform, S2(Af ) the C-vector space generated

by the Galois conjugates of f , and H0(Af ,Ω
1) the C-vector space {g(q)dq/q : g ∈ S2(Af )}.

The following proposition in [8] is basic for computing equations for genus-two modular
curves.

Proposition 2.1. Let f ∈ S2(Γ1(N)) be a normalized newform such that Af is an abelian
surface. Then there exists a primitive modular curve C defined over Q of level N , such that
Jac(C) is Q-isogenous to Af , if and only if for every linearly independent pair of modular
forms g1, g2 ∈ S2(Af ), there exists P (X) ∈ C[X] of degree 5 or 6 without double roots such
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that the functions on X1(N) given by

x =
g1
g2
, y =

qdx/dq

g2
,

satisfy the equation y2 = P (x).

Remark 1. The Jacobian Jac(C) given above is not necessarily Q-isomorphic to Af .
However, if Af is principally polarized, then there is a general method for finding a curve
C such that Jac(C) ' Af ; see [9].

Let d be the square-free integer such that Kf = Q(
√
d) is the coefficient field of f =∑

n>1 anq
n. We denote by σ the non-trivial automorphism in Gal(Q(

√
d)/Q) and define

h1 :=
f + σ(f)

2
=
∑
n>1

an + σ(an)

2
qn, h2 :=

f − σ(f)

2
√
d

=
∑
n>2

cnq
n. (2.1)

Then h1, h2 ∈ 1
2Z[[q]] and S2(Af ) equals the C-vector space spanned by h1 and h2. Hence

the coefficients of the polynomial y2 = P (x) for x = h1/h2, y = (q dx/dq)/h2 are rational
numbers.

Example 1. Let f be a newform of weight 2 and level 191 with q-expansion

f = q + aq2 − q3 + (−a− 1)q4 + (−a− 1)q5 − aq6 + (−a− 1)q7 + O(q8), (2.2)

where a is a root of t2 + t− 1 = 0. By solving linear equations over Q, we find a hyperelliptic
curve C with an affine equation y2 = x6 − 6x5 + 5x4 + 2x3 + 2x2 + 1 such that Jac(C) is
Q-isogenous to the abelian surface Af . In fact, Jac(C) is Q-isomorphic to Af , as shown in [9].

2.2. Computing Galois representations of modular forms

From now on, we restrict ourselves to newforms with trivial Nebentypus. Let f =
∑
n>1 anq

n ∈
S2(Γ0(N)) be a normalized newform with coefficient field Kf = Q(

√
d) (d square-free)

and ` an odd prime that splits in Kf . Assume there is a modular curve C/Q such that
Jac(C) is Q-isomorphic to Af . The following paragraphs are devoted to computing the
Galois representations ρf : Gal(Q/Q) → GL2(F) associated to f . By ‘computing’ we mean

determining the fixed field L := Qker ρf
and the image ρf (σ) for σ ∈ Gal(L/Q) explicitly.

Let (`) = l1l2 be the factorization of (`) in Kf and f̃i =
∑
n>1 ãn,iq

n the reduction of f

modulo li for i = 1, 2. Associated to each f̃i, there is a Galois representation ρi : Gal(Q/Q)→
GL2(F`). For any prime p 6= ` such that ãp,1 6= ãp,2 ∈ F`, a representation space for ρi can be
written explicitly by the following lemma.

Lemma 2.2. With notation as above, let θi : T(N, 2) → F`, Tn 7→ ãn,i = an mod li be

the surjective ring morphism given by f̃i. Then we have ker θi = 〈`, Tp − ãp,i〉 and Vi :=
Af [`, Tp − ãp,i] is a two-dimensional F`-vector space realizing ρi for i = 1, 2.

Proof. The Hecke algebra T(N, 2) on Af is isomorphic to the ring Z[an, n > 1] generated
by the Fourier coefficients of f , where an algebraic integer an acts on Af as Tn on Af . So we
have ker θi = 〈`, an − ãn,i, n > 1〉. To prove ker θi = 〈`, Tp − ãp,i〉, it suffices to prove that for
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any n > 1 there exists an α ∈ Z[an, n > 1] such that

(an − ãn,i) = α · (ap − ãp,i) mod ` · Z[an, n > 1].

By the Chinese remainder theorem, it suffices to prove

(an − ãn,i) = αj · (ap − ãp,i) mod lj , for j = 1, 2. (2.3)

If i = j, then (2.3) obviously holds, while if i 6= j, (2.3) holds because (ap − ãp,i) mod lj =
(ãp,j − ãp,i) ∈ F×` .

So we have Af [ker θi] = Af [`, Tp − ãp,i] realizing ρi. That this subspace has dimension 2
follows easily from dimF`

Af [ker θi] > 2, Af [ker θ1] ∩Af [ker θ2] = {0} and dimF`
Af [`] = 4. 2

For each positive integer n, we denote by Tn the operator on Jac(C) corresponding to the
Hecke operator Tn on Af under the Q-isomorphism Jac(C) ' Af . Then we have Jac(C)[`, Tp−
ãp,i]) (denoted by Vi as well) realizing ρi for i = 1, 2. The explicit isomorphism Jac(C) ' Af is
not established during computation of the modular curve C, so we cannot expect to compute
Tn on Jac(C) directly without using further techniques.

Assume Af and Jac(C) both have good reduction at p. Then we have a commutative diagram

EndQ(Af )

�'
��

� � // EndFp(Af ⊗ Fp)

'
��

EndQ(Jac(C))
� � // EndFp(Jac(C)⊗ Fp)

The Eichler–Shimura relation asserts that Tp = Frobp + pFrob−1p on Af ⊗ Fp. Using the

commutative diagram above, we have Tp = Frobp + pFrob−1p on Jac(C)⊗ Fp as well. In other

words, Vi(Fp) = Jac(C)(Fp)[`,Frobp + pFrob−1p − ãp,i] can be computed just by exploring the

Frobenius endomorphism and multiplication on Jac(C)(Fp).
In order to construct Vi/Q, we first compute sufficiently many Vi(Fp) for small primes p and

then reconstruct it by the Chinese remainder theorem.
More precisely, let τ be the hyperelliptic involution on C. Assume C is imaginary (the real

case is similar). Then there is a single Q-rational point∞ at infinity and each point D ∈ Jac(C)
has a unique reduced representation, that is, D = Dx − r · ∞, where Dx =

∑r
i=1 Pi, Pi 6=∞,

Pj 6= τ(Pj′) if j 6= j′, and 0 6 r 6 2. Using these representations of points on Jac(C), we have
a well-defined map (see [13])

ι : Jac(C) \ {0} → Q, D 7→
∑
P∈Dx

y(P ),

where each point P is on the affine part of C, so it can be represented by coordinates (a, b, 1),
and y(P ) is the y-coordinate b. By the uniqueness of the representation, we have σ(ι(D)) =
ι(σ(D)) for all σ ∈ Gal(Q/Q) and D ∈ Jac(C)(Q) \ {0}.

Let Pi(X) be the polynomial defined as

Pi(X) =
∏

D∈Vi(Q)\{0}

(X − ι(D)), i = 1, 2.
(2.4)

Then Pi(X) ∈ Q[X] and degPi(X) = `2 − 1. The splitting field of Pi(X) is the fixed field

Li := Qker ρi
and the Galois representation ρi factors as ρi : Gal(Li/Q) ↪→ GL2(F`).
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Lemma 2.3. The logarithmic heights of coefficients of Pi(X), i = 1, 2, are in O(`2).

Proof. Let h : Jac(Q) → R be the naive height function defined in [17]. For each `-torsion
point D ∈ Vi(Q) \ {0}, we have h(D) 6 1

3 log(d) + 4
3 log 2 [17, Theorem 6.4], where d is

the discriminant of the hyperelliptic curve C. So, there is an absolute constant c such that
the logarithmic heights of roots (that is, ι(D)) of Pi(X) are bounded above by c. Hence the
logarithmic heights of coefficients of Pi(X) are bounded above by O(`2). 2

We now turn to the object Jac(C)⊗Fp. For simplicity, the reduction of the Q-rational point
∞ is denoted by ∞ as well.

Definition 1. Let p be a prime such that ãp,1 6= ãp,2. If for all D ∈ Jac(C)(Q) \ {0}
with reduced representation D = Dx − r · ∞, its reduction D̃ = D̃x − r · ∞ is the reduced
representation for D̃ ∈ Jac(Fp) \ {0}, then p is called a good prime.

Remark 2. It is shown in [13] that if C is imaginary then r always equals 2 in the reduced
representation. As a consequence, every prime p such that ãp,1 6= ãp,2, Af and Jac(C) have
good reduction at p is a good prime.

Now let p be a good prime and Fq the minimal extension of Fp such that Vi(Fp) = Vi(Fq).
Then we have a projection

πi : Jac(C)(Fq)[`]→ Vi(Fq), D 7→ (Frobp + pFrob−1p − ãp,i′)(D), i = 1, 2; (2.5)

here i′ = 2 if i = 1 and i′ = 1 if i = 2. The strategy to find a basis for Vi(Fq) can be formulated
as follows:

(1) Compute n = |Jac(C)(Fq)| and factor n as n = `e ·m with ` - m.
(2) Construct `-torsion points by picking random points on Jac(C)(Fq) and multiplying these

points by m and proper powers of `.
(3) Project the `-torsion points to Vi(Fq) using the map πi (2.5).
Using general algorithms for computing zeta functions of hyperelliptic curves, the zeta

function for C/Fp can be computed in O(logω p) time for some constant ω. In fact, the explicit
value of ω is not required in the following complexity analysis. Using Cantor’s algorithm,
addition in the Jacobian Jac(C)(Fq) can be done in Õ(log q) time. Moreover, |Jac(C)(Fq)| is
bounded above by O(q2). So the complexity of constructing an `-torsion point is bounded
above by Õ(log q2 · log q) = Õ(log2 q), which is bounded by Õ(`4 log2 p), since [Fq : Fp] < `2.
Since dimF`

(Vi) = 2, a basis for it can often be found from several random points on Vi(Fq),
with a complexity

O(logω p) + Õ(`4 log2 p). (2.6)

By the uniqueness property, Pi(X) mod p can be computed as

Pi(X) mod p =
∏

D̃∈Vi(Fq)\{0}

(X − ι̃(D̃)) ∈ Fp[X],
(2.7)

where ι̃ : Jac(C)(Fp) \ {0} → Fp is the reduction of ι. Given Vi(Fq), we can compute the

polynomial Pi(X) mod p in Õ(`2 log q) = Õ(`3 log p) time. By Lemma 2.3 and the Chinese
remainder theorem, to reconstruct Pi(X) ∈ Q[X] it suffices to compute Pi(X) mod p for
primes p bounded above by O(`2). So the complexity of computing Pi(X) is∑

prime p6O(`2)

O(logω p) + Õ(`4 log2 p) + Õ(`3 log p) = Õ(`6). (2.8)
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Remark 3. (1) The complexity of computing zeta functions of C/Fp for primes p in O(`2)
is O(`2 logω `), which becomes a minor term in the overall complexity of computing Pi(X).
Therefore, as mentioned above, the explicit value of the constant ω is not required.

(2) If ` is inert in Kf , then the reduction of f modulo the prime ideal (`) gives a
representation ρ : Gal(Q/Q)→ GL2(F`2). And the two-dimensional F`2-vector space Jac(C)[`]
realizes ρ.

(3) Similarly, we can compute a polynomial Qi(X) of degree `+ 1 describing the projective
representation ρ̃i : Gal(Q/Q)→ GL2(F`)� PGL2(F`), where Qi(X) is defined as

Qi(X) =
∏

L∈P1(Vi(Q))

(
X −

∑
D∈L\{0}

ι(D)

)
, i = 1, 2. (2.9)

Similar to Lemma 2.3, the logarithmic heights of coefficients of Qi(X) are bounded above
by O(`2). It turns out that these polynomials can be reduced to polynomials with small
coefficients; see Table 2 (a reduced polynomial for Qi(X) is denoted by Qred

`,i (x)).

We are mainly interested in the image of Frobenius elements in the Galois group. The
following theorem [5, Theorem 1.1] will help us in determining the matrix ρi(Frobp).

Theorem 2.4. Let K be a global field and f(x) ∈ K[x] a separable polynomial with Galois
group G and roots a1, . . . , an in some splitting field. There is a polynomial h(x) ∈ K[x] and
polynomials ΓC ∈ K[X] indexed by the conjugacy classes C of G, defined as

ΓC(X) =
∏
σ∈C

(
X −

n∑
j=1

h(aj)σ(aj)

)
,

such that

Frob℘ ∈ C ⇐⇒ ΓC

(
Tr Fq [x]

f(x)
/Fq

(h(x)xq)

)
= 0 mod ℘

for almost all primes ℘ of K, where Fq is the residue field at ℘.

The ‘almost all primes’ in the theorem are those not dividing the denominators of the
coefficients of f , its leading coefficient and the resultants of ΓC(X) and ΓC′(X) for all C 6= C ′.
Usually one can take h(x) = x2; see [5].

In our case, for each conjugacy class C ⊂ GL2(F`) the corresponding polynomial ΓC(X) is
defined as

ΓC(X) =
∏
σ∈C

(
X −

∑
D∈Vi(Q)\{0}

h(ι(D)) · ι(σ(D))

)
. (2.10)

We choose a small prime p such that the points of Vi(Fp) are defined over a small extension

field Fq of Fp, and then Hensel lift each ι̃(D̃) ∈ Fq for D̃ ∈ Vi(Fq) to ι(D) ∈ Qq with high
p-adic precision. Then we can recover ΓC(X) using formula (2.10).

Proposition 2.5. With notation as above, we assume p, [Fq : Fp], deg h(X) and coefficients
of the auxiliary polynomial h(X) are all in O(1). Given Pi(X) ∈ Q[X] and Vi(Fq). Then for

any conjugacy class C ⊂ GL2(F`), the polynomial ΓC(X) ∈ Q[X] can be computed in Õ(`8)
time.

Proof. Similar to the proof of [19, Proposition 4.6]. 2
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Definition 2. Fixing an auxiliary polynomial h(x), a representation datum for ρi is defined
as

Si(`) := {li, Pi(X),ΓC(X) for all conjugacy classes C ⊂ GL2(F`)}, i = 1, 2.

Similarly, a representation datum for ρ̃i is defined as

S̃i(`) := {li, Qi(X),ΓC(X) for all conjugacy classes C ⊂ PGL2(F`)}, i = 1, 2.

There are `2 − 1 conjugacy classes in GL2(F`). So the complexity of computing each datum
Si(`) is

Õ(`6) + (`2 − 1) · Õ(`8) = Õ(`10). (2.11)

Let m be a generator for the maximal order of Kf (m = (1+
√
d)/2 if d = 1 mod 4, m =

√
d

otherwise), then the pth coefficient ap of f can be written as ap = a + bm with a, b ∈ Z. We
can determine a mod `, b mod ` easily using the data S1(`) and S2(`).

2.3. Verification of projective representation datum

Recall that the logarithmic heights of coefficients of Qi(X) are bounded above by O(`2).
However, the implied constant is not given. We should prove that the polynomial recovered
from Qi(X) mod p for small primes p is indeed correct. More precisely, let S̃i(`) be a projective
representation datum for ρ̃i. We would like to verify that the projective representation given
by ρ̃′i : Gal(Qi(X)) ↪→ PGL2(F`) is isomorphic to ρ̃i : Gal(Q/Q) → PGL2(F`) given by the
newform fi. This is accomplished by using Serre’s conjecture on modular forms.

Let ρ : Gal(Q/Q) → GL2(F`) be an irreducible Galois representation and V a two-
dimensional F`-vector space realizing ρ. The Serre level N(ρ) of ρ is defined as

N(ρ) =
∏
p 6=`

pn(p,ρ). (2.12)

The exponent n(p, ρ) is defined as

n(p, ρ) =

∞∑
i=0

dim(V/Vi)

[ρ(G0) : ρ(Gi)]
, (2.13)

where Gi is the ith ramification group of the fixed field Qker ρ
at p and Vi is the subspace of

V fixed by ρ(Gi). It is easy to see that n(p, ρ) = 0 if and only if V0 = V (ρ is unramified at p)
and n(p, ρ) = dim(V/V0) if and only if V1 = V (ρ is tamely ramified at p).

The Serre weight k(ρ) is defined in terms of the local representation ρ|D`
, where D` is the

decomposition group of Qker ρ
at `. See [7] for the explicit definition.

Let ρ̃ : Gal(Q/Q) → PGL2(F`) be the projective representation associated to ρ. By Tate’s
lifting theorem, there exists a lifting ρ′ of ρ̃ with minimal Serre weight and minimal Serre level
as well. The Serre weight k(ρ̃) and Serre level N(ρ̃) of ρ̃ are defined to be k(ρ′) and N(ρ′),
respectively.

If ρ is wildly ramified at `, a theorem of Moon and Taguchi [11] relates k(ρ) to the
discriminant of certain number field. The following proposition can be found in [6, Chapter 7].

Proposition 2.6. Let ρ̃ : Gal(Q/Q) → PGL2(F`) be an irreducible projective representa-
tion that is wildly ramified at `. Take a point in P1(F`), let H ⊂ PGL2(F`) be its stabilizer
subgroup and let K be the number field defined as

K = Qρ̃
−1(H)

.
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Let k > 1 be an integer. Then

k(ρ̃) = k ⇐⇒ v`(DiscK/Q) = k + `− 2.

It would be nice to have similar results for the Serre level N(ρ̃). In one direction, we have
the following result [3, Proposition 2].

Proposition 2.7. Let F/F` be a finite extension and ρ̃ : Gal(Q/Q)→ PGL2(F) a projective

representation with im(ρ̃) ⊃ PSL2(F) and let K be the number field defined as Proposition 2.6

with constant field F` replaced by F. Let p 6= ` be a prime above which K/Q is at most tamely

ramified. Then the valuation vp(N(ρ̃)) is at most 2 and can be expressed as follows:

vp(N(ρ̃)) =


0, if K is unramified at p,

1, if K is ramified at p but also has an unramified prime above p,

2, if K has no unramified prime above p.

In the other direction, we prove that, in some cases, the valuation of the discriminant of K

at prime p|N(ρ̃) is equal to `− 1. More precisely, we have the following result.

Proposition 2.8. Let ρ̃ : Gal(Q/Q) → PGL2(F`) be a projective representation with

im(ρ̃) ⊃ PSL2(F`) and det(ρ̃)|Dp
be unramified at prime p 6= `, where Dp is the decomposition

group of Qker ρ̃
at p. Let K be the number field defined as Proposition 2.6. Then

vp(N(ρ̃)) = 1⇒ vp(Disc(K/Q)) = `− 1 and (p) = ℘`1 · ℘2,

where ℘1 and ℘2 are two different prime ideals of K.

Note that the condition that det(ρ̃)|Dp
is unramified at prime p 6= ` is equivalent to requiring

that the modular form corresponding to ρ̃ has trivial Nebentypus. To prove Proposition 2.8,

we first prove a lemma on the order of ρ̃(Ip).

Lemma 2.9. Let ρ̃ : Gal(Q/Q)→ PGL2(F`) be a projective representation and det(ρ̃)|Dp
be

unramified at prime p 6= `. Then ρ̃(Ip) is unipotent and non-trivial if and only if vp(N(ρ̃)) = 1.

Proof. If ρ̃(Ip) is unipotent and non-trivial then ρ̃(Ip) =
〈(

1 ∗
0 1

)〉
. Let ρ : Gal(Q/Q) →

GL2(F`) be a Tate lifting of ρ̃ with ρ(Ip) = ρ̃(Ip). Then n(p, ρ) = 1 follows easily by (2.13).

Since ρ̃ is ramified at p, we have that vp(N(ρ̃)) > 1. By the definition of N(ρ̃), we have

vp(N(ρ̃)) = 1.

If vp(N(ρ̃)) = 1, then a Tate lifting ρ of ρ̃ with n(ρ, p) = 1 satisfies dimV0 = 1 and V1 = V ,

where V is a representation for ρ and Vi, i > 0, are defined as before. So ρ(Ip) has the form〈(
1 1
0 1

)〉
or
〈(

1 0
0 x

)〉
with 1 6= x ∈ F×` . Since det(ρ̃)|Dp is unramified, we have that det(ρ)|Dp is

unramified as well, that is, det(ρ)|Ip = 1. Hence we have ρ(Ip) =
〈(

1 1
0 1

)〉
, so ρ̃(Ip) is unipotent

and non-trivial. 2

Proof of Proposition 2.8. Let L := Qker ρ̃
be the number field cut out by ρ̃. Then L is

the normal closure of K. By the lemma above, ρ̃(Ip) is unipotent of order `, so p is tamely

ramified in L with ramification index equal to `. Since L is the normal closure of K, the prime

p is ramified (tamely) in K as well. Write its prime ideal factorization as (p) =
∏g
i=1 ℘

ei
i .
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Then ei divides ` and there exists at least one ei greater than 1. On the other hand, we have∑g
i=1 ei · fi = [K : Q] = ` + 1, where fi is the residue degree of ℘i. Hence the factorization

must be of the form (p) = ℘`1 · ℘2, with f1 = f2 = 1. Since K is tamely ramified at p, the

valuation of Disc(K/Q) at p is equal to (`+ 1)− (f1 + f2) = `− 1. 2

Combining the relation between k(ρ̃) and v`(Disc(K/Q)), we have the following theorem.

Theorem 2.10. Let N > 1 be a square-free integer, k > 2 an even integer and ` > k− 1 an
odd prime not dividing N . Let ρ̃ : Gal(Q/Q) → PGL2(F`) be a projective representation
wildly ramified at ` with im(ρ̃) ⊃ PSL2(F`) and det(ρ̃)|Dp

be unramified at prime p|N .
Then ρ̃ is odd with k(ρ̃) = k and N(ρ̃) = N if and only if K is not totally real with discriminant
Disc(K/Q) = (−1)(`−1)/2 · `k+`−2 · N `−1 and each prime p dividing N can be factored as
(p) = ℘`1 · ℘2 in K with ℘1 6= ℘2.

Proof. Here, we say that a projective representation ρ̃ is odd if ρ̃(c) is non-scalar, where c is
the complex conjugation. It can be easily checked that ρ̃ is odd if and only if each Tate lifting
of ρ̃ is odd.

By Propositions 2.6–2.8, we have

k(ρ̃) = k and N(ρ̃) = N,

if and only if

|Disc(K/Q)| = `k+`−2 ·N `−1 and (p) = ℘`1 · ℘2 with ℘1 6= ℘2 for all p|N.

Therefore, it remains to check that ρ̃ is odd if and only if K is not totally real and the sign of
Disc(K/Q) is (−1)(`−1)/2.

Now, assume ρ̃ is odd. Then up to conjugation, we have ρ̃(c) =
(−1 0

0 1

)
, the orbits of ρ̃(c)

on P1(F`) have length {1, 1, 2, . . . , 2}, that is, K has two real embeddings and ` − 1 complex
embeddings.

Conversely, if K is not totally real, then ρ̃(c) is non-scalar, so ρ̃ is odd. 2

Remark 4. If k > 3, then v`(Disc(K/Q)) = k + `− 2 implies the assumption, that is, ρ̃ is
wildly ramified at `. However, if k = 2, we need to consider the factorization of (`) in K to
check this assumption. In this case, assume K is given by Q[x]/(P (x)) and v`(Disc(P (x))) =
v`(Disc(K/Q)) = `. Then the assumption can be verified by considering the factorization of
P (x) over F`[x].

Now, let S̃i(`) be a projective representation datum for ρ̃i. We first compute the Galois
group of the polynomial Qi(X) ∈ S̃i(`) using Magma [1]. This establishes an embedding
Gal(Qi(X)) ↪→ PGL2(F`) and defines a projective representation ρ̃′i : Gal(Q/Q)→ PGL2(F`).
Then we use Theorem 2.10 to determine k(ρ̃′i) and N(ρ̃′i). It turns out that ρ̃′i is surjective for
each case in Table 1 and k(ρ̃′i) = 2, N(ρ̃′i) = 191 as expected. By Serre’s conjecture on modular
forms, there exists a newform gi of weight k(ρ̃′i) and level N(ρ̃′i) with projective representation
ρ̃′i. Using Sturm’s bound (see [15]), gi is determined by its first few coefficients, which can be
computed using S̃i(`) as well. The last step of the verification process is to verify that gi is
congruent to the original newform fi.

3. Applications

Let Af be the abelian surface attached to a newform f ∈ S2(Γ0(N)). Let p be a prime such
that Af has good reduction at p. The characteristic polynomial of a Frobenius element Frobp
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on Af is

P (t) = (t2 − ap · t+ p)(t2 − σ(ap) · t+ p),

where σ ∈ Gal(Kf/Q) is the non-identity element. Since |Af (Fp)| = P (1), to count the number
of points on Af (Fp) it suffices to compute the pth Fourier coefficient of f , and this can be
reduced to computing the mod-` Galois representations associated to Jac(C).

Algorithm 1. Counting points on modular abelian surface.

Input: A normalized newform f ∈ S2(Γ0(N)) with Kf = Q(
√
d) (d square-free), hyperelliptic

curve C : y2 = F (x) for Af and a prime number p.

Output: |Af (Fp)|.
1. Enumerate the first n primes `j such that (d/`j) = 1, 1 6 j 6 n, and

∏n
j=1 `j > c

√
p,

where the constant c = 4(1 + 1/
√
d) if d ≡ 1 mod 4 and c = 4 otherwise. Set M = ∅.

2. Compute the representation datum Si(`j) for 1 6 j 6 n, i = 1, 2.

3. For each datum Si(`j), compute the trace ti = TrFp[x]/Pi(x)(x
p+2), Pi(X) ∈ Si(`j). Find

the polynomial ΓCi
(X) ∈ Si(`j) such that ΓCi

(ti) mod p = 0. SetM :=M∪{(`j , Ci)}.
4. Reconstruct ap ∈ Kf from M by the Chinese remainder theorem.

5. Output P (1) = (p+ 1− ap) · (p+ 1− σ(ap)).

Notice that the auxiliary polynomial for the representation datum is set to be h(x) = x2.

Asymptotically, half of all primes ` satisfy (d/`) = 1. So all primes `j found in Step 1 are

bounded above by Õ(log p). Each representation datum Si(`j) can be computed in Õ(`10j )

time. Hence Step 2 can be completed in∑
`j6Õ(log p)

Õ(`10j ) = Õ(log11 p)

time. The complexity of computing xp+2 ∈ Fp[x]/Pi(x) is Õ(`2j log2 p) (Õ(log p) multiplications

in a finite field of degree 6 `2j−1) and its trace can be computed in time Õ(`2j log2 p) as well. It

takes Õ(`2j log p) to compute a single ΓC(ti) mod p, and the one with zero value can be found

after at most `j + 2 attempts. Therefore it takes Õ(`3j log p) to find the conjugacy class Ci. In

summary, Step 3 takes ∑
16j6n

Õ(`2j log2 p) + Õ(`3j log p) = Õ(log5 p).

Since the representation datum can be used to compute Af (Fp′) for primes p′ 6 p as well, Step

2 can be viewed as a precomputation. Then we have an algorithm of complexity Õ(log5 p) for

counting points on a special class of modular abelian surfaces.

Remark 5. The computation of representation data is rather time-consuming, but once

we have these data, it is straightforward to obtain the zeta functions of C/Fp for primes p.

There are Schoof-type point-counting algorithms for general curves over Fp of genus 2 with

complexity Õ(log8 p). If, in addition, the curves have explicit and efficient real multiplication

then the complexity can be reduced to Õ(log5 p); see [13, 14]. Compared with these methods,

the main advantage of our approach is that we do not need to assume the efficiently computable

of certain φ ∈ End(Jac(C)) on generic elements of Jac(C), and our approach can be easily

generalized to higher-genus cases.
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In fact, while computing the representation datum Si(`), we can use a modular symbol

algorithm for computing coefficients of modular forms to compute the zeta function for C/Fp,
with a complexity polynomial in p. We can use general algorithms for function fields to perform

addition in Jac(C)(Fq). Therefore, even for higher-genus cases, the representation datum Si(`)

can be computed in time polynomial in `. Similarly, the zeta function for C/Fp can be computed

easily from Si(`) for sufficiently many small primes `.

Let f ∈ S2(Γ0(191)) be the newform as in Example 1. The first five primes split in Kf =
Q(
√

5) are 11, 19, 29, 31 and 41. For each ` ∈ {11, 19, 29, 31, 41}, denote by (`) = l1 · l2 its
prime decomposition. The first few coefficients of f̃i := f mod li are listed in Table 1. The
entry corresponding to each Qi(X) (Pi(X)) is the number of decimal digits of the maximal
coefficient of Qi(X) (Pi(X)). The reduction of each Qi(X) to a polynomial Qred

`,i (x) with small

coefficients is listed in Table 2. Using this much simpler polynomial Qred
`,i (x), we can compute

the maximal order of number field K`,i := Q[x]/(Qred
`,i (x)). Its discriminant is listed in Table 1

as well.
We take p = 238 + 234 + 6713075 for example. Since 11 · 19 · 29 · 31 · 41 > 4 · (1 + 1/

√
5) · √p,

we can recover ap from ap mod ` for ` ∈ {11, 19, 29, 31, 41} by the Chinese remainder theorem,
which is ap = 374306− 146389 · ((−1 +

√
5)/2). So the characteristic polynomial of Frobp on

Af is

P (t) = (t2 − apt+ p) · (t2 − σ(ap)t+ p)

= t4 − 895001 · t3 + 757598501755 · t2

− 261398009901174203 · t+ 85301665853409303575209.

(3.1)

As a consequence, we have |Af (Fp)| = P (1) = 85301404456157000007761 ≈ 276, which is a
prime.

Table 1. Summary of representation data for ρi.

` f̃i Qi(X) Pi(X) Disc(K`,i) ãp,i ap mod `

11
q + 7q2 + 10q3 + . . . 17 102 −1111 · 19110 7

9 + 10 · ((−1 +
√

5)/2)
q + 3q2 + 10q3 + . . . 15 87 −1111 · 19110 3

19
q + 14q2 + 18q3 + . . . 47 275 −1919 · 19118 14

6 + 6 · ((−1 +
√

5)/2)
q + 4q2 + 18q3 + . . . 48 276 −1919 · 19118 4

29
q + 23q2 + 28q3 + . . . 99 639 2929 · 19128 23

3 + 3 · ((−1 +
√

5)/2)
q + 5q2 + 28q3 + . . . 100 641 2929 · 19128 5

31
q + 18q2 + 30q3 + . . . 111 740 −3131 · 19130 18

12 + 24 · ((−1 +
√

5)/2)
q + 12q2 + 30q3 + . . . 109 730 −3131 · 19130 12

41
q + 34q2 + 40q3 + . . . 181 1289 4141 · 19140 34

17 + 22 · ((−1 +
√

5)/2)
q + 6q2 + 40q3 + . . . 180 1293 4141 · 19140 6
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Table 2. Polynomials corresponding to projective representations.

Qred
11,1(x) x12 − 2x11 + 99x10 + 1496x9 − 7161x8 − 77660x7 + 535128x6

− 1759912x5 + 9071854x4 − 29111269x3 + 35167605x2 − 118403833x+ 283431617

Qred
11,2(x) x12 − 4x11 − 11x10 − 484x9 − 165x8 + 215666x7 + 1463286x6 + 16446562x5

+ 45871815x4 + 171307389x3 + 360521777x2 + 765979601x+ 372355371

Qred
19,1(x) x20 − 9x19 − 361x18 + 7068x17 − 52288x16 + 697851x15 + 9227673x14

− 984175566x13 + 22938549919x12 − 156485353104x11 − 283331301915x10

− 5671765761816x9 + 139391174142417x8 − 491377289503645x7 + 1223873060235593x6

− 15590672335168012x5 + 21624973693547414x4 + 88592188863932123x3

+ 350580422723685512x2 + 3513186138698590635x− 20425396511439477376

Qred
19,2(x) x20 − 7x19 − 323x18 + 11039x17 − 50350x16 + 981407x15 − 13332338x14 − 163266905x13

+ 5247983350x12 − 148140809984x11 + 2184669800102x10 − 2498380187197x9

− 247124344515040x8 + 3667970283360225x7 − 23893750621974781x6

+ 88140463317813945x5 − 60933737521115257x4 − 374960886922014111x3

+ 1527817807625237133x2 + 3080602038292235873x+ 2159967343611754103
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