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FORMAL POWER SERIES OVER
COMMUTATIVE N-ALGEBRAS

ERNST AUGUST BEHRENS

Introduction. A Banach algebra P over C with identity element is called
an N-algebra if any closed ideal in P js the intersection of maximal ideals. An
example is given by the algebra % ¢(X) of the continuous C-valued functions
on a compact Hausdorff space X under the supremum norm; two others are
discussed in § 3. The closure a o b = TI'(a * b) of the product of closed ideals
a and b is equal to their intersection. This result implies the distributivity of the
lattice V(P) of the closed ideals of P, where the lattice operations are the
intersection a M b and the closure a 4 b of the sum a + b. The arithmetic of
the topologically arithmetical ring P, i.e. the structure of the lattice ordered
semigroup V(P) under o, is therefore simply the structure of V' (P), considered
as a lattice.

The formal power series in an indeterminate w with coefhcients in the
N-algebra P form an algebra R = P[[w]] over the ring P = C[[w]] of the
formal power series in w with coefficients in the field C of complex numbers.
P[[w]] is complete under the sequence

M T s il 4o+ [l

of submultiplicative seminorms ¢,, # = 0,1,2 ..., || - || being the norm in P;
in other words, P[[w]] is a locally-m-convex and complete algebra.

If P is commutative then R is topologically arithmetical, i.e. the lattice V' (R)
of the closed ideals in R is distributive, as it is shown in § 1 by associating with
any ideal in V' (R) an ascending chain of ideals in V(). The arithmetic of R
is developed in §1, Theorem 1.7.: Any 4 € V(R) is the intersection of powers
M= of the maximal ideals M in R; and if this representation of 4 is normal-
ized, by taking the exponents maximal, then 4 o B corresponds to a(M) +
B(M), M in the set M of the maximal ideals in R. The mappingsa : M — a(M)
for M € M are the Ny, .-valued upper semicontinuous functions on the set M
in its (Jacobson) hull-kernel-topology. Here Ny, means the chain consisting
of the non-negative rational integers and co.

Theorem 1.8 gives a characterization of the N-algebras P. It is based on the
following fact: Every closed ideal a of P is contained in the intersection K (Ha)
of its hull Ha which is the set of those maximal ideals which contain a. The
algebra P contains closed ideals ¢ with hull ¥, say, which are the only ones
which possess ¥ as its hull, i.e. o’ € V(P) and Ha’ = 9 implies o’ = K ().
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By Theorem 1.8, these ideals form a sublattice  of V(P) and not only a
subset of V(P)). The set $ is very important for the Spectral Synthesis
(Benedetto [5]).

§ 2 deals with a characterization, up to ‘‘isometric’’ isomorphism ¢ of the
P-algebras R = P[[w]] over those N-algebras P which satisfy m «m = m
(and not only m o m = m), a property which is enjoyed by the examplesin § 3.
The characterization is mainly based on the fact, that R is a commutative,
complete, locally-m-convex P-algebra which is topologically arithmetical (or,
equivalently satisfies dimgM/M? = 1 for all M € M), and on the fact that the
powers "R of its radical wR are completely distributive elements in V(R) in
the sense
3) wnR‘i‘ ﬂAi=ﬂ(wnR+Af) for4,€ V(R)

i€l i€r
where I is an arbitrary index set. Here the adjective ‘‘isometric’’ needs an
explanation: If the locally-m-convexity of R is given by a sequence {g,; n = 0,
1,2, ...} of seminorms which extend the norm || - || of the factor algebra of R
over its radical and which take care of the fact that R is an algebra over
P = (C[[w]] (and not only over G) then ¢,*(sa) = ¢,a is valid for a € R and
n=0,1,2 ... (Theorem 2.9).

The work on N-algebras goes back to the papers of G. Silov [10] and of
A. B. Willcox [11]. The arithmetic of P[[w]] in the case P = ¥ ¢(X) was
developed in E. A. Behrens [3], but the importance of the complete distribu-
tivity (3) of the powers of the radical has shown up at first in the purely
algebraic semigroup theoretical contribution (Behrens [4]).

1. The arithmetic of P[[w]]. Let P be a commutative N-algebra with
identity element ¢, i.e. a Banach algebra with the property that any closed ideal
a in P is the intersection of maximal ideals m. Three examples are mentioned
in the introduction and will be discussed in § 3. The closed ideals in P form a
lattice ordered semigroup V(P) under the following operations: the meet of
a and b in V(P) is their intersection a M b, the join of a and b is the closure
a - 0 of their sum a 4 b and the o-product of a and b is the closure a 0 b of
their product a ¢ 0. The o-product

(1) aob isequalto aMb

as the following arguments shows: Let X be the set of maximal ideals m in P
and define the hull of a € V' (P) by

(2) H(a) ={m€ X;a < mj.
Then

(3) a= N{m;m € Ha}
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and
(4) H(aob) = Hao\JUHb = H(aMb)

because the maximal ideals in P are prime.

Equation (1) implies that P is a topologically arithmetical ring, i.e. the
lattice V(P) is distributive.

Now, using the concept of a locally-m-convex algebra (E. A. Michael [8])
we get

THEOREM 1.1. Lel P be a commutative N-algebra with identity element e and
[| - || as its norm. Then the set R = P[[w]] of all formal power series

(5) j = Z ¢iwi9 ¢1 E Py

120

in the indeterminate w is a complele, locally-m-convex algebra under forming the
sum coefficientwise and using the Cauchy product and taking the following
sequence of seminorms

(6) Qnifﬂoz ll¢d| forn =0,1,2,....

<iZn

R is a P-algebra over the complete, locally-m-convex algebra P = C[[w]] of all
formal power series in w, with complex coefficients, and with

)] pn:;ciwi—>|60]+...+[cn], n=20,12 ...
i=
as its seminorms.

Proof. P is complete with respect to its norm || - |].

The closed ideals 4, B in R form a .lattice ordered semigroup V' (R) under the
intersection A /M B, the closure 4 + B of their sum A + B and the closure
A o B of their product 4 - B.

To any 4 € V(R) there corresponds a chain
8) ®*4 =f{a;€ VP);a;Cagandi=0,1,2,...}

where
(9) a;={¢ € P; there exists an f = > ¢,w’ € A with ¢; = ¢}.

The equations TI'a; = a;, where Ta; is the closure of a;, follow immediately
from the definition (6) of the seminorms ¢, on R by the norm || - || on P. Now
f € A implies wf = we - f € A; that proves a; C a1.

Conversely, any chain
(10) {atE I/(P>;aicai+1,i=0,1,2,...}
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is mapped by

) o) = {3 setiorc g

to a closed ideal 4 in R.
By the definition of @ it is clear that ®¥ maps any chain (10) to itself. But
the proof of the equality

(12) vo = idv(R)

needs a double induction, based on the fact that in P the closure T'(¢.P) of the
principal ideal ¢P, generated by ¢, is equal to its square (observe (1)). Let
A € V(R) and assume that the vector spaces

(13) awiC A4 for0=i<n-—1.

Let ¢ = > 20 ¢w® € ¥PA and therefore ¢, € a,. It is to show that ¢,w" € 4.
By the definition of a, there exists an element > ;>¢nw?in A with 5, = ¢,.
By virtue of (13) we can assume 7y = ... = 1,.; = 0, in other words

(14) ¢" + o™ + ... € A.

This formula is the case m = 1 in the following induction assumption on .
There exists an 7 € P such that

g = ¢0" + 0"t 4 ...+ Q™™ 4 po"t™ 4 L€ 4.
Then A4, as an ideal, contains both

g (600 + n0™) = (&7 + 2¢m0™ + .. )"
and

g ¢nw0 = (¢n2 + ¢n77wm + .. -)w"-
Therefore 4 contains also
(15) 2" + 0™ ™ + . . ..

Because of (1), ¢, is contained in T'(¢,2P). Therefore, for a given ¢ > 0 there
exists an p. € P with ||¢, — ¢.20¢| < e. The product k. of (15) with pw?is an
element of 4 and it differs from the element ¢,w" by less than e with respect to
the seminorm ¢,4,, which annihilates w"*™+1R. That proves the case m 4+ 1
of the induction assumption. In other words to every pair (e, m) there exists an
element fhem € A such that ¢uin (¢ — hem) < € is valid. That proves
¢" € TA = A. This argument shows also the validity of the case # = 0 in
the induction on # and finishes the proof of the equality (12).

THEOREM 1.2. If R is the ring of Theorem 1.1, then:
(1) The closed ideals A in R = P|[w]] correspond one-to-one to the ascending
chains

{Qie V(P);aigai+1,i=0, 1,2,...}
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of closed 1deals in P under the mapping

(16) V:{a;i=0,1,...}— {Zﬁ puw'; ¢ € ai}
12

and its converse P. )
(ii) Define {a;;1} + {by; 4} = {a; + b4; 1} and the intersection componentwise
also. Then

®(4 4+ B) = ®4 + B and ®(4 N B) = d4 N ®B.
(iii) Define {a; 1} o {by; 1} = {cy; 2}, where
(A7) = (@Nb) F+ @Nby) + ... 4+ @MNb),e=0,1,...
Then
(18) ®(4 oB) = ®4 o ®B.
(iv) R = P[[w]] 1s topologically arithmetical.

Proof. (i) is proved above. (ii) and (iii) are easy to verify using (i). Compare
(iii) with the purely set theoretical lemma before Theorem 2.3 in Behrens [3].
(iv) follows from the fact that ideals in P satisfy

(19) aN@G+c¢)=(@Nb)+ @Ne)
and an application of (ii).
CoroLLARY 1.3. The n-th o-power of a maximal ideal M in R 1s
> mle'+ > P,
0sisn—1 jizn
where the maximal ideal m in P is the image of M under the natural epimorphism
of R onto R/wR ~ P.

CoOROLLARY 1.4. The n-th o-power of the Jacobson radical J of R is

(20) J* = "R = Z Pu’.
iZn
COROLLARY 1.5. For any natural number n, the n-th o-power J* of ihe radical
J of R is a completely distributive element in the lattice V(R), i.e.

(21) J*4+ N B.= N (J"+ B.), Ianarbitrary set.
eI eI

Proof. By Corollary 1.4, the components ay, . . ., a,_; of J* 4+ B, are the
same as the corresponding components of B,, and the later components
ax, k = n, are all equal to P. Analogously the components of index less than
n of J" 4 B, are the same as those of (M B, and the others are all equal to P.

Remark. This property of the radical is important for the characterization of
our rings. On the other hand it is shared by the rings with segregated radical
(i.e. the additive group of R is the direct sum of a subring of R and J) and
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artinian factoring R/J, even if V(R) is a not necessarily distributive lattice,
as it is remarked in Behrens [4].

The representation (3) of the closed ideals in P as the intersection of maximal
ideals in P induces a representation of the closed ideals in R as the intersection
of powers of maximal ideals in R: Any 4 € V(R) is equal to a sum ;20 aw’
where a; C a1, a; € V(P). By (3), a; Cm € ¥ if and only if m € H(a,),
and, by Corollary 1.3, this is equivalent to 4 € M1 Therefore with M
being the set of the maximal ideals in R,

(22) A =N {M; M ¢ M},
where

) w0 = {0, AEL
It is convenient to set

(24) Ny = N{M% 1z 04,

a closed ideal in R. Then

(25) a(M) =00 & A C Ny,

Let 4 = N\MP B= "M and 4 oB
2, (iii),

(26) ~ (M)

N M Then, by Theorem

sup{t;a; N b, ;, Cm; 071 — 1}
a(M) + B(M)

because a; M b,_;—; € mis valid if and only if a; T mor b,_;_; C m.

Il

These considerations are collected in the following theorem, where R is
again the ring of the Theorem 1.1.

THEOREM 1.6. (i) Any closed ideal A = Y aw? 1n R = P[[w]] can be repre-
sented by

27) A= N{MD; M € M} witha(M) = sup{z; a,.1 C m}.
(11) The exponents v(M) of the product A o B are
(28) v(M) = a(M) + B(M).

If £ is an arbitrary function on M with values in the set Ny ., of all non-
negative integers together with oo, then 4 = N {Mt®); M € M} is a closed
ideal in R and therefore 4 = N {M=™; M € M} also, where the function «
is given by (23). This normalization of the representation of 4 as an inter-
section of powers of maximal ideals means a condition for the function «
which can be formulated in the following way:
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Let & be an arbitrary subset of the set ¥ of the maximal ideals in P. Then
the closed ideal a = (M {m; m € &} has the following normalized representation

29) a=N{maCmecx = Nmn™,

In other words, if we define the kernel K(&) of a subset & of X as the inter-
section of those maximal ideals of P which are members of & and recall (2),
that the hull Ha of an ideal a in P consists of the set of all maximal ideals which
contain a, then

(30) a= N{mmeHKS} = N{mu™; mec &}

is the normalized representation of a = M {m; m € &}. It is well known that
the definition of the closure

(31) T© = HKS for the subsets & of X

gives the set ¥ of the maximal ideals of P a compact (not necessarily Haus-
dorff) topology, called the hull-kernel-topology of ¥. The characteristic function
x of the set & is upper semi-continuous with respect to this topology, if and
only if @ is closed (Bourbaki [6, Corollary to Proposition 1 in 1V.6.2]), and the
function @y in the normalized representation (30) of the ideal a is the upper
semicontinuous regularization of the characteristic function x of &.

By virtue of the correspondence ® in the Theorem 2 between the closed
ideals 4 in R and the ascending chains ®4 of closed ideals in P the last para-
graph implies the following result, observing m = M/wR and assuming that R
is the ring of Theorem 1.1.

TraEOREM 1.7. The arithmetic of the ring P[[w]], i.e. the structure of the lattice
ordered semigroup V(R) of its closed ideals, can be described by an isomorphism o
of V(R) onto the laltice ordered semigroup S of the Ny  -valued uppersemicon-
tinwous functions o on the set M of the maximal ideals in R, using the H-K-
topology on M and the operations

(@4 B) (M) = a(M) + B(M), (aMB)(M) = supla(d), B(M)},
(@ \UB)(M) = infla(M), B(M)}
on the lattice ordered semigroup S:

(32) oA —>a €S, A=N{MCO; 0 €M} for A € V(R).

Our investigations have been depending on the hypothesis that P is an N-
algebra and they motivate our interest in a lattice-theoretical characterization
of the (non-necessary commutative) N-algebras. It will be given in the next
theorem in the case that P is a completely regular, strongly semisimple Banach
algebra with identity element, i.e. that the intersection of the maximal ideals
in P is equal to (0) and that the hull-kernel topology of ¥ is Hausdorff. We
need Willcox’s ([12, Theorem 1.2]) characterization of the smallest closed ideal
which has the closed subset F of X as its hull: It is the closure I'{(F) of the
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ideal {(F) in P, consisting of the following set: a € j(F) if and only if there

exists an open subset O, of X such that ¥ C O, and a(D,) = 0, a = 4.

THEOREM 1.8. Assume that the completely regular and strongly semi-simple
Banach algebra P possesses an identity element e. Set

B3) ={ac VP)a=TiF),F=TFCZ¥%]
and assume
(34) aob=aMb fora,be 9.

Then the following statements hold:
(i) O is a distributive sublaitice of V(P).
(i1) The relation k of V(P), defined by

(35) axa! = T'j(Ha) = Tj(Hal),

1s a congruence relation on the laitice V(P) and

(36) o:amod«k— Tj(Ha) fora € V(P)

15 a lattice-isomorphism of V(P)/k onto the sublattice O of V(P).

(837) (iii) P is an N-algebra if and only if « 1s the diagonal relution on V (P).

Remark. A commutative N-algebra satisfies (34) as was remarked at the
beginning of this section.

Proof of Theorem 1.8. The formulas
(38) H(@NMb) =H(a)\JH®O) and H(a +b) = Ha N Hb

follow immediately from the primeness of the maximal ideals in P. If a C 0
and Ha € O then Hb C © and therefore

39) a C b= i(Ha) Cj(HDb) fora, b e V(P).
That implies
(40) {(H(a + b) D j(Ha) + j(Hb) and j(H(aMN b)) S j(Ha) N j(Hb).

Leta € (H(a + b)) and therefore a (D) = 0 on an open subset O D H(a + b).
If ©° denotes the complement set ¥\O, then (Ha M £°) M Hb = A. By virtue of
e € P, the Hausdorff space X is compact in its H-K-topology and therefore
normal. That warrants the existence of open sets 0;, 7 = 1, 2, in X with

HaNO SO, HH S O, and (I'Op) N (T'Oy) =0

and therefore (I'O;)°\U (I'Q;)° = X. Let 71, m2 € P be a partition of e sub-
ordinated to this open covering of X (Willcox [12, Corollary 1.1.2]), i.e.
e=m + 7 and 7, ((I'O,)° =20, ¢ =1, 2. Then anr; is constant = 0 on
ro U020, U O D Ha and am; is constant = 0 on 'Oy D O» D Hb. By the
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very definition of ;(F) we get ar, € j(Ha) and ar, € j(Hb). This implies
41) a = ae = am + am; € {(Ha) + j(Hb)

for any « € {(H(a + b)). The transition to the closures in (40,) and (41)
proves

(42) Tj(H(a 4 b)) = Tj(Ha) + Tj(Hb) fora, b € V(P).

Let now o« € Tj(Ha) M Tj(Hb)). By the hypothesis of our Theorem, this
intersection is equal to the o-product and therefore to I'(j(Ha) «j(Hb)). In
other words, we get

a = lim Z (aniﬁni)yani(gni) =0= ﬂni(gni’)y

N30 1

where the open sets O,; and £, satisfy Ha C O,; and Hb C O, respectively.
Then a,8,; = 0 on O,; U O,/ 2 Ha\U Hb = H(a M b) and therefore a, 8, €
i(H(@MDb)) and @ € Tj(H(a M b)). This, together with an application of I’
to (40,) proves

(43) T{(H(@Mb)) = Tji(Ha) M Ij(Hb)

and finishes the proof of the statement that $ is a sublattice of V(P). Its
distributivity follows immediately from (38) together with

(44) a > Ha<> Ti(Ha) fora € 9

and the distributivity of the lattice of the closed subsets of a topological space.
The formulas (42) and (43) show that the equivalence relation k in the statement
(ii) is a congruence relation and therefore ¢ a lattice-isomorphism, remembering
(38). For the proof of (iii) we need only to remark that P is an N-algebra if and
only if

(45) KHa = Ti(Ha) foralla ¢ V(P)

is valid.

2. A characterization of P[[w]] as a topologically arithmetical algebra.
Let P be a commutative N-algebra with identity element e again. Then for its
maximal ideals m, by § 1, (1), m o m = m is valid, where m o m is the closure
of the product m ¢ m. The three examples of N-algebras, mentioned in the
introduction, enjoy the property

(1) mem=mform € %,

as will be shown in §3. This fact is used essentially in the characterization of
their P-algebras P[[w]].

ProrositioN 2.1. If the commutative N-algebra P satisfies m « m = m for its
maximal ideal m then the powers M « M s+ M of the maximal ideal M =
m ~+ Y21 Pw? in P[[w]] are closed also.
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Proof: M is closed. Assume M o M ee+ M = M". Then by Corollary 1.3

M"-M=( > lmwi-f- > ow) -(m+2 Pw")

0<1Sn— i=n k=1
= Z m e me’ + Z me’ + Z Pot = M
0<isn—1 izn h2n+1

is valid by virtue of m « m = n.

THEOREM 2.2. Let R be a commutative, complete, locally m-convex P-algebra,
P = C[lw]], with identity element e. Assume that all powers M, M « M,
MM eM,...of any maximal ideal M in R are closed and M™ D M"+! for
n € N is valid. Set

Ny = N {M";n € N}
and assume for the set M of all maximal ideals
2) N A{Ny; M € M} = (0).

Assume that wR 1s the radical of R and M?* = M isvalid for M = M/wR in R/wR.
Conclusions: (i) If

(3) dimgM/M? =1 for M ¢ M,

then to any a € R and any M € M there exists a uniquely determined 4 (M) € P
such that

4) a=d(M)e (mod Ny).
In that case
c:a—d fora € R

is a one-to-one algebraic homomorphism of R into the P-algebra Gp(M) of all
P-valued functions on the set M.
(i1) The condition (3) is satisfied if R is a lopologically arithmetical ring.

Proof. (i) By the Gelfand-Mazur Theorem there exists one and only one
ag(M) € Csatisfyinga = ay(M)e (mod M). By virtueof m? = min P = R/wR,
where m = M/wR, and of M « M = M? the equation

6) M = Cwe+ M?

is valid and shows we € M \ M2. That proves the casc n = 1 of the induction
assumption

(7) M = Cu'e + MY

because dim (M/M?) = 1. The sum in (7) is direct, considered as C-space.
(6) implies

M1 = (Cue + M™1) » (Cwe + M?)
C Cutle + M C M+,
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Then M"™ D M"*+! finishes the proof of the direct G-space-sum-representation

(7) for all n. Assume that there exists ag(M), ..., a,—1(M) € C with
8) a— D aiMec M.
0<iZn-1

Then (7) gives the existence of a uniquely determined «, (/) € C such that (8)
is valid for # + 1 also. That proves (4) considering the definition of N,;.
The statement about ¢ is clear. (ii) The closed ideals 4 of R in the interval
[Ar2, M) of V(R) correspond to the C-subspaces of M /M? because M /M?is an
R/M-module and therefore an C-space. Then dimg M/M = 2 would imply
that [M?2, M] is not a distributive sublattice of V(R).

If the powers w"R of the radical wR of R are completely distributive elements
in the lattice I(R) then the following theorem proves a property of R which is
well known for noetherian and commutative Dedekind-rings.

THEOREM 2.3. If "R 1s a completely distributive element in V(R), R being the
ring of Theorem 2.2, then

9) w'R=N{M*;Me M}
15 valid.
Proof. We know
(10) M" = "R 4+ M™1 form € N
from (7). Then, using wR C M, we get

M?* =M« M = w’R+ oM? 4+ M* = 0?R + w(w?R + M3) + M*
= w’R + M4
Analogously M3 = M? « M = w’R + M> replacing M? in w?M? by the last
formula.

M2 = "R + W2 M"2 4 "M 4 M
C "R + M C M2,

using
11) M* = "R + M™? forn = 2
as induction assumption. That shows

N AM M e M) = N (@R + M) = o'R + () M2
by virtue of the complete distributivity of w"R. Therefore

N AM*; M € M} = "R + o"F2R + N M4 = "R + N M+

= ... =0"R+N{M"; MM andn € Nj

'R+ N {Ny; M € M} = "R + (0).

Il

It is the aim of the next Theorem 2.5 to show that the algebraic mono-
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morphism ¢ of R into Gp(M), introduced in Theorem 2.2, is an algebraic
isomorphism of R onto P[[w]], P = R/wR, in the case that all powers "R are
completely distributive elements in the lattice V(R). The isometry-properties
of ¢ will be discussed in the Theorem 2.7.

We need the following

LEMMA 2.4: Let P be the Gelfand transform of a commutative semi-simple
Banach algebra P with identity element e and therefore consisting of C-valued
functions on the set X of its maximal ideals m. Assume

(12) mem=m form¢€ X.

Let F be an P-bimodule consisting of residue classes I modulo P of G-valued
Sfunctions t on X and such thai

(13) afl =1ia fora€c Pandi€ F
1s valid and of 1is definable by
(14) af:m—a(m) «t(m) + P for m € %,

independently of the choice of t in its residue class L.
Then the zero mapping is the only F-derivation on P, i.e. the zero mapping 1s the
only C-linear mapping D of P into F satisfying

(15) D(a+B) = a(DB) + (Da)B fora, B € P.
Proof. Fora € mand 8 € m we get
(16) D(a +B) : m—a(m) + ((DB)(m)) + ((Da)(m)) +B(m) =0

because o € m implies d(m) = 0. To any y € P and m, € X there exist an
¢ € C and an element u, € my such that y = ce + u,. By (12), the element p,
is a sum of finitely many products « 8 where a € my and 8 € m,. Then
De = D(e « ¢) = 2¢(De) = 2(De) and (16) imply together Dy = ¢(De) + Dy, =
c*0+4+ > D(-B) =0.

Remark. If we replace Fby P = Cg(X), X a compact Hausdorff space, then
the proof above shows that every (not necessarily continuous) P-derivation on
P is the zero mapping. This very short proof of the special case P = C¢(X)
of Johnson’s Theorem, that the only derivation in a semisimple, commutative
Banach algebra is 0, the author has learned from W. Zelazko by oral com-
munication.

THEOREM 2.5. Let R be a commutative complete locally m-convex P-algebra
with identity element and radical wR, where P = C[[w]]. Denote by M the set of
the maximal idelas in R. Assume that for any M € M the n-th algebraic powers
M M...M,n=20,1,2, ..., form a strictly descending chain of closed
ideals and that the equation

(7) N {Ny: M € M} = (0) with Ny = O {M";n € N
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is valid. Assume that R is topologically arithmetical, i.e. the lattice V(R) of its
closed ideals is distributive, and that the powers o"R, n € N, of its radical are
completely distributive elements in V(R). Assume M?* = M for M = M/wR.
Define the mapping

(18) c:a—d = Y, aw' fora€ R

i=0

where

19) ¢:M— a; (M) €Pfor MeM

=0

is determined by
(20) @ = d@(M)e (mod Ny).

Set P = R/wR, a semisimple Banach algebra. Then o is an algebraic isomorphism
of R onto P[[w]].

Remark. The maximal ideals m in R/wR are the images M /wR of the maximal
ideals M in R. Because M « M is closed, the same is true for m  m. Then
m = m ¢ m by hypothesis and we can apply the Lemma 4 to P = R/wR.

The author does not know whether the distributivity of VV(P), together with
m = m «m for all maximal ideals m in P, implies that P is an N-algebra.
Remember Theorem 1.8 in this context.

Proof of Theorem 2.5. By Theorem 2.2 we know that the a;, in the representa-
tion (18) of ga = @ are elements of Eg(M), the C-space of all C-valued func-
tions on the set M, and that «, is the Gelfand transform of the element @ =
a + wR of the Banach algebra R/wR. That is the case n = 1 of the following
induction assumption:

(21) The coefficients ag, @1, ...,a,_10f 4 = > ;z0aw’ € oR are elements of
P, and to given ¢q, ¢1, ..., ¢,—1 € P there exists an element 4 =
> ieawt € oR witha; = ¢;forj =0,1,...,n — 1.

1. Letd = Y a,w' € oR be given. If there exists an d, = " + a1/ o"t! +
... € oR then the following argument proves a, € P: d,(M) € "P for all
M € M and therefore, by the construction of d, in the Theorem 2.2, a, € M"
for all M € M. Theorem 2.3 shows «a, € w"R. Take ¢ € R such that «, = w"c.
Thenc = vo + viw + ... with yo € P by the case n = 1 of (21). That implies

a, = vo € P.
2. Now assume that ¢R does not contain an element of the form a,w” +
Q'™+ ... to the given d = Y a,w’. By the induction assumption (21)

there exists

5=a] 4+ aw + ...+ 10"+ 0" 4 B ...
in ¢R. Then

§=d—bo=ao+ 00+ ... 40"+ a + B + ...

https://doi.org/10.4153/CJM-1978-006-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-006-1

POWER SERIES 79

is an element of oR. Let & be any element in R such that
ﬁ = o + 7" + Mg+
Then ¢R contains
g—h= (0, —n)o" + b
and therefore, by the section 1 of this proof, a, — 7, € P is valid. In other
words:
22) Diay—a,+ P for ay€ P
is a mapping of P into F = Ec(M)/P, defined by the existence of an element
@0 + @ + ap™ + ... € oR,
where Gg(M) is the C-space of all C-valued functions on the set M. F can be
made a P-bimodule, defining, fora € Pand i =¢+ P € F,
af :m—a(m) «t(m) + P form € M,
by virtue of P € P. The mapping D is C-linear and satisfies
D(ag * Bo) = ao(DBo) + (Daxo)Bo
because the equation
(@ + e +...) ¢ (B + Bue" + .. .) = adBo + (@By + aBo)e” +. ..

in ¢R holds. The application of the Lemma 4 to this F-derivation D shows
D = 0 and therefore @, + P = P, a, € P.
3. We have to prove the second statement in (21) for » also: To ¢, ¢1, . . .,
¢, € P there exists an ¢ € R with
a = Z quwj—I-oznw"—}—...

0<j=n~-1
by the induction assumption (21). By the first two sections of this proof we
knowa, € P.Then, by thecasen = 1of (21), thereexistsad = (¢, — a,)w® +
... € oR. Then o¢R contains dw" and therefore

d + 30)" = Z d)kwk + ’Yn+10)n+1 + e

0<k=n
That finishes the proof of (21) for # in place of » — 1. Therefore ¢R consists
of all formal power-series in the indeterminate w with coefficients in P, and the

monomorphism ¢ in the Theorem 2.2 is an algebraic epimorphism of R onto
the P-algebra P[[w]].

COROLLARY 2.6. R is segregaled, i.e. R is, as a G-space, the direct sum of its
subalgebra Pe and its radical oR.

Let P be a Banach algebra with identity element under the norm ||||.
Then the P-algebra R = P[[w]] of formal power-series in w with coefficients in
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P is a complete locally m-convex algebra under the following sequence
{¢.;n =0,1,2,...} of seminorms on R:

q(z: ws’) = llaoll + laall + -+ + lfsll.

These seminorms satisfy for ¢« € R

qoa@ = I'aollr qnt = Qn+l(wa): gn(aoé’) = ”0‘0H

and they are uniquely determined by these properties:

THEOREM 2.7. Assume R = Pl[lw]], where P is a Banach algebra with the
norm || +|| and possessing an identity element. Assume R 1is a locally m-convex
algebra under a sequence {g,; n = 0, 1, 2, ...} of seminorms on R, satisfying for
a = Y aw'the conditions
(23) qoa = HaoHv gt = gn-H(wa)v Qrz(O‘Oe) = HO‘OH
Then q, = q,', where
24) ¢} (@) = llaol| + [ful| 4 ... + [[ewall.

Proof: Take 0 £ £ £ 9 € R and set

25) a(t) = a0 + Z>:1 Eozjwj.

Then a(n) — a(¥) € wR and therefore, by the triangle inequality and (25),

(26) gn((l(’?)) - Qn((l(f)) < (9 — E)Qn_1( j;l ajwj—l) )

Then go'a = ||lao|| = qoa, and ¢,! satisfies (26) also. The induction assumption
Gn—1 = ¢u—1'implies

G(a(n) — qu(a(®)) = (n — E)gn—ll( ajwj) = g/ (a(n) — ¢’ (@(®)),

izl

and equivalently,
(27) Qn((l(n)) - in((t(n)) = QH((L(S)) - in(”(’S)) for0 = £ =

First case: ¢,} (X jz1a;07) = 0. Then ||ai| = ... = ||la,]| = 0 and therefore
(> aw?) = 0 because g,(«"™10) = gy(wb) = 0 for b € R.

Second case: ¢,' (X ;=1 a,07) > 0 for a = Y ;zaw’. Then g,'(a(§)) > 0 for
£> 0, and (27), together with ¢,'(a(n)) = ¢,'(a(£)) if n = &, imply that
(28) t(£) = (g (a(£)))71(gn(a(8)) — ga'(a(¥)))

is defined and decreasing for ¢ € [0, 0] and £(0) = 0, if ag # 0. (Butif ag = 0
apply (23:) to ¢, and use ¢,—1 = ¢,—1'.) On the other hand, f(0) = 0 is a
consequence of a(¢) = £ lag + ;=1 a,w’] where the bracket [ ] goes to
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2 iz1a,0’ for £ — 0. Then the continuity of the seminorms ¢, and g,! together
with (23;) and the induction assumption ¢,_; prove t(¢) — 0 for £ — c0.
Therefore ¢(¢) = const = 0 on [0, ©] and especially (1) = 0, i.e. ¢,a = ¢,'a.

COROLLARY 2.8. If the topology of the P-algebra R in Theorem 2.5 is given by a
sequence {g,;n = 0,1,2, | of seminorms such that q, induces the norm ||-||
of the Banach algebra R/wR = P and ¢,a = ¢uy1(wa) isvalid for alla € R and the
restriction of q, to the C-subalgebra Pe of R is q,(ae) = ||a||, then the algebraic
isomorphism o of R onto P[[w]] is an ‘“isometric”’ isomorphism in the sense

(29) g = g, (ea) fora € Randn =0,1,2,....

Theorem 2.5 and the Corollary 2.8 are combined in the following Theorem 2.9
to a characterization, by the arithmetic of R, of the P-algebras R = P[[w]]
over those commutative N-algebras P, which have closed algebraic squares
m ¢ m of its maximal ideals.

THEOREM 2.9. Let P be @ commutative N-algebra satisfying mom = m *m
Sor its maximal ideals m. Let || || be the norm of P. Then ihe following statements
hold:

(1) R = P[[w]] under the set

¢t 2w = laol| + [feal| + oo F ewl], »=0,1,2,...

of seminorms can be characterized, up to P-algebra isomorphisms o, by the following
properties of R:

1) R isa topologically arithmetical P-algebra, commutative and complete, locally-
m-convex with identity element e.

2) The factor algebra R/wR is isomorphic as a Banach algebra to P. The powers
W'R of the radical wR of R are completely distributive elements of the lattice V(R)
of the closed ideals in R. The (algebraic) powers of the maximal ideals M in R are
closed and form, for each M, a strictly descending chain in V (R). The intersection
taken over all powers M" and all M 1is equal to the zero ideal in R.

(it) If, im addition, the topology on R is given by a sequence g,,n = 0,1,2, ...,
of seminorms satisfying the following conditions:

qo nduces ||-|| on P = R/wR,

Qn(a) = ng—l(wa) fO}' a € R,
Gn(ce) = ||aH for a € P,

then R and P[[w]] are isometric isomorphic, i.e. g,a = ¢, 0a fora € Rand n € N.

3. Examples. We have started § 1 from a commutative N-algebra P. If the
product m ¢ m is closed for every maximal ideal in P then the P-algebra
R = P[[w]] enjoys all properties mentioned in Theorem 2.9, remembering
Proposition 2.1. That motivates our interest in examples of commutative
N-algebras P with all products m « m being closed for m € X, the set of the
maximal ideals in P.
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First Example: P = % ¢(X), the B*-algebra of all continuous C-valued
functions on the compact Hausdorff space X under the supremum norm.

It is well known and can be taken as consequences of Behrens [3], Theorem
1.2 and 2.4 also that & ¢(X) is an N-algebra satisfyingm sm = mform € %, %
being homoeomorphic to X. The arithmetic of R = % p(X) has been developed
in Behrens [3] already, but the importance of the complete distributivity of the
powers of the radical in V(R) was first observed in the semigroup theoretic
paper of Behrens [4].

Second Example (Silov [10], discussed also in Rickart [9] A.Z.5): P =
BVC(0, 1) consisting of all C-valued continuous functions on [0, 1] which are
of bounded variation using

(1) ||tl] = sup{lt(®)|;x € [0,1]} + Vart fort € P

as its norm.

The space ¥ of the maximal ideals, m under the hull-kernel topology is homo-
eomorphic to the interval [0, 1], and x¢ € [0, 1] is associated with m, = {t € P;
t(xo) = 0}. It is to show that m «m = m for all m € ¥X.

Proof. t € myg = (Ret)(x¢) = 0 = (Im ¢)(x¢). Assume ¢ is R-valued and
set g =t o xz, h =1 (1 — x,,), where x,, is the characteristic function of
[xg, 1]. Then g and % are continuous and of bounded variation, ¢ = g + &
and g € mo, A € mo because {(xo) = 0. Decompose g to the difference g =
g1 — g2 of the monotonically ascending functions g; and g, of bounded variation
(see e.g. Rudin [10, Theorem 8.13, (a)]). Then g;(x¢) = 0 implies g;(x) = 0
for all x € [0, 1]. Therefore A/g; € my also; analogously & = h; — he, by < 0,
n [0, 1]. Then

t= (V&) — (V) + (V=) — (V—h2)? € mg * my.

Third Example (Silov [11], see Rickart [9], the second example in A.2.5
for p =1): P = AC*(0, 1) consisting of all C-valued absolutely continuous
function on [0, 1], using

= sup i@l e 0,1} + [ 12@lds forte P

as its norm.

The absolute continuity of ¢ € P implies that ( is differentiable a.e.
(Lebesgue) and absolutely integrable (Rudin [10, Theorem 8.17 and 18.18])
and so are Ret and Im ¢ They are of bounded variation because [0, 1] is
compact. Again [0, 1] is homoeomorphic to ¥ under the hull-kernel topology
and ¥ = {mo;my = {{ € P; {(xy) = 0}; x¢ € [0, 1]}. The same representation
of Re ! (and analogously of Im f) by the g; € mgand %; € mg as in the second
example leads to the question whether the squareroots 1/g; and +/—#; belong
to P. But that is true because +/g; is differentiable at all points in [0, 1] where
¢1 is so with the possible exception of xo, and (+/g1)’ is absolutely integrable in
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[0, 1] again. That implies the absolute continuity of 4/g; and therefore 1/g; €
mo. This together with the analogous statements for g, and ki, ke, proves
Mo = My * M.

Fourth Example: 1t was shown in Behrens [3, Theorem 2.2], that the sum
A + B of closed ideals 4 and B in € p(X), X a compact Hausdorff space, is
closed. That is no longer true in the case P = BV(C(0, 1) as the following
counterexample proves. For the two closed subsets of [0, 1]:

a={O}U{%;nEN} and 58={0}U{51-—1_-_—i;n6N}
set

a={t€P;t=00onU} and b= {t€ P;t=0onB}.

Then the closure a + b of the sum a + b of these two closed ideals in P is the
ideal mo = {¢t € P;1(0) = 0} because AN B = {0}. The function {(x) = x
belongs to m,. Assume, by the way of contradiction, mo = a 4+ b. Then there
would exist g € a and % € b such that x = g(x) 4+ k(x) for x € [0, 1] and
g(x) = Oforall x € % and therefore h(x) = x for x € U; analogously k(x) = 0
forx € Band g(x) = xforx € B. Take 0 < o< 1; < ... < fyy—1 = 1 where
t;, =1/(2N — 1) and N € N. Then ¢; € A if 7 is even and ¢, € B if 7 is odd.
That implies

1 1 1
Z l‘g(h)"g@i—l)l—QN_1+2N_3+...+§+1

1<is2n-

and shows that the function g would not be of bounded variation and therefore
g 4 ¥, qea.

Remark. BVC(0,1) and 4C'(0, 1) are not sub-Banach-algebras of €[ (0, 1]).
Therefore the existence of the square roots of the g;and —#%;, 7 = 1, 2, does not
contradict Katznelson’s characterization of % ¢([0, 1]) in [7].
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