On an approximate construction for a regular polygon

By S. A. Scott.

My attention was drawn by an Art teacher to the following approximate construction ${ }^{1}$ for inscribing a regular polygon of n sides in a given circle, having diameter $A B$, centre O. Find C in $A B$ so that $A C: A B=2: n$, and construct the equilateral triangle $A B D$. If $D C$ produced meets the circle in E, then $A E$ is approximately a side of the required polygon.

I have found ${ }^{2}$ that the value of $\tan A O E$, as given by this construction, is $\left(\sqrt{3 n^{2}+48 n-96}-\sqrt{3 n^{2}}\right) /(2 n-8)$, from which the values tabulated below were calculated. For large n, the expansion of this expression begins with the terms $\sqrt{3}\left(4 n^{-1}-8 n^{-2}+\ldots\right)$ as compared with $\tan 2 \pi / n=2 \pi n^{-1}+\frac{8}{3} \pi^{3} n^{-3}-\ldots$. Evidently the construction becomes increasingly erroneous as n increases: the limiting percentage error is about 10.3%. Yet when n is not large it is surprisingly accurate, and it happens to be precise for $n=2,3,4$ or 6 .

$n:$	3	4	5	6	7	8	10	20	60
$360^{\circ} / n:$	120°	90°	72°	60°	$51^{\circ} 26^{\prime}$	45°	36°	18°	6°
$A O E:$	120°	90°	$71^{\circ} 57^{\prime}$	60°	$51^{\circ} 31^{\prime}$	$45^{\circ} 11^{\prime}$	$36^{\circ} 21^{\prime}$	$18^{\circ} 38^{\prime}$	$6^{\circ} 26^{\prime}$
$\%$-error:	0	0	-0.07	0	0.17	0.41	0.97	$3 \cdot 5$	$7 \cdot 2$.

[^0]49 Sicily Park,
Finaghy, Belfast.

[^0]: ${ }^{1}$ I. H. Morris, Geometrical Drawing for Art Students, p. 40; Longmans Green \& Co.

 2 The author has supplied two proofs, using coordinate and trigonometrical methods. Readers, or their pupils, may find this an interesting exercise.-Editor.

